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Abstract

We address the problem of joint detection and segmenta-
tion of multiple object instances in an image, a key step to-
wards scene understanding. Inspired by data-driven meth-
ods, we propose an exemplar-based approach to the task
of multi-instance segmentation using a small set of anno-
tated reference images. We design a novel CRF model that
jointly models object appearance, shape deformation, and
object occlusion at the superpixel level. To tackle the chal-
lenging MAP inference problem, we derive an alternating
procedure that interleaves object segmentation and layout
adaptation.

1. Introduction
Detection and segmentation of multiple objects, one of

the fundamental challenges in computer vision, is a key

step towards scene understanding. Amongst the many dif-

ficulties that need to be addressed when solving this task is

that interesting scenes often contain a high-degree of inter-

object interaction, leading to large pose variation and occlu-

sion. Furthermore, occlusion boundaries between objects

are often weak, especially for objects of the same class.

There have been many approaches that deal with multi-

ple occluded objects in scenes. These can be divided into

roughly two categories. In the first category bounding box

object detectors are adapted to deal with occluded or miss-

ing parts [2, 11]. The limitation of these approaches is

that they do not require the occlusion to be explained by

another object. The second category of works treat multi-

instance detection as a pixel labeling problem with smooth-

ness priors, such as the layout consistent CRFs [10]. Here

each pixel is labeled with a class label and instance identi-

fier. The occlusion is handled naturally as the discontinuity

between two instances, but without long-range interactions

these models struggle to correctly label the same object that

is split in two (or more) disconnected regions.

In this work we take a different approach that is moti-

vated by the explosion in availability of annotated image

data and the model-free approaches in recent years [8]. We

propose an exemplar-based method for detecting and seg-

menting multiple interacting objects in a scene. Our key

idea is to localize and segment multiple object instances

based on one or more reference images and corresponding

shape masks.

We formulate this joint detection and segmentation as

a multiclass (super-)pixel labeling problem, in which each

(super-)pixel of a target image is assigned to an object in-

stance label. We design a conditional Markov random field

(CRF) that jointly models the appearance and shape de-

formation of each object instance together with the inter-

relation of occluding objects at the (super-)pixel level. To

parse an image, we compute the MAP estimate of the CRF

model. However, this leads to a challenging energy mini-

mization with both discrete and continuous variables. We

propose an approximate inference procedure based on co-

ordinate descent, which alternates between a segmentation

step by (super-)pixel labeling and an instance learning step

by optimizing object shape mask and appearance model.

Our approach has several key advantages. First, it does

not require pre-learned models of object detectors [12],

which allows it to be easily extended with new object cate-

gories by simply adding prototype images and correspond-

ing masks. Nevertheless, our method is robust to moder-

ate viewpoint/pose changes and appearance variation. Most

important, however, is that our approach is robust to inter-

object occlusion and is able to distinguish multiple overlap-

ping object instances, as well as to group multiple disjoint

image regions into objects.

We introduce a new segmentation dataset with object in-

stance labels, which includes more than 800 objects. We

evaluate our method on this dataset and compare its perfor-

mance with two baseline methods.

Related work. Barinova et al. [1] addresses the problem

of finding multiple object instances in natural and biological

images. Unlike our work, they do not provide a pixelwise

segmentation of the detected objects. Riemenschneider et

al. [5] suggest integrating Hough voting with object support

segmentation. However, they do not infer object shape and
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their deformation, nor do they have a unified CRF model.

Kuettel et al. [4] consider transfer shape masks from a train-

ing set for foreground object segmentation. However, they

generate a single foreground segmentation, and do not dis-

tinguish co-occurred object instances. Yao et al. [13] ad-

dress holistic scene understanding with a CRF model simi-

lar to our work. The main difference is that we model object

deformation and do not rely on object-specific detectors to

generate proposals.

2. Modeling multiple instances
Formally, assume we have a set of reference images

{Irm}Mm=1 and their corresponding object masks {Sr
m}Mm=1.

Based on the reference pairs, we generate a set of back-

ground and object instance hypotheses for a given target

image I , denoted by H = {h0, h1, · · · , hK} where h0 is

the background. The details of hypothesis generation will

be described in Section 3. For now we assumeH is given.

We adopt a superpixel representation of the target im-

age, and associate a label variable yi to each superpixel in I ,

where i ∈ V = {1, . . . , N}. Here V denotes all the super-

pixel sites and N is their total number in the target image.

The label yi takes values from the object hypothesis set H.

For each object hypothesis hk, we introduce a binary vari-

able ok to indicate whether the hypothesis is active in the

target image. The hypothesis hk is represented by a mask

sk and appearance ak. The mask sk is parametrized by a

triplet (mk, ck,dk) where mk ∈ {0, . . . ,M} denotes the

corresponding reference mask index, ck the center position

of the object instance, and dk the mask deformation applied

to Sr
mk

. The background indicator o0 is always active, and

its hypothesis has appearance parameter a0 only.

