Detailed Surface Geometry and Albedo Recovery From RGB-D Video Under Natural Illumination
Xinxin Zuo, Sen Wang, Jiangbin Zheng, Ruigang Yang; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3133-3142
Abstract
In this paper we present a novel approach for depth map enhancement from an RGB-D video sequence. The basic idea is to exploit the photometric information in the color sequence. Instead of making any assumption about surface albedo or controlled object motion and lighting, we use the lighting variations introduced by casual object movement. We are effectively calculating photometric stereo from a moving object under natural illuminations. The key technical challenge is to establish correspondences over the entire image set. We therefore develop a lighting insensitive robust pixel matching technique that out-performs optical flow method in presence of lighting variations. In addition we present an expectation-maximization framework to recover the surface normal and albedo simultaneously, without any regularization term. We have validated our method on both synthetic and real datasets to show its superior performance on both surface details recovery and intrinsic decomposition.
Related Material
[pdf]
[arXiv]
[
bibtex]
@InProceedings{Zuo_2017_ICCV,
author = {Zuo, Xinxin and Wang, Sen and Zheng, Jiangbin and Yang, Ruigang},
title = {Detailed Surface Geometry and Albedo Recovery From RGB-D Video Under Natural Illumination},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}