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Abstract

This paper describes a method for accurately interpo-
lating a low-resolution depth image using a high-resolution
color image. In our method, first, tangent planes on each
superpixel are estimated from the sparse depth information
and dense color information. Then, the neighboring su-
perpixels that have smooth-connectable tangent planes are
connected, and the image segmentation to smooth surfaces
are achieved. Finally, the low-resolution depth image is in-
terpolated using this smooth surface segmentation.

In experiments with images from the Middlebury stereo
datasets, our method interpolates each image at a high rate,
and achieves the lowest error when compared to existing
techniques.

1. Introduction

There has been much interest in 3D measurement tech-

niques, and recently the field has expanded to include ap-

plications where “the purpose is to recognize or model the

environment” [15, 5, 13]. This expansion has meant that

higher accuracy and higher resolution 3D measurements

have been required in a wide range of environments, to an-

alyze or model 3D data. However current 3D measurement

devices, such as stereo vision, time of flight cameras, laser

range finders, do not have the capability to satisfy these

requirement. Sensor Fusion approaches are often used to

solve this problem. By fusing the data captured by different

devices, a greater performance is achieved than if they were

used individually.

This paper proposes a fusion technique that takes a low-

resolution depth image and a high-resolution color image,

and produces accurate and extensive 3D measurements.

Our main purpose is the accurate interpolation of a low-

resolution depth image using a high-resolution color image.

A similar technique was previously proposed [2, 14]. An-

other challenge in this field is accurate depth interpolation

Figure 1. Left: Color image. Right: Resulting segmentation. Dif-

ferent colors represent different segments. The smooth surface

segmentation information is generated for the depth interpolation.

This image is generated using x16 upsampling.

around boundaries between objects. To solve this problem,

segmentation information was used in [10, 6]. However,

previous work has used prior segmentation information, and

performed depth interpolation using global optimization.

Alternative methods have used a local filter [7, 4]. These

filtering techniques can often produce over smooth results,

especially if the depth image is at a low resolution. We

propose a new depth interpolation method that simultane-

ously solves the segmentation problem. In our method, we

achieve smooth surface segmentation by combining low-

resolution depth information and high-resolution color in-

formation. We use superpixel segmentation [3] to detect

local regions where shapes are smooth, and we estimate

tangent planes of shapes on each superpixel using low-

resolution depth information. Then, local tangent planes

are connected by checking smooth connectivity, and smooth

surface segmentation is performed without using any model

of object shapes. Once the smooth surface segmentation is

generated, and depth interpolation is achieved by using an

upsampling filter on each of the smooth surfaces. Fig-

ure 1 and Figure 2 show the resulting image segmentation.

We have prevented over-smoothing around object bound-

aries, because our depth interpolation is performed using

smooth surface segmentation information. In addition, be-

cause the most part of these processes are processed locally,
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Figure 2. Left: Color image. Middle: Resulting smooth surface segmentation. Right: Interpolation result. (magnification factor x16).

our method can be partially implemented as a parallel com-

puting method (similar to other upsampling filters).

We have demonstrated the accuracy of our method by

conducting experiments that use images of the Middlebury

stereo datasets [12]. We have compared our results with

the results of other interpolation methods. In our experi-

ments, our method consistently achieved the lowest RMSE

and MAE scores, and the interpolation rates were more than

75%.

1.1. Contribution

• We propose a method for estimating local tangent

planes from low-resolution depth information using

superpixel segmentation of high-resolution color infor-

mation;

• We propose a segmentation method that uses the con-

nectivity between local tangent planes without any as-

sumptions on the model of object shapes;

• We introduce a novel depth interpolation procedure

that first solves smooth surface segmentation by fus-

ing low-resolution depth and high-resolution color in-

formation, and interpolates the depth image using re-

sulting segmentation information;

• We demonstrate that performance of the proposed

depth interpolation method and show that it is more

accurate than previous methods.