Our objective is to find an optimal labeling that interprets

the target image with a small number of hypotheses. We

achieve this by building a conditional Markov random field

(CRF) on the superpixel label variables Y = {yi}, denoted

as superpixel variables, and the object hypothesis variable

O = {ok}, denoted as object variables, and their associated

parameters (S,A) = {(sk,ak)}. We connect each super-

pixel variable to its spatial neighbors in the image plane to

encode a local smoothness constraint, and to all the object

variables to represent the object level constraint. Specifi-

cally, let N be the superpixel neighborhood, we define an

energy function E over Y, O, S and A with four types of

potentials as follows.

E =

K∑
k=1

ψM (Y, ok) +
N∑
i=1

K∑
k=0

ψd(yi, sk,ak) (1)

+
∑

i,j∈N
ψs(yi, yj , {sk}) +

K∑
k=1

ψb(sk,ak),

where ψM encode the label configuration constraint be-
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Figure 1. Factor graph representation of our model. Black nodes

are observed variables; blue nodes represent instance parameters.

tween superpixels and object hypotheses, ψd are the global

shape and appearance constraint per instance, ψs impose lo-

cal rigidity/smoothness constraints for each object instance,

and ψb are the bias terms for the mask and appearance pa-

rameters. Our model is depicted graphically in Figure 1.

2.1. Label consistency and sparsity

We require that the superpixel labeling be consistent with

the active hypotheses, which is encoded by the energy term:

ψM (Y, ok) =

N∑
i=1

�yi = k��ok = 0�W + λ�ok = 1� (2)

whereW is a large positive constant that penalizes any label

inconsistency between the superpixel and object variables.

The positive λ is the cost for being an active hypothesis.

2.2. Object shape and appearance

Each active object hypothesis (i.e., ok = 1) imposes a

global shape and appearance constraint based on the refer-

ence image/mask pairs:

ψd(yi, sk,ak) =
(
− log

(
Smk

(xi − ck − dki)
)

(3)

− α log(gik) + φa(fi, ak)
)
�yi = k�

where fi is a local superpixel feature vector, gik is the cat-

egory prior and α is the weighting coefficient for the prior

term. Here xi denotes the image position (i.e., centroid)

of superpixel i, and dki is the average shape deformation

of the kth instance on the ith superpixel. We define an ap-

pearance cost φa(f ,a) for mismatch between the superpixel

appearance feature and the object appearance.

To compute the appearance cost, we first build an in-

stance specific color model for each hypothesis. We learn

a color Gaussian Mixture Model, denoted by pGMM(f ;ak),
for the kth hypothesis. The appearance cost is then de-

fined by φa(fi, ak) = − log(pGMM(fi,ak)). The first term

in Equation 3 is a mask cost that constrains the scope of the
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objects. The mask cost for the ith superpixel is computed by

mapping the pixel-wise mask onto the superpixel and taking

its average, which also takes into account the object center

ck and amount of deformation dki.

We further incorporate into the object category prior into

the energy function. The category prior can be obtained

by any scene labeling method (e.g., [9]) that generates a

marginal probability distribution of the categories for each

superpixel. The variable gik is defined by the object cate-

gory probability pci if k > 0, and 1− pci if k = 0.

2.3. Local rigidity and smoothness of deformation

We assume the shape deformation of each object in-

stance is small with respect to the reference masks. Let

i and j be two neighboring sites in the target image, i.e.,

(i, j) ∈ N . Then we define the energy cost ψs(·) as,

ψs(yi, si, yj , sj) (4)

= β ·
⎧⎨
⎩

1
‖xi−xj‖2 ‖dki − dkj‖2, yi = yj = k > 0

γ(1− e(fi, fj)), yi �= yj
εp, yi = yj = 0

where β is the weighting coefficient for the local rigidity

term, e(fi, fj) is the local object boundary probability, γ is

a coefficient modulating the boundary cost, and εp is the

constant cost for both being background.

2.4. Shape and appearance bias

The object hypothesis set H for a target image provides

an initial estimation of each object instance’s shape and ap-

pearance. We denote such parameters of the kth instance as

ŝk = (ĉk, d̂k) and âk. The shape and appearance bias term

uses these initial estimates as a prior:

ψb(sk,ak) =σd||sk − ŝk||2 + �ak = âk�W (5)

where σd is the weighting coefficient for the shape defor-

mation constraints, and W is a large constant cost.

3. Model inference and learning
3.1. Hypothesis generation

We initialize the object hypothesis set in two stages. In

the first stage, we estimate the scale and center locations of

object hypotheses using the set of object templates and the

Hough voting method [1]. The second stage initializes the

object deformation and appearance models. Here we esti-

mate a dense support of each object hypothesis on the image

plane. Our strategy is to define a set of seeds for the object

by using its sparse support, which consists of all the voters

for the corresponding Hough mode. We also have a good

estimate of background from the reference mask. Given the

foreground and background seeds, we run a GrabCut-like

algorithm [6] to obtain an initial dense support for each ob-

ject hypothesis.

