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Abstract

Real scene video surveillance always involves low res-
olutions, lack of illumination or cluttered environments,
which leads to insufficiency of discriminative details for
the target. In this situation, discrimination based track-
ing methods could fail. To address this problem, this pa-
per presents an adaptive multi-feature integration method in
terms of feature invariance, which can evaluate the stabil-
ity of features in sequential frames. The adaptive integrated
feature (AIF) is consisted of several features with dynamic
weights, which describe the degree of invariance of each
single feature. An incremental principal component anal-
ysis (IPCA) adjusted by the accuracy of tracking results is
used to update the adaptive integrated feature, and partially
avoids the problem of “updating dilemma”, which is com-
mon in most of adaptive updating methods. Experiments on
pedestrian tracking demonstrate the proposed approach is
effective and shows improved performance compared with
several state-of-the-art methods in real surveillance scenes.

1. Introduction

Objecting tracking is a fundamental task in computer vi-
sion with wide applications, such as video surveillance and
human computer interaction. As a useful visual tracking
algorithm, it should be real-time and be designed to han-
dle cases in unconstrained environments for a long dura-
tion. The common challenges are usually due to appearance
changes, partial occlusions, cluttered backgrounds, and illu-
mination changes.

As a classic tracker, to overcome these problems, it’s
usually researched from two aspects: representation and
tracking strategy. Especially tracking strategy has become
more and more popular. In [1], some of the best trackers
[2, 3, 4] belong to this “tracking strategy” level. Most of
them focus on a tracking by detection model with an adap-

tive learning process. TLD [2] gives good performance in
many datasets because of its adaptive P-N learning based
on a randomized forest classifier. Struck [3] proposes an
improved SVM to rebuild the tracking framework, while
MIL [4] offers an online multiple instance boosting to lead
its tracker. Their works concentrate on “tracking strat-
egy” level and lack improvements from representation level,
which also play a major role in visual tracking and are po-
tentially complementary for them. TLD’s feature is only
based on 2 bits LBP. Struck and MIL features are limited to
Haar-like and raw features. They can’t preform very well in
a blur environment where the local features lose their edge,
as shown in Fig.1. Besides the representation problem, the
learning process causes the low computing speed. So these
trackers are difficult to meet the real-time requirement. So
this paper pays attention to representation level.

Since an appropriate appearance model plays a crucial
role in visual tracking, this paper focuses on how to learn
an effective appearance model at each frame. Traditional
algorithms always split this process into two steps: feature
extraction and modeling. However, in recent years, many
“representation-level” trackers [5, 6, 7, 8, 9, 10] combines
these two steps together. They use some machine learning
methods to build their models, e.g. Sparse or PCA. So their
inputs are just the raw feature (grayscale). Their good per-
formance is due to the high efficiency of machine learning
algorithms. In real scenes, affected by low resolution and
lack of illumination, the target is always somewhat blurred
and the raw feature is not as discriminative as wanted. Un-
der this situation, using raw features directly is hard to get
the valid information of the target. For this problem, the
proposed method extracts high-level features, e.g. Color,
HOG [11], LBP [12] and Haar [13], instead of raw feature
and focus on the feature invariance as the valid information
to represent the target.

To build appearance model, the key is to combine multi-
ple high-level features together effectively and form a more
suitable representation [14, 15, 16, 17], so that combination
of multiple features can achieve more robust tracking than
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Figure 1. Some results of TLD Tracker.

any single feature. There are some important issues: how to
combine multiple high-level features and how to determine
the contribution of each feature. Collins et al. [14] uses
a feature pool to select the distinctive feature from back-
ground. Kwon and Lee [15] integrate multiple features to-
gether and apply SPCA (Sparse Principal Component Anal-
ysis) to compute the dissimilarities among different models.
These methods are robust to the bad drift problem by em-
phasizing the distinction property of features [18, 19, 20].
However, discrimination of objects can decrease for low
resolutions, lack of illumination or cluttered environments
in real scenes. In this case, distinction should not be the
most useful information extracted from the high-level fea-
tures. As a result, the proposed method concentrates on the
feature invariance instead. This feature invariance provides
a contribution for robust tracking in this “undistinctive” sit-
uation. Park et al. [21] and Jepson et al. [22] update the
appearance model adaptively by invariance, which lead to a
stable model for target estimation. In this paper, the invari-
ance property of high-level features is adopted as a measure
to represent the target and update their weights frame by
frame.