2. Related work
In this section, we discuss previous research on depth in-

terpolation techniques that combined low-resolution depth

and high-resolution color images. Because our method is

closely related to this type of technique, other interpolation

techniques like super resolution with multi-low-resolution
depth images are not discussed.

Diebel and Thrun proposed an interpolation method

that was formulated as an optimization of a Markov ran-

dom field (MRF) [2]. They inferred an interpolated high-

resolution depth image by globally optimizing an MRF that

they defined its data-term using a sparse depth image, and

its smoothness-term between neighboring pixels using color

differences. In their method, they considered the relation-

ship between smoothness of color and depth. After this,

some approaches were proposed that focused on the local

difference of color between objects. For example, in [7, 14]

the authors proposed a method to interpolate depth data as a

weighted sum from a sparse depth image. They used tables

of weights that used difference between pixels in terms of

color and position. This type of filter is known as a joint

bilateral upsampling (JBU) filter.

To further enhance the interpolation accuracy, not only

local differences of color and position, but also image seg-

mentation has been used [6, 10]. In these methods, depth

data can be accurately estimated by considering a global

consistency that is defined by object-regions. Our approach

fundamentally supports this idea. Although these previous

works use prior segmentation information for global opti-

mization, in our method, depth interpolation is achieved us-

ing a local filter, via generating smooth surface segmenta-

tion. In [4], a multi-lateral upsampling filter, which used

the consistency of objects, was proposed as a parallelizable

interpolation method. Garcia et al. introduced a new factor

to the JBU filter, which was determined using the gradient

magnitude of a low-resolution depth image. This technique

is called pixel weighted average strategy for depth sensor

data fusion (PWAS). This interpolation method can con-

sider the local differences of objects, and prevent the mix-

ing of depth data between objects. However, the technique

determines the object boundaries using only low-resolution

information. Therefore, a lower resolution depth image re-

sults in reduced interpolation accuracy. This is not the case

for our method. The accuracy is not reduced, because the

approximate high-resolution shape information can be used

by tangent planes on superpixels.

3. Proposed method
This section describes our depth interpolation method.

In our method, we first estimate the smooth surface segmen-
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Figure 3. Overview of the processing flow of our smooth surface segmentation.

tation using low-resolution depth and high-resolution color

information. Once the smooth surface segmentation is gen-

erated, depth interpolation is achieved using an upsampling

filter on each of the smooth surfaces. Therefore, we first

introduce the procedure of smooth surface segmentation.

3.1. Smooth surface segmentation

Smooth surface segmentation is achieved by combining

superpixels which have smooth-connectable tangent planes.

In this section, first, the superpixel technique is briefly in-

troduced. Then, our calculation method of tangent plane on

a superpixel is shown and a characteristic value of smooth

connectivity between two tangent planes is defined. Finally,

our smooth surface segmentation method is introduced us-

ing this characteristic value of smooth connectivity. Figure

3 shows the overview and we describe the detailed process-

ing flow in section 3.1.4.

3.1.1 Superpixel

“Superpixel segmentation” is a segmentation technique of

an image to small connected color-homogeneous regions.

“Superpixel” is the one segment. This technique has been

found useful pre-processing for many applications. We use

superpixels as local regions where shapes are smooth. Some

kind of superpixel segmentation methods have been pro-

posed [9, 11, 3, 8, 1]. Our implementation uses the super-

pixel segmentation technique of [3].

3.1.2 Tangent plane on a superpixel

In Figure 4, outline of the calculation of a tangent plane on a

superpixel is shown. First, depth information in a superpixel

S is upsampled using the JBU filter [7] that is limited on

the superpixel S. Although the JBU filter normally uses

all neighboring depth information, we use only the depth

data of the same superpixel in order to prevent the mixing

of depth data between different objects. We use the symbol

d(S) as the upsampled depth data, i.e. d(S) is a point cloud

that is defined from upsampled depth information on the

superpixel S. A tangent plane with three axes are given by

the eigen vectors of the covariance matrix of this 3D point

cloud d(S), with the smallest eigenvalue corresponding to

the normal of the plane.

