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Abstract
Reliable and timely detection of abandoned items in pub-

lic places still represents an unsolved problem for auto-
mated visual surveillance. Typical surveilled scenarios are
associated with high visual ambiguity such as shadows, oc-
clusions, illumination changes and substantial clutter con-
sisting of a mixture of dynamic and stationary objects. Mo-
tivated by these challenges we propose a reliable left item
detection approach based on the combination of intensity
and depth data from a passive stereo setup. The employed
in-house developed stereo system consists of low-cost sen-
sors and it is capable to perform detection in environments
of up to 10m × 10m in size. The proposed algorithm is
tested on a set of indoor sequences and compared to man-
ually annotated ground truth data. Obtained results show
that many failure modes of intensity-based approaches are
absent and even small-sized objects such as a handbag can
be reliably detected when left behind in a scene. The pre-
sented results display a very promising approach, which can
robustly detect left luggage in dynamic environments at a
close to real-time computational speed.

1. Introduction
Several recent incidents have indicated that unattended

luggage detection poses an important security threat in
transport and other critical infrastructures. Abandoned or
left luggage detection represents also a key problem to
surveillance personnel since accurate detection of rare aban-
donment events embedded into a cluttered environment is
beyond the capability of a human observer.

Motivated by this challenge, the research field of visual
abandoned object detection has been very active, proposing
a large number of surveillance solutions employing station-
ary cameras as commonly encountered in public surveil-
lance. Nevertheless, public challenges such as the PETS
2007 challenge [1] and the i-LIDS for AVSS’07 bench-
mark [2] focusing on left object detection have shown that
common RGB sensors have difficulties, even when obser-
vations are based on multiple, partially overlapping views,
to accurately detect left items at a reasonable rate of false
alarms.

In this paper we propose a novel abandoned object de-
tection approach which combines depth and intensity infor-
mation to reliably detect and segment left object candidates
in scenes with observation zones of up to 10 by 10 meters in
size. Left item detection is a multi-stage process, where in-
dividual vision tasks involve the detection of static objects,
object owners and the spatio-temporal relation between ob-
ject and owner. The main scope of this work is put on the
first static object detection stage.

The main contribution of the paper is given by the novel
left luggage detection concept employing combined passive
stereo depth and intensity cues, including algorithms capa-
ble to infer object presence from sparse depth data. Our pro-
posed use of combined cues addresses the typical problems
of the left object detection task: shadows and illumination
changes, ambiguity between object drop-off and removal,
occlusions, precise spatial segmentation and the presence of
non-relevant stationary objects such as sitting persons. In-
dividual cues are combined in an independent manner. An
adaptive disparity-based background model is generated un-
der consideration of non-valid pixels. Based on a compari-
son between octree-structured 3D data for background and
current depth observations, proposals for spatial changes in
the scene geometry are generated. Simultaneously to the
depth-based left item hypotheses, intensity data is also used
to generate stationary foreground region proposals. Indi-
vidual cue based proposals are represented by single im-
age region segments which are combined based on their
spatial extent and temporal history. In order to cope with
complex object types such as poorly textured or small-sized
left objects, we apply a validation step in form of a weakly
parametric region growing algorithm - inspired by Tian et.
al [23] - exploiting intensity and depth cues. A slowly in-
tegrating gradient-based motion history is also computed to
reveal non-rigid or quasi-stationary objects.

The paper is structured as follows: First, Section 2 gives
a concise structured presentation on related work. Sec-
tion 3 presents the proposed detection approach. The ex-
perimental setup, tested scenarios and their discussions are
presented in Section 4. Finally, Section 5 concludes the pa-
per.
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2. Related work