An adaptive updating process is not only important
but also necessary for a robust tracker. Many trackers
[2, 10, 23, 24, 25, 26] use this adaptation to update the ap-
pearance model. But most of them with an adaptive model
are likely to meet a problem of “updating dilemma”. The
reason is that current model is updated under the assumption
that the previous model and tracking results are correct. Un-
fortunately, this assumption may not always hold because
the interference always exists. So, due to this problem, a
confidence value is brought in, which reflects the tracking
accuracy to control the updating rate.

In general, this paper presents a new adaptive combina-

Figure 2. An illustration of the proposed method.

tion of multiple features in terms of feature invariance for
robust tracking. Given a set of features, an adaptive inte-
grated feature (AIF) is formed by combining of these fea-
tures (denoted as Sub-f) with dynamic weights determined
by the invariance degree of Sub-fs frame by frame. The
Sub-f model is updated based on the accuracy of tracking
results to tackle the “updating dilemma”. As a result, the
appearance model represented by AIF is also adaptively up-
dated.

It is worth mentioning that in this paper, unlike other al-
gorithms, Incremental principal component analysis (IPCA)
is not used for a simple dimensionality reduction. The pro-
posed method takes advantage of an IPCA process to es-
tablish a subspace (by its principal components), which is
considered to represent the main structure of the target from
previous frames. As a result, the corresponding eigenvalues
can be seen as a description of the target previous state. To
obtain the current state, the current frame is projected onto
the main structure. The similarity between the current state
and the previous state (the eigenvalues got from IPCA) rep-
resents the feature invariance. So the IPCA process plays a
crucial role in computing the invariance of Sub-fs.

This paper contributes to the research of adaptive track-
ing in the following ways: (1) An adaptive integrated fea-
ture, which emphasizes the property of invariance, is pro-
posed; (2) The updating process partly avoids the problem
of “updating dilemma” by adaptively updating the Sub-f
model according to the accuracy of tracking results; (3) This
method makes real-time tracking in unconstrained environ-
ments for a long duration possible.

The rest of the paper is organized as follows. The AIF
structure is described in Section 2.1. In Section 2.2 and 2.3,
the invariance of each Sub-f is computed and AIF is updated
respectively. The target is estimated in Section 2.4. The
experimental results and conclusions are given in Section 3
and Section 4.

2. The proposed method

In this section the proposed method is presented in de-
tail. First, the structure of the AIF is introduced. Next,
it is explained that how to calculate the invariance of each
Sub-f by IPCA. Then this invariance is applied to update the
Sub-fs’ weights. At last, a particle filter tracker is used to
estimate the target and the Sub-fs are updated according to
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the accuracy of tracking results.
An illustration of the proposed method is presented in

Fig.2.

2.1. Establishing AIF

It is assumed that the Sub-fs are independent; therefore,
the AIF is consisted of a series of the Sub-fs. The structure
of AIF is listed as below,

AIF = [w1f1, w2f2, ..., wnfn] (1)

where fi is the Sub-f with a length of D, fi ⊂ RD∗1, n is
the number of Sub-fs, wi is the weight, and

∑n
i=1 wi = 1.

All Sub-fs have the same dimension.
In the initialization, the default setting is wi = 1/n(i =

1, ..., n).

2.2. Computing invariance of sub­features

The invariance of Sub-f is the key to improve the AIF
in this method. An IPCA process is used to compute the
principal components of each Sub-f in previous frames, and
get the subspace of basis vectors and the corresponding
eigenvalues. Then the Sub-f of current frame is projected
onto this subspace to obtain the vector of projection values.
The correlation between eigenvalues and projection values
is used to evaluate the invariance. The details are described
as follows:

2.2.1 Initialization stage. In the beginning of tracking,
there’s not enough positive samples. As a result, an ini-
tialization stage is needed. In the first t frames, k samples
are produced from every frame, and Q = k ∗ t samples
are obtained as our positive samples. These samples X are
produced by varying the target scales and rotations:

X = (x1, ..., xQ) ⊂ RD∗Q (2)

Based on the training samples, the eigenvectors U of the
Sub-fs can be easily got.