The detailed definition of the tangent plane is introduced

here. We define an autocorrelation matrix A(d(S)) as fol-

lows.

A(d(S)) =
1

|d(S)|
∑

x∈d(S)

(x− C(S))(x− C(S))T . (1)

In this equation, |d(S)| is the number of the points and

C(S) is the center of the point cloud d(S). Because the

matrix A(d(S)) is a three dimensional symmetric positive

semidefinite matrix, it has three non-negative eigen values.

We denote the smallest eigen value by wn(S) , the middle

eigen value by w2(S), and the largest eigen value by w1(S).
N(S), T2(S), and T1(S) are each corresponding eigen vec-

tor to wn(S), w2(S), and w1(S). We normalize these eigen

vectors and use them as unit vectors. This calculation is

popularly known as the calculation of a normal vector for

a point cloud using PCA (Principal Component Analysis).

In this context, we name N(S) “normal vector” and wn(S)
“normal width”. For descriptive purposes, T1(S), T2(S) are

called as “tangent vectors” and w1(S), w2(S) are called as

“widths of the tangent plane” in this paper. Although these

values that are called “widths” are not exactly the widths of

the point cloud (they are more near squared value of half-

widths), we use this word for ease of explanation. We use

the symbol W (S) as the three dimensional vector that have
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Figure 4. Tangent plane on a superpixel. Tangent plane on a superpixel is calculated using Principal Component Analysis of the shape on

the superpixel that is defined by joint bilateral upsampled depth information.

these widths.

W (S) = (w1(S), w2(S), wn(S))
T . (2)

Finally, we define a tangent plane on a superpixel S using

above symbols as follows.

T (S) = (C(S), (N(S), T2(S), T1(S)),W (S)). (3)

The conceptual image of a tangent plane on a superpixel is

shown in Figure 4.

Next, we define the “dimension” of a tangent plane on a

superpixel. This is the number of widths that are more than

a width-threshold wth.

dim(T (S), wth) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (w1(S) ≤ wth).

1 (w2(S) ≤ wth < w1(S)).

2 (wn(S) ≤ wth < w2(S)).

3 (wth < wn(S)).

(4)

If the dimension dim(T (S), wth) is three, the point cloud

d(S) is three-dimensional-spatially spreading, if it is two,

the point cloud d(S) is planarly spreading, and if it is one,

the point cloud d(S) is linearly spreading. The width-

threshold wth defines the amplitude of the spread.

The shape of a superpixel in the image-plane may make

the dimension of the tangent plane less than two. In this

case, in order to enhance the reliability of the tangent plane,

we recalculate the tangent plane using the following ex-

tended shape on a superpixel. The extended shape on a

thin superpixel S is the shape on the extended region S̃
that contains the superpixel S and the pixels neighboring

the boundary of S. The conceptual image is shown in Fig-

ure 5. For superpixels that have one or zero dimensional

tangent planes, we use the tangent planes that are defined

from these extended shapes.

Figure 5. Extension of the shape for a thin superpixel.

3.1.3 Smooth connectivity of tangent planes

We define a characteristic value of smooth connectivity be-

tween two tangent planes T (S1), T (S2) on superpixels S1

and S2. When generating smooth surface segmentation, we

use this characteristic value to evaluate smoothness of the

shape on the boundary between the two superpixels. The

Figure 6. Characteristic value of smooth connectivity between two

tangent planes.
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characteristic value of smooth connectivity is defined as

max {|(N(S1), C(S1)− C(S2))| , |(N(S2), C(S1)− C(S2))|}
|(N(S1), N(S2))|

. (5)

Here the notation (X,Y ) describes the inner product of vec-

tors X and Y , and |(X,Y )| describes the absolute value.