A substantial amount of research exists on the subject of
left item detection. Existing approaches can be categorized
with respect to the applied detection strategy or according to
the employed sensor/cue setup. These individual categories
are summarized as follows:
According to detection strategies: Static object detection
based on background modeling is a common technique
since it is fast to compute, and background modeling con-
cepts can be easily extended to characterize stationary fore-
ground regions. As proposed by Tian et al. [23], in the
case of Gaussian Mixture Models a certain mode of the
temporally aggregated intensity distribution at a given pixel
well represents static pixels. Other works rely on a tempo-
ral sequence of detected foreground regions which can be
combined by accumulation [11], [17] or temporal subsam-
pling [14] in order to derive static image regions. Such mov-
ing foreground based techniques face ambiguity problems
by having no means to discriminate between object drop-off
and removal. Combination of two background models com-
puted at different frame rates or update rates, as proposed by
Porikli et al. [19], better resolves this ambiguity, however,
illumination variations and shadows still pose a substantial
problem. A left object detection or validation strategy can
be also formulated by tracking, such as in [25]. Long-term
stable tracking in presence of frequent occlusions and il-
lumination changes, however, represents a great challenge
to tracking based approaches. Left object detection can be
also posed as an activity recognition problem, aiming to
recognize specific spatio-temporal signatures of loitering,
drop-off events and subsequent static objects [6], [20], [15].
Usually such approaches require a characterization of ob-
ject motion in form of low-level motion cues or tracking;
however, such representations experience substantial prob-
lems with increasing object density in the scene.
According to employed sensor/cue setups: Multiple-view
observation of a common calibrated ground plane intro-
duces significant improvements [13], [7], [10]. Low-level
ambiguities such as occlusions, illumination variations and
shadows can be better resolved, while detection and track-
ing methodologies gain in robustness, thus contributing to a
more reliable characterization of the spatio-temporal scene
context required to recognize static objects and the status of
abandonment. Another way to approach the left object de-
tection task is to assess changes in the scene depth. Recent
sensor technology developments, such as Time-of-Flight
cameras and the Microsoft Kinect [3], have promoted the
use of depth sensing sensors for scene analysis. These sen-
sors employ active illumination enabling the computation
of high-quality dense depth maps. Mainly due to the lim-
ited spatial range and resolution, and the problems of active
sensing in presence of sunlight, such sensors have been pri-
marily applied to the indoor human detection task [22], [9].

Figure 1. Our customized trinocular stereo camera setup with a
baseline of 40cm (between the left and right cameras). A com-
mercially available alternative (no affiliation) can be found at [5].

There is little work on left object detection [18] by means
of depth sensing sensors.

In light of the existing state of the art it is apparent that
multi-view and depth sensing overcomes many of the com-
monly encountered difficulties of monocular vision based
techniques. Passive stereo sensors bring additional advan-
tages in terms of large observable area, high spatial reso-
lution and the capability of outdoor operation under sunlit
conditions.

3. Proposed approach

In this section first we briefly describe the visual input
our proposed approach requires. Next, we give a overall
view on the employed concepts. Finally we describe the
individual algorithmic components in detail.

Image data: We use an in-house developed sensor (Fig-
ure 1) to extract intensity information, employing a canon-
ical stereo setup (three monochrome cameras mounted in
parallel), with a baseline of 0.4m between the two cameras
located at the ends of the rig. The board-level industrial
cameras have a USB2 interface and the resolution of the
sensor is 1280×1024 pixels, resampled to 1150×920 with
8 bit quantization. This trinocular camera setup is calibrated
offline. The stereo matching process outputs depth data
alongside with rectified intensity images, congruent to the
depth image. Depth information is computed via a pyra-
midal implementation of a Census-based stereo matching
algorithm, which is an explicit adaption and optimization
of the well-known Census transform in respect to embed-
ded real-time systems in software. Depth is computed for
all three available baselines thus improving the quality of
obtained depth map at the different spatial ranges. At the
given resolution, the sensor delivers approximately 10fps,
when stereo computation is performed on a modern PC.

Overview: Our detection method independently com-
putes depth and intensity based left object proposals, which
are combined and validated in a later processing stage. Fig-
ure 2 depicts the simplified overview of our algorithmic
flow. The main motivation for the employed independent
processing scheme is the following: intensity data is de-
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Figure 2. Overview on the algorithmic concept. Mutually agreeing intensity- (blue) and depth-based (red) proposals are combined and
validated. Proposals not passing the validation step are eliminated (cyan) in the validation stage.

fined everywhere in an acquired image, however, it exhibits
a high degree of uncertainty by being sensitive to photomet-
ric variations. Computed depth, on the other hand, is avail-
able only at image regions possessing sufficient structure or
texture, while accurately characterizing the scene geome-
try. Depth is not completely decorrelated from photometric
variations, since in underexposed or overexposed image re-
gions no depth can be estimated. By combining left object
proposals from the different cues we strive to detect agree-
ing proposals and thus to minimize the ambiguity with re-
spect to their source of origin, whether they are true left
objects causing local depth and intensity changes or some-
thing else. A subsequent validation step also pursues this
objective by performing spatial (local segmentations) and
temporal (motion integration) characterization of left object
proposals.

Our framework exhibits following constraints:

• requires a calibrated, stationary stereo camera, and

• the size of detectable left objects is limited by the spa-
tial resolution of the stereo camera. The currently em-
ployed resolution allows for the detection of a small-
sized backpack up to 10 meters from the camera.