U = (u1, ..., uD) ⊂ RD∗D (3)

2.2.2 Updating feature space. The covariance-free IPCA
[27] is adopted to update the eigenvectors directly accord-
ing to previous eigenvectors and a new observation image.
It has the advantage of real time, and the IPCA process is
shown as follows:

v(N) = (1− α)v(N − 1) + αxNxT
N

v(N − 1)

∥v(N − 1)∥
(4)

where v(N) is the updated eigenvector when the new sam-
ple xN is added in. α is the updating rate, reflecting the
accuracy of the new data (see Section 2.4).

The updating process is more reasonable through the ad-
justing of the rate α instead of a constant. In a constant

updating, the model at the current time is updated by the
current tracking result, but this result actually may be far
from the right model, and thus deviating the adaptation and
failing the tracker. Therefore, in order to mend this prob-
lem, constrains of the new data in updating need to be en-
forced. In Eq.4, the feature space updating is constrained
by the accuracy of tracking, which decreases the deviation
caused by bad results and partially avoids the problem of
“updating dilemma”.

Eq.4 is used to update the eigenvectors of Sub-f itera-
tively, and v(0) = u.

2.2.3 Extracting principal component. When obtaining a
new eigenvector v, its corresponding eigenvalue λ = ∥v∥
is also available. All the eigenvectors are ordered by their
eigenvalues to find the first d principal components which
compose the Sub-f’s subspace V .

d = argmin
d

(
d∑

i=1

λi/
D∑
i=1

λi > β) (5)

where β is a threshold to obtain the principle components
and set to 0.9. It is used to remove some noise in subspace
V .

Then, the subspace V and the vector of corresponding
eigenvalues Λ are obtained as follows:

V = (u1, ..., ud) ⊂ RD∗d

Λ = (λ1, ..., λd)
T ⊂ Rd∗1 (6)

2.2.4 Obtaining invariance. When a new frame t + 1
comes, the vector Γ of its projection values on the subspace
V is

Γ = V T · xt+1 = (u1, ..., ud)
T · xt+1

= (γ1, γ2, ..., γd)
T ⊂ Rd∗1 (7)

The similarity S(t+1) between Γ and Λ is measured by
the correlation coefficient.

S(t+1)(Λ,Γ) =
ΛT · Γ
∥Λ∥∥Γ∥

(8)

This correlation S(t+1) reflects the similarity between
the pervious state and the current state of the target. It is
assumed that the feature invariance means the ability of the
feature to keep the original state. This similarity indicates
how many stable components exist in both previous and cur-
rent states. And as the same idea of Jepson et al. [22], these
stable components are exactly the invariance of the feature.

2.3. AIF updating

w, as the weight of Sub-f in AIF, is updated frame by
frame. It reflects the invariance of Sub-f in the current
frame, which means the Sub-f with a higher w is more sta-
ble. As a result, AIF not only covers all the Sub-fs’ ability of
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Figure 3. Some key frames in 1st set of experiments. The most invariant Sub-f: Red-Color, Blue-HOG, Green-Raw, Sapphire-LBP,
Yellow-Haar.

representation, but also provides a more robust description
than any Sub-f or their simple combination. w is updated as
follows:

w′(t+1)
i = w′(t)

i + η(S
(t+1)
i − S

(t)
i )

w
(t+1)
i = w′(t+1)

i /
∑n

i=1 w
′(t+1)
i

(9)

where η is the updating rate of w, and w
(t+1)
i is the normal-

ized weight of the ith Sub-f. Through the updated w, the
more invariant Sub-f is more predominant in AIF.