We use the symbol csmooth(T (S1), T (S2)) for this charac-

teristic value of smooth connectivity. When the directions

of the normal vectors are similar and the difference vec-

tor between the centers is nearly orthogonal to the normal

vectors, csmooth(T (S1), T (S2)) becomes small. Therefore,

if csmooth(T (S1), T (S2)) is small, we consider that the

shapes on the superpixels S1, S2 are smoothly connectable.

3.1.4 Smooth surface segmentation

In this section, we introduce the detailed processing flow of

our smooth surface segmentation method. Figure 7 shows

the detailed processing flow.

Figure 7. Processing flow of smooth surface segmentation.

We first get over-segmentation of an image into super-

pixels, and we calculate the tangent planes of each super-

pixel. Then, we exclude superpixels that have three dimen-

sional tangent planes or steep-slant tangent planes. The

dimension of a tangent plane is defined in the equation 4.

When the angle between the camera direction vector and

the normal vector of the tangent plane is larger than the

threshold θth, we describe it as “the tangent plane is steep-

slant”. On the superpixels that have three dimensional tan-

gent planes, the shapes are not smooth surfaces because the

point clouds that are defined by depth values on them are

spreading three-dimensional-spatially. And on the super-

pixels that have steep-slant tangent planes, it is difficult to

evaluate that they are real smooth surface or not. In order

to enhance the accuracy of depth interpolation via smooth

surface segmentation, we do not connect such superpix-

els. In remaining superpixels, if superpixels are neighboring

and the characteristic value of smooth connectivity between

their tangent planes is smaller than a threshold cthsmooth,

the superpixels are united. Therefore, smooth surface seg-

mentation is achieved by combining superpixels that have

smooth-connectable tangent planes.

3.2. Depth interpolation with smooth surface seg-
mentation

In our method, depth interpolation is achieved using the

previous described smooth surface segmentation. We first

count the number of the low-resolution depth data on each

segment. Depth interpolation is achieved on the segment

using the JBU filter [7] that is limited there if the num-

ber of low-resolution depth data is larger than the threshold

nth. We interpolate a depth image using the depth data of

the same surface segment in order to prevent the mixing of

depth data between other surfaces. On each segment where

there are few source depth data, we do not interpolate depth

data.

4. Experimental results
Images from the Middlebury stereo datasets [12] were

used to evaluate our new method. The Middlebury stereo

datasets provide color images together with ground truth

disparity images of some scenes. The focal length and the

length of baseline of the stereo camera that captured these

images are given. We have used the image center as the cen-

ter of the camera because its coordinate is not given. In this

setting, we have treated the disparity information and depth

information equally. We have used the disparity maps of

the datasets as the ground truth, and used them to gener-

ate low-resolution images by downsampling with rates of

2, 4, 8, and 16. We used the high-resolution color images

directly. We have used scenes Art, Books, Dolls, and Moe-
bius. The size of each image is the smallest size 463x370

pixels, because it is difficult to interpolate an image which

locally contains varied changes of color and shape. We have

used a set of parameters on our experiments. The parame-

ters are shown in Table 1. In the supplemental materials,

wth θth cthsmooth nth

10.0 mm2 70.0◦ 20.0 mm 5

Table 1. Parameters in our experiments.

experimental results on different parameters are shown.

We have compared our results to PWAS [4] and MRF [2]

methods. We have measured the accuracy of the interpo-

lated depth data using the MAE and RMSE scores. We have

calculated these errors using the disparity information of the

interpolated region. The MAEs and RMSEs of an interpo-

lated depth image d are calculated using the corresponding

disparity image disp as follows.

MAE =
∑

p has a depth value

|disp(p)− disptrue(p)|
N

. (6)

RMSE =

√√√√ ∑
p has a depth value

|disp(p)− disptrue(p)|2
N

. (7)
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In these equations, disptrue is the ground truth disparity im-

age.