As shown in Figure 2, first the disparity and intensity
data from the stereo camera are used to compute back-
ground models. The current and background model dis-
parities are converted into depth data and represented as
individual octree-based voxel grids, which are used to de-
tect and segment spatial changes. Spatial changes are ac-
cumulated in time, where long term deviations are marked
as left object proposals. The intensity data is used within

a dual background model [19] to generate left object pro-
posals. Mutually agreeing depth- and intensity-based pro-
posals are combined based on a simple region overlap crite-
rion (see Figure 2). In a last validation step remaining pro-
posals are examined with respect to motion patterns caused
by quasi-stationary objects (e.g. humans) and plausible,
”object-like” segmentations. The segmentation step should
discriminate from faulty proposals caused by highlights or
underexposed areas with no structure. Validated proposals
persisting longer than a predefined duration are labeled as
detected left objects.

Next, individual algorithmic parts are described in detail.

3.1. Background modeling and change detection

Our disparity-based background modeling scheme em-
ploys a simple running average technique [24] which also
considers the validity of the disparity value at a given pixel.
A slow adaptation rate ensures that dropped-off and dis-
placed objects only slowly become part of the reference dis-
parity background. The disparity-based background model
and the current disparity frame are converted to depth val-
ues according to these equations:

Z = f ∗ B / d; (1)

X = (u− px) ∗ Z / f ; (2)

Y = (v − py) ∗ Z / f ; (3)

In the above equations f is the focal length, B is baseline
and d is the value of the disparity. u and v are the pixel
locations in 2D image. px and py are the coordinates of the
principal point. X , Y and Z are the output coordinates of
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Figure 3. Change detection in depth data: Intensity image (top
left); Momentary (not aggregated) changes (red) with respect to
a reference depth (top right); Obtained segmentation in the 2D
image space (bottom left); Bounding box representation (bottom
right)

3D point. The intensity value at the coordinate u and v is
taken from the rectified image.

At the same time an intensity-based background model
is built using the method of Zivkovic et al. [26], [4]. The
depth and intensity values for background and the current
frame are used to derive joint depth-intensity representa-
tions in form of an octree [12]. The reference octree rep-
resenting the background model of the scene and the oc-
tree computed for the current frame are compared, where
both octrees can differ in size, resolution, density and point
ordering. By recursively comparing the octree-based tree
structures, spatial changes represented by differences in the
voxel configurations are identified. An example of the com-
puted depth change is displayed in Figure 3 along with its
segmentation result.

An additional Motion History cue is computed to repre-
sent motion occurring at a large time scale. The measure
is used later in the validation phase to assess the quantity
long-term integration motion within a given rectangular im-
age region. Inspired by the Motion History concept [8],
[17], we compute the running average of inter-frame dif-
ferences of the norm of image gradients. A slow integra-
tion time ensures that transient objects do not accumulate
a large response and quasi-stationary objects (people stand-
ing, sitting, moving vegetation) on the other hand produce
a marked Motion History signature.

3.2. Depth-based proposal generation

Upon detecting depth-based scene changes, it is neces-
sary to segment and label candidate objects. Labeling of
the candidate objects can be performed either in depth or in
intensity data. Due to computational constraints, labeling in

our framework is performed in the 2D image space. Every
point in the depth data exhibiting a change is reprojected
into the image space. Due to this reprojection step tempo-
ral aggregation and spatial segmentation become easy and
computationally less demanding. Temporal aggregation is
performed accordingly by creating an image accumulator
where momentary changes are inserted and associated over
time. If a spatial change is visible in the view of the cam-
era, then the accumulator is compared to the newly observed
changes and upon correspondence respective entries are in-
cremented. In case of occlusions or object removal the ac-
cumulator is decremented.

A temporal association between registered depth-based
changes aims at detecting strongly correlating stationary
candidates and distinguishing them from transient phenom-
ena. To represent individual candidates, both in the accu-
mulator and in the current change detection map, following
two measures are employed:

• center of the fitted rectangle and

• ratio of area R.

The area ratio R is equal

R = AreaS/AreaN , (4)

where AreaS is the area of a stored and AreaN of a new
candidate. In case of a relative deviation below a threshold
T the accumulator entry and the new candidate are associ-
ated and the corresponding accumulator entries are incre-
mented by a unit value.

