
Convex Optimization for Scene Understanding

Mohamed Souiai1, Claudia Nieuwenhuis2, Evgeny Strekalovskiy 1 and Daniel Cremers1

1Technical University of Munich∗ 2UC Berkeley, ICSI, USA

Abstract

In this paper we give a convex optimization approach for
scene understanding. Since segmentation, object recogni-
tion and scene labeling strongly benefit from each other we
propose to solve these tasks within a single convex optimiza-
tion problem. In contrast to previous approaches we do not
rely on pre-processing techniques such as object detectors
or superpixels. The central idea is to integrate a hierar-
chical label prior and a set of convex constraints into the
segmentation approach, which combine the three tasks by
introducing high-level scene information. Instead of learn-
ing label co-occurrences from limited benchmark training
data, the hierarchical prior comes naturally with the way
humans see their surroundings.

1. Introduction

1.1. A Joint Approach to Scene Understanding

Scene understanding is the combination of segmentation,

object recognition and scene classification. These tasks are

highly interdependent. On the one hand, the most important

cues for scene classification are the objects contained in the

scene. On the other hand, results from scene classification

help to determine the objects occurring within the scene,

e.g. if we know that we are looking at a natural scene grass

and sky would be likely but armchairs would be surprising.

Finally, segmentation results can be improved by means

of object recognition results, since typical color and shape

models can be associated with the objects. Instead of solv-

ing all tasks separately or sequentially our objective is to

take a holistic approach to scene understanding by solving

all tasks simultaneously within a single convex optimiza-

tion problem – similar to the way humans reason about the

world around them. In this way, the tasks can directly influ-

ence each other. Previous joint approaches usually rely on

either difficult optimization schemes or on pre-processing

tasks such as superpixels or object detectors, which intro-
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a) Input b) Potts model c) Proposed

Figure 1. Scene understanding consists of segmentation, object

recognition and scene classification which are highly interdepen-

dent tasks. Solving these tasks within a single optimization prob-

lem such that all tasks can influence each other improves results

for scene understanding. The scene in a) is classified as ’nature

scene’ which prevents incorrect labels such as ’building’ or ’road’.

duce errors and runtime limitations into the scene under-

standing task.

1.2. Related Work

The inspiration to this work predominantly draws from

two lines of research, namely research on label configura-

tion priors and research on convex relaxation techniques.

Hierarchical Semantic Prior Knowledge In human vi-

sion and understanding of the world, especially hierarchies

of objects are a common concept. They can be found on a

larger scene level characterizing which objects appear in a

specific context, e.g. ’cars’ and ’road signs’ appear in ’street
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contexts’, whereas a ’cow’ and a ’sheep’ usually appear in

’natural contexts’ outside and not in the ’kitchen’ or next to

a ’computer’. But hierarchies can also be found on a small

scale level describing single objects which are composed of

different parts, e.g. a ’bike’ consists of ’handlebars’ and

’tires’. In both contexts they are characterized by specific

semantic relationships among objects or object parts.

Therefore, the integration of context-related hierarchical

information on the scene level is of importance to obtain

highly accurate results.

The most closely related hierarchical prior is [5], where

a fusion algorithm is proposed which computes labelings

for each label group in the tree separately and fuses the re-

sults. This approach is iterative and limited to a single tree

level, even though natural hierarchies consist of many lev-

els. In addition, the algorithm exhibits optimality bounds

depending on the cardinality of the label subgroups and the

associated cost in each scene. This is due to the fact that

with arbitrary label costs, α-expansion’s bound is arbitrar-

ily bad. For more details see [5]. In this paper we propose a

non-iterative approach for trees with arbitrarily many levels

and computable (in practice very tight) optimality bounds.

A special case of such hierarchical priors are minimum
description length (MDL) priors [21, 19, 9] (with a single

tree level and each class corresponding to a separate leaf

with fixed MDL cost). Such priors result in a higher penalty

the more different labels occur in the image regardless of the

corresponding objects.

A closely related prior is the co-occurrence prior [7, 15],

which penalizes object sets occurring together in the same

scene. The main difference to hierarchical priors is that hi-

erarchical priors invoke a category penalty as soon as a sin-

gle label of that category occurs in the scene, but they do

not differentiate between labels within the same category.