When a target comes into view with strong interference
on a certain Sub-f, the invariance of the Sub-f decreases.
With the updating of w, the more robust Sub-f takes a higher
ratio and the invariance of AIF is also enhanced for robust
tracking.

2.4. Target estimation

In this stage, AIF is embedded in a particle filter track-
ing system [28], which uses a set of observations to estimate
the true target position, and obtains the tracking results. To
tackle the problem of “updating dilemma”, the correlation
of current AIF with the set of observations is used to eval-
uate the accuracy of tracking results and update the feature
space of Sub-f. It’s an average similarity between current
target and all the observations. The only different in this pa-
per from [28] is that the feature used in particle filter track-
ing in this paper is the variable AIF. So the updating rate α
in Eq.4 can be figured out via Eq.10 below:

α ∝ (
m∑
j=1

OT
j · Ô

∥Oj∥∥Ô∥
)/m (10)

where O is the set of observations, and Ô is the current AIF,
m is the number of observations used in particle filtering.

3. Experimental results
The experiments in this paper are conducted to three

sets of experiments. The first two sets are designed to test
the AIF tracker performance vs the single Sub-fs and some
state-of-the-art methods in existed public sequences, which
well represent the various visual attributes such as occlu-
sion, illumination variation, motion blur and fast motion.
The third set of experiments is tested on pedestrian track-
ing in real scenes with two selected trackers from the sec-
ond experiment set. The pedestrian tracking is difficult but
a crucial problem in surveillance, for there are many com-
plex situations in real scenes, such as illumination changes,
cluttered environment or low resolution. The head-shoulder
part is taken as target instead of the whole body, which can
partly avoid occlusions, and the whole body rectangle in
figures is for clarity.

In experiments, gradient descriptor (HOG), texture de-
scriptors (8bits LBP and Haar) and color descriptor (Color
histogram) are integrated as Sub-fs. Each Sub-f has a
length of 256, and the length of AIF is 4*256. The up-
dating rate of weights η is set to 10 experientially. In
the initialization stage, all the weights of Sub-fs are set to
1. And the first twenty frames are used for initialization
and 25 samples (5 scales {0.25, 0.5, 1, 2, 4} and 5 rotations
{−10◦,−5◦, 0◦, 5◦, 10◦} ) are extracted from every frame.
In tracking, object scale is fixed according to the scene prior.
All programs are implemented in C++ on a PC with Intel i7
3770 CPU (3.4GHz).
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AIF SSC HOG Color LBP Raw Haar
Basketball 0.834483 0.430345 0.073103 0.711724 0.464828 0.464828 0.085517
David 0.996994 0.996782 0.960894 0.199255 0.986854 0.991723 0.309125
Deer 0.577465 0.605634 0.323944 0.535211 0.422535 0.591549 0.28169
FaceOcc 0.762332 0.794843 0.760058 0.280269 0.700673 0.752242 0.457399
Football 0.944751 0.198895 0.966851 0.063536 0.69337 0.160221 0.544199
Jumping 0.990671 0.933866 0.108626 0.242812 0.927476 0.242812 0.111821
Singer 0.629508 0.491257 0.114754 0.135519 0.425683 0.379235 0.330055
Subway 0.942857 0.628571 0.817143 0.091429 0.480000 0.262857 0.388571
Sylvester 0.932342 0.884758 0.977695 0.113755 0.687732 0.863941 0.160595
Average 0.845711 0.662772 0.567007 0.263723 0.643239 0.523267 0.296552

Table 1. Precision plots of TRE in 1st set of experiments. Location error threshold = 20. Bold font means the two best scores.