In order to support proposal generation by depth infor-
mation, a volume estimation step is applied if an accumu-
lator entry reaches a number of predefined observations N
(N = 5 in our case). Volume measurement is based on the
estimation of the convex hull (see Eq. 5) from the corre-
sponding depth values:

⎧⎨
⎩
|S|∑
i=1

αixi

∣∣∣∣∣ (∀i : αi ≥ 0) ∧
|S|∑
i=1

αi = 1

⎫⎬
⎭ , (5)

where this convex hull of a finite point set S ∈ Rn forms
a convex polytope. Each point xi in S is assigned a weight
or coefficient αi in such a way that the coefficients are all
non-negative and sum to one, and these weights are used to
compute a weighted average of the points [21].

The estimate of an approximated volume for a candidate
region in the accumulator enables the framework to discard
too large or too small objects. In the present framework
such a filtering is employed only for very small-sized ob-
jects, there is no upper limit set for object size. Generated
regions in the accumulator image represent the depth based
proposals (red regions in Figure 2).
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3.3. Intensity-based proposal generation

Using the previously (Section 3.1) described background
modeling scheme [26] we generate intensity-based candi-
dates by the dual background model of Porikli et al. [19].
Intensity-based proposals represent a sensitive way to de-
tect stationary candidates, implying that even low-contrast
and small-sized objects are detected; however, at the ex-
pense of detecting many false alarms. This high sensitivity,
nevertheless, results in a high recall which is essential for
fusing intensity- and depth-based proposals using mutual
agreement.

3.4. Combination of proposals

Given the two sets of rectangles generated by depth and
intensity-based detection, we compute the following pair-
wise overlap ratios:

r =
area(Bd ∩Bi)

area(Bd ∪Bi)
, (6)

where Bd and Bi are two overlapping bounding boxes gen-
erated from depth and intensity data, respectively. Bd ∩ Bi

and Bd ∪Bi represent the intersection and the union of the
two bounding boxes, respectively. If the overlap ratio r ex-
ceeds 50%, a match is declared. A one-to-one match is not
enforced, thus several proposals of one cue can be matched
to a bounding box of the other cue.

3.5. Validation of proposals

In the validation step we apply two validation mecha-
nisms. A recurrent motion based validation step uses the
aggregated Motion History information (Section 3.1). For
each proposal region an area-normalized Motion History
mean is computed. Proposal regions exceeding an exper-
imentally determined threshold Tmh are discarded.

A segmentation-based validation step is introduced in
order to detect proposals lacking any boundary, structure
or texture. Multiple region growing algorithms are started
from several seed point locations defined at K-by-K grid
points (K = 3) within the proposal rectangle and applied
to the intensity image. Since the stopping criterion of re-
gion growing is a sensitive parameter, we employ the crite-
rion of Maximum Stability [16] to find consistent segments.
By incrementally performing segmentation with increasing
stopping criterion (similarity threshold) within a predefined
range and using the step Δ, we compute the stability value
S:

S(Rg
i ) = (|Rg−Δ

j |−|Rg+Δ
k |) / |Rg

i | (7)

|.| denotes the cardinality (area) of a region. Rg
i is a re-

gion obtained with a similarity threshold g, while Rg−Δ
j and

Rg+Δ
k are regions with decreased and increased similarity

thresholds, respectively. A local minimum of the stability

Figure 4. Example segmentation results obtained by the used
weakly-parametric region growing validation step. Shown: Initial
seed points (left), color-coded multiple segments according to the
varying similarity threshold (center) and the obtained maximally
stable segment (right).

value S during region growing with increasing similarities
implies a maximally stable region. In our validation step
we retain the first found local minimum (if any) and ver-
ify whether it is contained within the proposals rectangle.
If one of the multiple segmentation attempts (starting from
the grid) meets this criterion, the proposal is accepted as a
valid candidate.

Figure 4 shows various segmentation results for a sin-
gle seed point. As it can be seen, for objects certain parts
(facets, patches) are found as stable segments, while in a
weakly structured area (last row of Figure 4) the growth of
incrementally computed segments does not slow down due
to absence of object-delineating boundaries.

4. Experimental results and discussion

In this section, we present the experimental setup and
illustrate and discuss the detection results.

