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Abstract

We addpress the problem of joint detection and segmenta-
tion of multiple object instances in an image, a key step to-
wards scene understanding. Inspired by data-driven meth-
ods, we propose an exemplar-based approach to the task
of multi-instance segmentation using a small set of anno-
tated reference images. We design a novel CRF model that
Jjointly models object appearance, shape deformation, and
object occlusion at the superpixel level. To tackle the chal-
lenging MAP inference problem, we derive an alternating
procedure that interleaves object segmentation and layout
adaptation.

1. Introduction

Detection and segmentation of multiple objects, one of
the fundamental challenges in computer vision, is a key
step towards scene understanding. Amongst the many dif-
ficulties that need to be addressed when solving this task is
that interesting scenes often contain a high-degree of inter-
object interaction, leading to large pose variation and occlu-
sion. Furthermore, occlusion boundaries between objects
are often weak, especially for objects of the same class.

There have been many approaches that deal with multi-
ple occluded objects in scenes. These can be divided into
roughly two categories. In the first category bounding box
object detectors are adapted to deal with occluded or miss-
ing parts [2, 11]. The limitation of these approaches is
that they do not require the occlusion to be explained by
another object. The second category of works treat multi-
instance detection as a pixel labeling problem with smooth-
ness priors, such as the layout consistent CRFs [10]. Here
each pixel is labeled with a class label and instance identi-
fier. The occlusion is handled naturally as the discontinuity
between two instances, but without long-range interactions
these models struggle to correctly label the same object that
is split in two (or more) disconnected regions.

In this work we take a different approach that is moti-
vated by the explosion in availability of annotated image
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data and the model-free approaches in recent years [8]. We
propose an exemplar-based method for detecting and seg-
menting multiple interacting objects in a scene. Our key
idea is to localize and segment multiple object instances
based on one or more reference images and corresponding
shape masks.

We formulate this joint detection and segmentation as
a multiclass (super-)pixel labeling problem, in which each
(super-)pixel of a target image is assigned to an object in-
stance label. We design a conditional Markov random field
(CRF) that jointly models the appearance and shape de-
formation of each object instance together with the inter-
relation of occluding objects at the (super-)pixel level. To
parse an image, we compute the MAP estimate of the CRF
model. However, this leads to a challenging energy mini-
mization with both discrete and continuous variables. We
propose an approximate inference procedure based on co-
ordinate descent, which alternates between a segmentation
step by (super-)pixel labeling and an instance learning step
by optimizing object shape mask and appearance model.

Our approach has several key advantages. First, it does
not require pre-learned models of object detectors [12],
which allows it to be easily extended with new object cate-
gories by simply adding prototype images and correspond-
ing masks. Nevertheless, our method is robust to moder-
ate viewpoint/pose changes and appearance variation. Most
important, however, is that our approach is robust to inter-
object occlusion and is able to distinguish multiple overlap-
ping object instances, as well as to group multiple disjoint
image regions into objects.

We introduce a new segmentation dataset with object in-
stance labels, which includes more than 800 objects. We
evaluate our method on this dataset and compare its perfor-
mance with two baseline methods.

Related work. Barinova et al. [1] addresses the problem
of finding multiple object instances in natural and biological
images. Unlike our work, they do not provide a pixelwise
segmentation of the detected objects. Riemenschneider et
al. [5] suggest integrating Hough voting with object support
segmentation. However, they do not infer object shape and



their deformation, nor do they have a unified CRF model.
Kuettel et al. [4] consider transfer shape masks from a train-
ing set for foreground object segmentation. However, they
generate a single foreground segmentation, and do not dis-
tinguish co-occurred object instances. Yao et al. [13] ad-
dress holistic scene understanding with a CRF model simi-
lar to our work. The main difference is that we model object
deformation and do not rely on object-specific detectors to
generate proposals.

2. Modeling multiple instances

Formally, assume we have a set of reference images
{I7 }M_ and their corresponding object masks {S" }M_, .
Based on the reference pairs, we generate a set of back-
ground and object instance hypotheses for a given target
image I, denoted by H = {ho, h1,--- ,hx} where hg is
the background. The details of hypothesis generation will
be described in Section 3. For now we assume H is given.

We adopt a superpixel representation of the target im-
age, and associate a label variable y; to each superpixel in 1,
where i € V = {1,..., N}. Here V denotes all the super-
pixel sites and [V is their total number in the target image.
The label y; takes values from the object hypothesis set H.
For each object hypothesis hy, we introduce a binary vari-
able o to indicate whether the hypothesis is active in the
target image. The hypothesis hy, is represented by a mask
sk and appearance a;. The mask sy is parametrized by a
triplet (my, ¢k, dy) where my, € {0,..., M} denotes the
corresponding reference mask index, c;, the center position
of the object instance, and dj, the mask deformation applied
to Sy, - The background indicator oy is always active, and
its hypothesis has appearance parameter ag only.