3.2. Joint inference with alternating procedure

We parse an image by minimizing the energy function

E(Y,O,S,A), in which our inference algorithm searches

for the optimal configuration of object and pixel labels

(Y�,O�) and estimates the shape and appearance of all in-

stances (S�,A�).
However, this is a challenging optimization task as we

have a hybrid objective function with both discrete and con-

tinuous variables. We adopt a coordinate descent strategy

that solves two simpler sub-problems in an alternating way.

More specifically, we decompose the joint minimization

into one discrete and one continuous problem. First, we

fix the object shape and appearance parameters and infer

the object and superpixel variables. Then given the object

and superpixel labels, we adjust the shape and appearance

parameters of active object instances. Mathematically, at

iteration t, we have the following updates

(Yt,Ot) = argmin
Y,O

E(Y,O,St−1,At−1), (6)

(S∗,A∗) = argmin
S,A

E(Yt,Ot,S,A), (7)

(St,At) =
(
(1− η)(St−1,At−1) + η(S∗,A∗)

)
. (8)

where η controls the updating rate of the instance param-

eters. We discretize the continuous sub-problem and use

Graphcut [7] to solve both minimization tasks.

3.3. Parameter estimation

We fix W = 105 for the inconsistency penalty and

εp = 0.1 for the background penalty. For other parameters,

we sequentially search for their values based on a training

dataset and leave-one-out cross-validation. For each param-

eter, we do a grid search at 5 values (empirically selected).

4. Experiments
4.1. Datasets

To evaluate our method quantitatively, we build a new

object instance segmentation dataset from the existing Polo

dataset [3] for scene labeling. The dataset consists of 317

polo sport pictures, and originally has pixel-wise labeling

for six object categories. We augment the original label-

ing by additional instance segmentation labels. In partic-

ular, we select the horse category, and manually generate

all instance-level segmentation. The augmented dataset in-

cludes 842 object instances in the horse category, and the

median of the number of instances per image is two.

4.2. Experiment setup

We follow the setting in [3] and select ten templates from

the image subset that includes only one object instance.The

selected templates cover six to seven typical viewpoints and
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N

SL+CCA 23.7 41.9 54.8 64.8 2.6 1.0

HV+GC 44.6 38.7 61.7 49.4 0.6 0.7
Ours-S 49.9 53.2 57.6 68.7 0.5 0.8

Ours+S 50.9 53.7 57.4 68.8 0.4 0.8
Table 1. Performance comparison on Polo horse dataset.

‘SL+CCA’ and ‘HV+GC’ are two baseline methods, and ‘Ours-S’

and ‘Ours+S’ are our results without and with shape deformation

respectively. See the text for details.

a variety of poses. We initialize the object hypothesis set by

Hough voting, which generates between 30 to 160 initial

hypotheses. For each object instance, we build a Gaussian

mixture appearance model with up to 15 components.

To evaluate the performance of our model, we build two

baseline methods for comparison. The first baseline, de-

noted as ‘SL+CCA’, generates instance segmentation from

the category-level labeling. We first predict the horse class

label for all superpixels, and then run connected component

analysis to group the class labels into instance segmenta-

tion. The second baseline is based on the initialization of

our method. Instead of generating many hypotheses, we as-

sume the number of objects in each image is known, and

only keep that number of hypotheses with highest voting

scores. Given the object center and mask information, we

run the same GrabCut procedure to obtain the object in-

stance segmentation. We start from the strongest hypothesis

and greedily generate all instance labelings. This baseline

is referred to as ‘HV+GC’.

4.3. Segmentation performance

We evaluate against three different metrics on the whole

dataset: (1) Pixel-wise precision rate per object (Mi-AP),

which is averaged over all object predictions; and pixel-

wise recall rate per object (Mi-AR), which is averaged over

all groundtruth objects. (2) Overall pixel-wise precision rate

(Ma-AP) and recall rate (Ma-AR), which are averaged over

all the pixels. (3) Detection metric: average false positives

per image (Avg-FP) and average miss detections per image

(Avg-FN). Here we use a weak criterion as we care about

segmentation: a false positive refers to an incorrect object

detection (i.e., no overlapping pixels with the ground truth);

and a miss detection refers to a ground-truth object that is

completely missed.

We summarize our results in the Table 1. Two settings

of our model are evaluated. In the first setting, we do not

update the shape information, denoted as ‘Ours-S’ and the

second setting is our full model, denoted as ‘Ours+S’. We

can see from the results, because we model the segmenta-

tion at the object instance level, both variants of our model

achieve significantly better micro average precision and re-

Figure 2. Examples of instance segmentation generated by our

model on the Polo dataset. Note that color is only used to dis-

tinguish different objects.

call than the two baselines. For macro average precision,

the baseline ’HV+GC’ has a higher score, which is not sur-

prising since it knows the correct number of instances (but

suffers in terms of macro average recall). We show some

examples of our results on the Polo dataset in Figure 2.
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