In contrast, co-occurrence penalties are only invoked if all

labels of the specific label set occur. In addition, hierarchi-

cal priors are based on a human understanding of the world

and are less complex to compute, since penalties only exist

between subsequent tree levels. In contrast, co-occurrence

priors are learned from limited training data and thus do not

necessarily reflect general or semantically meaningful re-

lations, but rather the label frequencies of the training set.

Besides a separate penalty needs to be computed for each

subset of labels (the power set), which is extremely involved

and usually requires approximation [8].

Scene Classification Scene classification denotes the task

of categorizing an image with respect to the type of scene

shown. Most approaches build on the combination of im-

age feature descriptors, such as color histograms, texture

or SIFT features. Based on the descriptor output learning

based approaches such as Support Vector Machines or sta-

tistical approaches are applied to classify the scene based

on training data [2, 11, 12]. Yet, these approaches rarely

solve the segmentation, object recognition and scene classi-

fication tasks jointly.

Joint Approaches Joint approaches for segmentation,

recognition and scene classification were given recently in

[8] and [18]. Both approaches rely on the result of sophis-

ticated object detectors in order to infer solutions for the

joint task. Thus, the quality of the results always depends

on the quality of the object detectors. In addition, the infer-

ence problem solved in [8] is rather complex and does not

involve the actual scene classification task.

In this paper we solve the joint task based on convex

optimization techniques without requiring any preprocess-

ing such as object detection or superpixel computation. In

this way, the quality of the solutions as well as the runtime

directly depend on the proposed algorithm instead of prior

processing steps.

Convex Optimization To tackle the highly complex task

of joint recognition and scene classification we will rely on

powerful techniques from convex optimization. In general,

this scene understanding task can be formulated as a multi-

label problem. Two popular paradigms exist for solving

such energy optimization problems: discrete Markov Ran-

dom Field (MRF) based approaches and continuous opti-

mization approaches. In [13] Nieuwenhuis et al. showed

that for multi-label problems continuous approaches can be

parallelized and implemented more efficiently. In addition,

they do not suffer from grid bias and - in case of a convex

relaxation - are independent of the initialization. There are a

number of recent advances on convex relaxation techniques

for spatially continuous multi-label optimization. These in-

clude relaxations for the continuous Potts model [3, 10, 20],

for the non-local continuous Potts model [17], for MDL pri-

ors [19], and for vector-valued labeling problems [6, 16]. In

this paper we will give a convex relaxation of the scene un-

derstanding task.

1.3. Contribution

Our main contributions are the following:

• Instead of solving a sequence of optimization prob-

lems we introduce the hierarchical segmentation prior

within a single convex optimization problem.

• The performance of our algorithm neither depends on

the label subset cost nor on the cardinality of the label

subsets and can therefore handle an arbitrary number

of labels.

• Our formulation is more general than the class of hi-

erarchical priors in [5] in the sense that we are able to

assign arbitrary costs for label configurations arising
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from different categories. We also introduce a variant

of the hierarchical prior where we even assign infinite

costs to certain label configurations.

2. Convex Multi-label Segmentation
Given a discrete label space L = {1, ..., n} with n ≥ 1,

the multi-labeling problem can be stated as a minimal par-

tition problem. The image domain Ω ⊂ R
2 is to be seg-

mented into n pairwise disjoint regions Ωi which are en-

coded by the label indicator function u ∈ BV (Ω, {0, 1})n

ui(x) =

{
1 if x ∈ Ωi,

0 otherwise.
(1)

Here BV denotes the space of functions with bounded total

variation, which allows for discontinuities [1]. To ensure

that each pixel is assigned to exactly one region, the simplex

constraint is imposed on u:

n∑
i=1

ui(x) = 1 ∀x ∈ Ω (2)

To find a solution to the minimal partition problem we

minimize the following energy:

E(u) = ED(u) + ES(u) + EH(u). (3)

The data term

ED(u) =

n∑
i=1

∫
Ω

ui(x)�i(x)dx. (4)

where �i(x) is the local cost of assigning label i to pixel x,

measures how well the segmentation complies with a given

appearance model for each label. The regularizer:

ES(u) =
1

2

n∑
i=1

∫
Ω

|Dui(x)| (5)

ensures spatial coherence of the label assignment, and is

chosen as the Potts model which penalizes the boundary

lengths. The term EH(u) is the hierarchical scene under-

standing energy which will be the focus of this paper.