Our objective is to find an optimal labeling that interprets
the target image with a small number of hypotheses. We
achieve this by building a conditional Markov random field
(CRF) on the superpixel label variables Y = {y; }, denoted
as superpixel variables, and the object hypothesis variable
O = {0y}, denoted as object variables, and their associated
parameters (S, A) = {(sp,a)}. We connect each super-
pixel variable to its spatial neighbors in the image plane to
encode a local smoothness constraint, and to all the object
variables to represent the object level constraint. Specifi-
cally, let N be the superpixel neighborhood, we define an
energy function F over Y, O, S and A with four types of
potentials as follows.
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where 1); encode the label configuration constraint be-

Figure 1. Factor graph representation of our model. Black nodes
are observed variables; blue nodes represent instance parameters.

tween superpixels and object hypotheses, 4 are the global
shape and appearance constraint per instance, 1 impose lo-
cal rigidity/smoothness constraints for each object instance,
and )y, are the bias terms for the mask and appearance pa-
rameters. Our model is depicted graphically in Figure 1.

2.1. Label consistency and sparsity

We require that the superpixel labeling be consistent with
the active hypotheses, which is encoded by the energy term:

N
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i=1

where W is a large positive constant that penalizes any label
inconsistency between the superpixel and object variables.
The positive A is the cost for being an active hypothesis.

2.2. Object shape and appearance

Each active object hypothesis (i.e., o, = 1) imposes a
global shape and appearance constraint based on the refer-
ence image/mask pairs:

Ya(Yi, Sk, ax) = ( —10g (S, (xi — ek —dii))  (3)
— alog(g) + éa(fi,ax) ) [vi = K]

where f; is a local superpixel feature vector, g, is the cat-
egory prior and « is the weighting coefficient for the prior
term. Here x; denotes the image position (i.e., centroid)
of superpixel ¢, and dy; is the average shape deformation
of the kth instance on the ith superpixel. We define an ap-
pearance cost ¢, (f, a) for mismatch between the superpixel
appearance feature and the object appearance.

To compute the appearance cost, we first build an in-
stance specific color model for each hypothesis. We learn
a color Gaussian Mixture Model, denoted by powvm (£ ax),
for the kth hypothesis. The appearance cost is then de-
fined by ¢, (f;, ar) = — log(pomm (f;, ax)). The first term
in Equation 3 is a mask cost that constrains the scope of the



objects. The mask cost for the ¢th superpixel is computed by
mapping the pixel-wise mask onto the superpixel and taking
its average, which also takes into account the object center
¢ and amount of deformation dy;.

We further incorporate into the object category prior into
the energy function. The category prior can be obtained
by any scene labeling method (e.g., [9]) that generates a
marginal probability distribution of the categories for each
superpixel. The variable g;; is defined by the object cate-
gory probability p§ if £ > 0,and 1 — p§ if £ = 0.

2.3. Local rigidity and smoothness of deformation

We assume the shape deformation of each object in-
stance is small with respect to the reference masks. Let
1 and j be two neighboring sites in the target image, i.e.,
(i,7) € N. Then we define the energy cost 1(-) as,
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where [ is the weighting coefficient for the local rigidity
term, e(f;, f;) is the local object boundary probability, - is

a coefficient modulating the boundary cost, and ¢, is the
constant cost for both being background.
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2.4. Shape and appearance bias

The object hypothesis set H for a target image provides
an initial estimation of each object instance’s shape and ap-
pearance. We denote such parameters of the kth instance as
S = (Ck, ak) and ay. The shape and appearance bias term
uses these initial estimates as a prior:

Vo (sk, ax) =0a|sk — S| + [ar = ax]W )

where o4 is the weighting coefficient for the shape defor-
mation constraints, and W is a large constant cost.

3. Model inference and learning
3.1. Hypothesis generation

We initialize the object hypothesis set in two stages. In
the first stage, we estimate the scale and center locations of
object hypotheses using the set of object templates and the
Hough voting method [1]. The second stage initializes the
object deformation and appearance models. Here we esti-
mate a dense support of each object hypothesis on the image
plane. Our strategy is to define a set of seeds for the object
by using its sparse support, which consists of all the voters
for the corresponding Hough mode. We also have a good
estimate of background from the reference mask. Given the
foreground and background seeds, we run a GrabCut-like
algorithm [6] to obtain an initial dense support for each ob-
ject hypothesis.