In this paper, we are proposing a partial parallelizable

accurate interpolation procedure and not its parallel imple-

mentation. Therefore, we have not optimized the imple-

mentation of each method. However, we have implemented

the proposed method using OpenMP so that we can approxi-

mately evaluate its processing time. We ran our experiments

to estimate processing time on an Intel Core i7-2600 CPU

(3.40GHz) with 16GB RAM.

Figure 8 shows the color images, MAEs, and RMSEs,

compared to the ground truth using different magnification

factors. The interpolation rates and processing time of our

method are also shown. In these graphs, the errors of our

method are shown as solid red lines, the errors of the PWAS

method are shown as broken green lines, and the errors of

the MRF method are shown as broken blue lines. Our in-

terpolation method outperforms PWAS and MRF in terms

of accuracy. The differences are large, especially when us-

ing large scale upsampling. Additionally, the changes of the

errors with respect to the upsampling-rate are smaller than

them. These results show that the segmentation information

was beneficial for the interpolation of the depth image, and

that our method used the information more efficiently than

the PWAS technique. The interpolation rates of our method

were more than 75%, and its running times were approxi-

mately 25 seconds with this implementation.

Figure 1, Figure 2, and Figure 9 show the results of the

smooth surface segmentation. There are several regions that

are under-segmented. However, the accuracy of the inter-

polated depth data shows that the resulting segmentation

is suitable for upsampling using the JBU filter [7]. The

segmentation result is dependent on to the threshold of the

smooth connectivity. More segmentation results that are

generated with smaller threshold of the smooth connectivity

are available in the supplemental materials.

5. Discussion
5.1. Parallelizability

Our interpolation method can be implemented by effi-

cient parallel processing because our method mainly con-

sists of the local processing. The calculations of tangent

planes on each superpixel and the calculations of depth

values with JBU filter are parallelizable. However, super-

pixel segmentation and the connection processing of tan-

gent planes are not parallelizable, because they are global

processing.

5.2. Limitations

Our interpolation method has regions where depth inter-

polation is not performed. On superpixels where shapes are

not smooth surfaces, our interpolation method does not es-

timate the depth value. Superpixels that have three dimen-

sional tangent planes or steep-slant tangent planes, are that

superpixels. In such regions, there are boundaries of ob-

jects or complex patterns of color. It is difficult to accu-

rately interpolate depth values in those regions, because the

relationship between depth and color is weak. Our method

does not interpolate these regions in order to retain a high

accuracy in the interpolated depth image. Other techniques

can not detect these regions, so this capability is a beneficial

characteristic of our interpolation method.

6. Conclusion
This paper describes an accurate depth interpolation

method for a low-resolution depth image that uses a high-

resolution color image. Our interpolation method is based

on a smooth surface segmentation that is generated by low-

resolution depth and high-resolution color information. We

used a superpixel segmentation of the high-resolution color

information to detect local smooth regions. We then es-

timated tangent planes of shapes on each superpixel us-

ing low-resolution depth information. The superpixels that

have smooth-connectable tangent planes were connected to

achieve the smooth surface image segmentation. Finally,

the low-resolution depth image was interpolated using this

smooth surface segmentation.

Our experimental results show that this method can in-

terpolate depth images more accurately than previous meth-

ods, particularly when using large scale upsampling. This

method uses smooth surface segmentation to accurately in-

terpolate an image. Segments in the resulting segmentation

do not necessarily relate to objects in an image. However,

as the accuracy is better than existing upsampling methods

using multi-lateral filters, the resulting segmentation is suit-

able for upsampling using a JBU filter on each segment.

7. Future work
In section 5.2, we mentioned that our interpolation

method does not interpolate depth values on superpixels

where it is difficult to estimate the accurate tangent plane.

This is major challenge of our interpolation method for the

application to the noisy data of real-world. In such super-

pixels, because there is not enough accurate shape informa-

tion, we have to use the information of surrounding super-

pixels in order to estimate the accurate tangent planes. We

would like to improve our method by focusing on this point.
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