Dataset: To our best knowledge there is no publically
available dataset for depth-based left object detection. For
this reason we recorded 6 indoor scenarios depicting several
events of object (luggage) drop-off in an office and lab envi-
ronment. Unfortunately, we could not reproduce the com-
plexity of a public location (crowd, clutter), nevertheless,
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Complexity aspects DOOR MEETING COFFEE TABLE CORRIDOR LAB TWO DOORS

Illumination (low light, saturation,
changes)

× × ×

Dynamic occlusions × ×
Non-relevant static object (person,
moved door, chair)

× × × ×

Small-sized left object ×
Number of frames 1995 12615 2437 2643 2947 2460
Number of annotated static regions 1 6 4 2 5 4
Number of true left objects 1 5 3 2 3 2

Table 1. Parameters of the video sequences used for the evaluation.

Performance measure DOOR MEETING COFFEE TABLE CORRIDOR LAB TWO DOORS

Precision (P) 1 0.71 0.75 1 0.6 0.5
Recall (R) 1 1 1 1 1 1

Table 2. Obtained quantitative results.

we tried to introduce several complicating factors, which
are well-known to cause failures in published left item de-
tection concepts. The dataset was recorded by our vision
sensor (Section 3). Table 1 summarizes the complexity as-
pects contained in the individual datasets and provides in-
formation on the associated annotation.

Results: In all of our experiments we set a time window
of 25s which is required for a validated proposal to raise
a left item alarm. Qualitative results obtained for the six
test sequences are shown in Figure 5. Final detection re-
sults are depicted in the last column of Figure 5. Obtained
results imply that depth as a cue for the detection task is
very valuable. Depth-based detection was consistent in all
of the sequences and showed only occasional local insta-
bilities in presence of highlights. For example, appearance
(opening door) and disappearance (closing door) of high-
lights in the TWO DOORS sequence generates a sudden
appearance of valid disparity pixels, which are interpreted
as a change in the scene geometry. Most of these changes
are eliminated in the validation phase, however, complex
cases can be easily imagined (e.g. background with tiles)
where our validation mechanism would fail. The intensity
cues are important for low-contrast and small-sized objects
(DOOR, CORRIDOR), where the depth cue often results
in oversegmented region proposals. Dynamic occlusions
(MEETING) are handled well, although an explicit depth-
based analysis of proposals or depth-ordering has not been
employed. A very complex group of situations is given by
transferred objects, such as a pushed rolling chair or doors
opening and closing. Such objects show up as static ob-
jects, and further information would be needed to recognize
them as non-relevant. Keeping track of all scene objects
over time is one possibility, but it requires a detailed scene
segmentation and analysis. Measured geometric attributes
such as size, height or compactness might also represent a

viable solution, but still do not fully discriminate from lug-
gage items.

The validation mechanisms well rejected quasi-
stationary object motion and objects without a boundary or
texture. Nevertheless, in the presence of large amounts of
motion clutter unseen failure modes might arise.

By manually annotating the test datasets we performed
a quantitative comparison of detection results. Using a
bounding box representation for ground truth and detection
results, we employed the bounding box overlap criterion
(analogously to Equation 6) to assess the detection perfor-
mance. The detection performance is gauged by means of
Precision (P) and Recall (R). Precision is referred to how
many returned left items are relevant and equal to tp

tp+fp .
Recall is referred to what fraction of relevant left items was
found and equal to tp

tp+fn . tp, fp and fn are the true, false
and missed detections, respectively. Table 2 displays the ob-
tained quantitative results for all datasets. As it can be seen,
a high recall is achieved, however, the previously mentioned
failure modes of transferred objects and occasional high-
lights generate few false alarms, which reduce the obtained
precision scores.

Short term occlusions are handled well, but the evidence
accumulation in a backprojected image space has disadvan-
tages when occlusions last longer. If a proposed left item is
occluded by a dynamic occluder, using the current approach
its importance will decrease and after a while the candidate
might disappear. An accumulation of left item proposals in
the 3D space would represent an improved concept, where
occlusions can be detected and proposals can be handled
accordingly.

The proposed framework runs at 5 fps on a modern PC.
10 fps is reached when computing only the stereo dispari-
ties. The accomplished 5 fps is sufficient to gather a large
number of depth and intensity based visual information over
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Figure 5. Qualitative detection results.

the duration of the time window necessary for generating a
decision.

5. Conclusion

In this paper, we propose a novel left luggage detection
framework. The framework uses intensity information and
disparities from a stereo camera setup. The presented com-
bination of intensity- and depth-based cues exhibits promis-
ing performance on a limited set of data. The accomplished
near real-time run-time performance allows for practically
relevant deployment in indoor and outdoor scenes with ob-
servation zones up to 10m from the camera.

Future improvements will target a tighter integration of
depth and intensity cues in form of 3D aggregation of evi-
dence and detailed occlusion analysis.
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