AIF SSC HOG Color LBP Raw Haar
Basketball 0.720000 0.354483 0.060690 0.689655 0.342069 0.451034 0.081379
David 0.750466 0.659218 0.960894 0.076350 0.456238 0.968343 0.301676
Deer 0.535211 0.577465 0.338028 0.535211 0.408451 0.591549 0.267606
FaceOcc 0.982063 0.993274 0.913677 0.533632 0.942825 0.961883 0.503363
Football 0.883978 0.187845 0.944751 0.022099 0.466851 0.160221 0.500000
Jumping 0.801597 0.739936 0.605431 0.163898 0.704792 0.240575 0.602236
Singer 0.567760 0.537705 0.122951 0.046448 0.426776 0.081967 0.030055
Subway 0.662857 0.411429 0.588571 0.062857 0.451429 0.234286 0.382857
Sylvester 0.809665 0.765799 0.926394 0.065428 0.523420 0.813383 0.154647
Average 0.745955 0.580794 0.584598 0.243953 0.524761 0.500360 0.313757

Table 2. Success plots of TRE in 1st set of experiments. Overlap threshold = 0.5. Bold font means the two best scores.

Both of the first two experiments contain the same 9 se-
quences from [1]. The performances are referred as spatial
robustness evaluation (TRE) [1] from two aspects (preci-
sion plot and success plot). As the representative precision
score for each tracker, the threshold for the score is set to
20 pixels. And in success plot, the representative threshold
for tracker evaluation is t0 = 0.5. In the first set of ex-
periments, the AIF is compared with the single Sub-f and a
simple series combination (SSC) of Sub-fs respectively un-
der a framework of particle filtering. As shown in Table.1
and Table.2, the SSC tracker gives a better performance
than each single Sub-f, but still has a certain gap com-
pared with the proposed AIF tracker. Fig.3 offers some key
frames where the switch of the main Sub-f happens. The
color of head-shoulder rectangle indicates the most invari-
ant Sub-f in current frame (red-Color, blue-HOG, green-
Raw, sapphire-LBP, yellow-Haar). From Sequence Basket-
ball (1st row) and Sequence Subway (3rd row) of Fig.3, it
is obvious that the HOG and Color features play a major
role in human tracking, especially under a distinctive en-
vironment. But when the similar-color target approaches
(Sequence Deer ♯14 and ♯53; Sequence Basketball ♯296;
Sequence Subway ♯50), the AIF switch the main Sub-f to
local feature (such as LBP or Haar) to avoid the bad drift.

AIF TLD Struck MIL VTS Frag
FPS-A 31.6 28.1 20.2 39.1 5.7 6.3

Table 5. Average speed in 2nd set of experiments. FPS-A:average
FPS.

What’s more, to an occlusion problem, the AIF can partly
handle it by adjust feature weights. As known the occlu-
sion always happens in a temporary rush, which may cause
a rapid change in features. The aim of AIF is to find the
most invariant feature with the least change, so this feature
will take a leading role in tracking to reduce the impact of
occlusions. Some occlusion results are shown in Sequence
Basketball ♯18 and Sequence Subway ♯50 in Fig.3.

In the second set, TLD tracker [2], Struck tracker [3],
MIL tracker [4], Frag tracker [29] and VTS tracker [15] are
cited to compare with the AIF tracker. The precision plot
and success plot of the performances are shown in Table.3
and Table.4. VTS is a recent method using multi-sample,
not only features but also image blocks, to search the ap-
propriate trackers in each frame. So its representation can
be considered as an advanced feature selection mixed with
blocks. The comparison with VTS shows the effectiveness
and robustness of the AIF tracker. TLD, Struck and MIL
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AIF TLD[2] Struck[3] MIL[4] VTS[15] Frag[29]
Basketball 0.834483 0.366676 0.466437 0.595516 0.969488 0.687583
David 0.996994 0.984973 0.998748 0.941503 1.000000 0.844902
Deer 0.577465 0.581720 1.000000 0.453763 0.133333 0.683871
FaceOcc 0.762332 0.427423 0.918596 0.400255 0.705669 0.981954
Football 0.944751 0.547917 0.854167 0.971875 0.989583 0.931250
Jumping 0.990671 0.954925 1.000000 0.933433 0.397910 0.996418
Singer 0.629508 0.067010 0.609536 0.543557 0.849227 0.266753
Subway 0.942857 0.717187 0.570313 0.856250 0.453646 0.809896
Sylvester 0.932342 0.936430 0.992392 0.747623 0.746672 0.679298
Average 0.845711 0.620473 0.823354 0.715975 0.693947 0.764658

Table 3. Precision plots of TRE in 2nd set of experiments. Location error threshold = 20. Bold font means the two best scores.