Label Occurrence Functions In order to devise the

hierarchical prior it is necessary to model the occur-

rences of specific labels in the image. Let U =
{u ∈ BV (Ω, {0, 1})n | ∑i ui(x) = 1 ∀x ∈ Ω} denote the

set of all possible segmentations over the image domain Ω.

Then the function l : U → {0, 1}n indicates for each label

i ∈ {1, . . . , n} whether it occurs in a given segmentation:

li(u) =

{
1 if ∃x ∈ Ω : ui(x) = 1,

0 otherwise.
(6)

This can also be written as [19]

li(u) = max
x∈Ω

ui(x) ∀i ∈ L (7)

L2L1 L3 L4

l1 l2 l3 l4 l5 l6 l7 l8

L5 L6

S

L

Figure 2. An example label hierarchy with object labels L in the

leaves and scene labels S in the inner nodes.

3. The Hierarchical Prior
Hierarchical priors penalize the co-occurrence of labels

from different scene contexts, e.g. a ’cow’ (’outdoor’ con-

text) and a ’fridge’ (’indoor’ context). To this end, the set

of object labels is organized in a tree structure where the

leaves correspond to objects and the inner nodes to object

categories S with k := |S|, see Figures 1 and 2.

Let π : S → L maps each category to the set of ob-

ject labels it contains in all of its subtrees, e.g. π(L6) =
{l5, l6, l7, l8} in Figure 2. Let furthermore

L : U → {0, 1}k, Li(u) = max
j∈π(i)

lj(u) (8)

denote the indicator function for the k categories in the inner

tree nodes, i.e. Li(u) indicates if any label in any subtree of

category Li is present in the scene. These nodes are orga-

nized in arbitrarily many levels, e.g. ’outdoor’ contains the

subcategories ’nature’ and ’street’ (see Figure 1). Note that

labels can be shared by several categories by adding them

one level above all the subtrees that should share them. See

for example the labels ’sky’ and ’grass’ in Figure 3, which

can appear in ’nature’, ’street’ and ’water’ scenes.

For each single category function Li we define a specific

cost CLi
≥ 0 which is added to the energy if any of the

objects in any subtree of the category Li appears in the seg-

mentation. Hence, if the label ’bicycle’ appears the costs

for the categories ’street’ and ’outdoor’ are invoked.

Then we can define the hierarchical energy as

EH(u) :=
∑
i∈S

CLi
Li(u) (9)

with each Li given by (8). Thus, for each label occurring

in the segmentation the energy is increased by the costs CLi

for all categories Li the label belongs to. In this way, we can

introduce statistical information on the likelihood of differ-

ent scenes. Here, conditional likelihoods instead of abso-

lute ones are of interest, i.e. the probability of a scene given

its direct parent in the tree. For the optimization, we use

(8) and (7) to write Li = maxj∈π(i),x∈Ω uj(x) in terms of
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u. For efficient minimization we decouple max-terms by

means of the dualization of the max function [19].

Scene Uniqueness Constraints The hierarchical prior in-

troduces costs depending on the likelihood of each scene. In

this way, it discourages labels from different scenes but nev-

ertheless allows for mixed solutions. For scene classifica-

tion, however, one would expect a hard decision for a single

scene label. In order to obtain a unique scene label and to

improve the segmentation at the same time, we propose to

introduce a scene uniqueness prior. This prior imposes the

constraint that all labels occurring in the final segmentation

belong to the same category, i.e. they share the same path

from the lowest category level to the root node of the tree.

Let P : S → S map all categories to their direct category

child nodes, i.e. ’outdoor’ is mapped to ’street’ and ’nature’,

and the lowest categories such as ’water’ are mapped to the

empty set. Then we impose the following constraints

∑
j∈P (i)

Lj(u) = Li(u) ∀i ∈ S. (10)

This constraint set ensures that the sum of all category func-

tions at each tree level equals the parent category function.

By setting the root node indicator function Lr(u) = 1 we

enforce a unique scene classification result. If a subcategory

function is zero then no label from its subtree can occur in

the segmentation result. If two labels in different subtrees

are active then the scene uniqueness constraints force one of

them to zero. These constraints are linear and can be easily

implemented by means of Lagrange multipliers. They can

be applied in addition to the hierarchical prior or alone. The

energy EH then reads as:

EH(u) :=
∑
i∈S

CLi
Li(u) s.t.