3.2. Joint inference with alternating procedure

We parse an image by minimizing the energy function
E(Y,0,S, A), in which our inference algorithm searches
for the optimal configuration of object and pixel labels
(Y*, O*) and estimates the shape and appearance of all in-
stances (S*, A*).

However, this is a challenging optimization task as we
have a hybrid objective function with both discrete and con-
tinuous variables. We adopt a coordinate descent strategy
that solves two simpler sub-problems in an alternating way.
More specifically, we decompose the joint minimization
into one discrete and one continuous problem. First, we
fix the object shape and appearance parameters and infer
the object and superpixel variables. Then given the object
and superpixel labels, we adjust the shape and appearance
parameters of active object instances. Mathematically, at
iteration ¢, we have the following updates

(Y!,0") = arg gigE(Y, 0,81 AT, (6)
(S*,A") = argglgl E(Y' 0% S,A), (7
(S, AN = ((L—n)(S" 1 A" +n(S*,A")). (8

where 7 controls the updating rate of the instance param-
eters. We discretize the continuous sub-problem and use
Graphcut [7] to solve both minimization tasks.

3.3. Parameter estimation

We fix W = 10° for the inconsistency penalty and
€, = 0.1 for the background penalty. For other parameters,
we sequentially search for their values based on a training
dataset and leave-one-out cross-validation. For each param-
eter, we do a grid search at 5 values (empirically selected).

4. Experiments
4.1. Datasets

To evaluate our method quantitatively, we build a new
object instance segmentation dataset from the existing Polo
dataset [3] for scene labeling. The dataset consists of 317
polo sport pictures, and originally has pixel-wise labeling
for six object categories. We augment the original label-
ing by additional instance segmentation labels. In partic-
ular, we select the horse category, and manually generate
all instance-level segmentation. The augmented dataset in-
cludes 842 object instances in the horse category, and the
median of the number of instances per image is two.

4.2. Experiment setup

We follow the setting in [3] and select ten templates from
the image subset that includes only one object instance.The
selected templates cover six to seven typical viewpoints and
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Table 1. Performance comparison on Polo horse dataset.
‘SL+CCA’ and ‘HV+GC’ are two baseline methods, and ‘Ours-S’
and ‘Ours+S’ are our results without and with shape deformation

respectively. See the text for details.

a variety of poses. We initialize the object hypothesis set by
Hough voting, which generates between 30 to 160 initial
hypotheses. For each object instance, we build a Gaussian
mixture appearance model with up to 15 components.

To evaluate the performance of our model, we build two
baseline methods for comparison. The first baseline, de-
noted as ‘SL+CCA’, generates instance segmentation from
the category-level labeling. We first predict the horse class
label for all superpixels, and then run connected component
analysis to group the class labels into instance segmenta-
tion. The second baseline is based on the initialization of
our method. Instead of generating many hypotheses, we as-
sume the number of objects in each image is known, and
only keep that number of hypotheses with highest voting
scores. Given the object center and mask information, we
run the same GrabCut procedure to obtain the object in-
stance segmentation. We start from the strongest hypothesis
and greedily generate all instance labelings. This baseline
is referred to as ‘HV+GC’.

4.3. Segmentation performance

We evaluate against three different metrics on the whole
dataset: (1) Pixel-wise precision rate per object (Mi-AP),
which is averaged over all object predictions; and pixel-
wise recall rate per object (Mi-AR), which is averaged over
all groundtruth objects. (2) Overall pixel-wise precision rate
(Ma-AP) and recall rate (Ma-AR), which are averaged over
all the pixels. (3) Detection metric: average false positives
per image (Avg-FP) and average miss detections per image
(Avg-FN). Here we use a weak criterion as we care about
segmentation: a false positive refers to an incorrect object
detection (i.e., no overlapping pixels with the ground truth);
and a miss detection refers to a ground-truth object that is
completely missed.

We summarize our results in the Table 1. Two settings
of our model are evaluated. In the first setting, we do not
update the shape information, denoted as ‘Ours-S’ and the
second setting is our full model, denoted as ‘Ours+S’. We
can see from the results, because we model the segmenta-
tion at the object instance level, both variants of our model
achieve significantly better micro average precision and re-
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Figure 2. Examples of instance segmentation generated by our
model on the Polo dataset. Note that color is only used to dis-
tinguish different objects.

call than the two baselines. For macro average precision,
the baseline "THV+GC’ has a higher score, which is not sur-
prising since it knows the correct number of instances (but
suffers in terms of macro average recall). We show some
examples of our results on the Polo dataset in Figure 2.
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