∑
j∈P (i)

Lj(u) = Li(u),

(11)

Li(u) = max
j∈π(i)

lj(u), li(u) = max
x∈Ω

ui(x), ∀i ∈ L.
(12)

In addition to u, the overall energy (3) is then also opti-

mized over the indicator functions li and Li as new vari-

ables. Since the max-constraints (12) are not convex, we

replace them by the relaxations

lj(u) ≤ Li(u) ∀i ∈ S, j ∈ π(i), (13)

ui(x) ≤ li(u) ∀i ∈ L, x ∈ Ω. (14)

They can be implemented with Lagrange multipliers, e.g.

by adding the terms supai(x)≥0

∫
Ω
ai(x)(ui(x)− li(u)) dx

to the energy (3) and optimizing also over a.

Outdoor 

Nature 

Sheep Tree Cow 

Grass Sky Chair Book 

Indoor 

Boat Water Bird 

Street Water 

Bicycle Building Road Car Sign 

Figure 3. Hierarchical prior for MSRC benchmark used for joint

segmentation, recognition and scene classification.

4. Implementation
In order for the domain of optimization to be a convex

set, we relax the binary constraint ui(x) ∈ {0, 1} to the con-

vex one ui(x) ∈ [0, 1]. To minimize the overall energy (3)

we use the primal-dual algorithm [4], which is essentially a

gradient descent in the primal variables and a gradient as-

cent in the dual variables with a subsequent application of

the proximity operators. For the time steps we used the re-

cent preconditioning [14].

5. Experiments
We will now show results for the joint task of segmen-

tation, object recognition and scene classification. To this

end, we have selected a set of 15 semantic labels and scene

types (out of 21), which could naturally be grouped in a

tree hierarchy, see Figure 3. Hence, we define the following

label set

L := {Grass,Car, Bird, Building, Sky, Water,Cow,Sheep,Boat,

Chair, Tree, Sign, Road, Book,Sky}

together with the object categories

S := {Indoor, Outdoor, Nature, Street}.

For testing we use the subset of 68 images from the MSRC

benchmark, which contains only labels within our hierar-

chy. We minimize the energy in (3) using the appearance

term in [7] as data term ED, the standard Potts model as

smoothness term ES(u) and the hierarchical energy EH to-

gether with scene uniqueness constraints as formulated in

(11). Qualitative results comparing the proposed approach

to the results based only on the Potts model (i.e. EH = 0)

and to the co-occurrence priors by Ladicky et al. [7] are

shown in Figure 5. Several of these images show strong

improvements compared to the Potts and the co-occurrence

prior, e.g. the ’book’ label disappears from the sign image,
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Co-occurrence [7] 89.97 81.76 88 99 86 62 86 92 94 94 82 89 62 88 84 71 34

Hierarchical Prior 89.53 81.83 82 97 89 82 91 90 89 95 90 88 64 87 56 79 41

Figure 4. Average accuracies over all images (global) and average per class for the pure Potts model, our approach and the co-occurrence

results by Ladicky et al. [7]. The scores for each label are defined as True Positives · 100
True Positives + False Negatives .

the reflection of the tree is correctly classified as ’water’ and

the ’sheep’ is no longer confused with the label ’road’ due to

color similarities. Figure 4 shows the average accuracy on

the mini-benchmark. The comparison to the co-occurrence

prior shows that the differences are only marginal on aver-

age. Yet there is no scene classification involved in the co-

occurrence prior, and as argued in the introduction learning

of the prior is much more involved and prone to special-

ization on the specific database. In contrast, the hierarchy

structure was modeled by hand based on human reasoning.

6. Conclusion
In this paper we proposed a joint approach for segmenta-

tion, object recognition and scene understanding, which is

formulated within a single multi-label variational optimiza-

tion approach. In contrast to previous approaches we do

not rely on the computation of superpixels or object detec-

tor outputs or build several stages in the optimization pro-

cess. We gave a convex relaxation of the approach yield-

ing unique solutions to the scene classification task inde-

pendent of the initialization of the algorithm. The results

on the MSRC benchmark show that for several images we

were able to strongly improve the labeling task achieving

classification results sligtly above the highly specialized co-

occurrence prior by Ladicky et al. [7].
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Figure 5. MSRC benchmark results for joint segmentation, recognition and scene classification using the hierarchy in Figure 3.
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