AIF TLD[2] Struck[3] MIL[4] VTS[15] Frag[29]
Basketball 0.720000 0.253914 0.375696 0.509154 0.871717 0.572433
David 0.750466 0.824329 0.985510 0.440072 0.918605 0.801431
Deer 0.535211 0.579570 1.000000 0.451613 0.107527 0.675269
FaceOcc 0.982063 0.801883 0.999902 0.801491 0.895155 0.999510
Football 0.883978 0.483333 0.697917 0.606250 0.573958 0.756250
Jumping 0.801597 0.796716 0.901791 0.684776 0.217612 0.942388
Singer 0.567760 0.067268 0.609278 0.593299 0.880412 0.296907
Subway 0.662857 0.657292 0.535417 0.733333 0.409375 0.719271
Sylvester 0.809665 0.783102 0.919971 0.578713 0.692173 0.588661
Average 0.745955 0.583045 0.780609 0.599855 0.618503 0.705791

Table 4. Success plots of TRE in 2nd set of experiments. Overlap threshold = 0.5. Bold font means the two best scores.

Color HOG LBP SSC AIF
frames 102 247 189 311 455

Table 6. Average valid frames compared with each Sub-f in 3rd set
of experiments

are some of the best trackers so far in [1]. As mentioned be-
fore, their works emphasize improving the tracker strategy,
a detection tracking or an improved learning framework in-
stead of feature extraction and representation. While the
proposed method focuses on feature-level. So the proposed
approach is somewhat complementary for them. That also
explains why the AIF tracker is not as good as Struck in
some specific sequences, such as Sequence Deer. Because
in this sequence, the local feature is more robustness than
other general features. The average FPS of tracking speed
is shown in Table.5. The purpose of these comparisons is to
show a good performance even vs the best trackers in visual
tracking.

In the third set of experiments, 30 video sequences are
collected from the real surveillance video under different
scenes, the total pedestrians used in tracking is more than
100. The performance of trackers is evaluated by the aver-
age valid tracking frames (tracking result having over 50%

AIF TLD VTS
frames 455 317 287

Table 7. Average valid frames compared with other trackers in 3rd
set of experiments

overlap with the ground truth is taken as valid). The rea-
son why this set of experiments doesn’t choose the track-
ing accuracy (compare with ground truth) as the evaluation
method is that success or lose of target tracking is more con-
cerned than the accuracy of tracking in surveillance in real
scenes. The proposed method is still compared with each
Sub-f and some state-of-the-art methods (TLD and VTS) in
some difficult conditions, i.e, appearance changes (people
turning round) and drastic illumination changes. The results
are listed in Table.6 and Table.7, from which it can be seen
that the AIF tracker can follow the target much longer than
others. In the rest of this section, several typical sequences
are selected to present for illustration.

One of the sequences in the 3rd set is shown in Fig.4,
which contains a person turning round and an intense in-
terference in background. The LBP tracker loses target in
frame ♯66 for a similar texture arising nearby and the SSC
tracker fails in frame ♯268 for the person turning round in
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Figure 4. Tracking for frame ♯1,21,66,170,268 and 704, (1st row) LBP tracker, (2nd row) SSC tracker, and (3rd row) AIF tracker.

Figure 5. Tracking for frame ♯1, 41, 148 and 429, (1st row) AIF
tracker, (2nd row) TLD tracker, and (3rd row) VTS tracker.

cluttered background. However, the AIF tracker can han-
dle these problems effectively. From the 3rd row of Fig.4,
it’s clear that the AIF tracker has a better performance. It
switches to color feature adaptively to follow target during
the person turning round in frame ♯170 to overcome the ap-
pearance changes. And while an intense gradient interfer-
ence coming in frame ♯268, the tracker changes to LBP as a
major feature instead of HOG dynamically where the SSC
tracker fails.

Fig.5 and Fig.6 are part results of the third set. Fig.5,
the results of VTS lost target in frame ♯41 when the tar-
get gets into the shadow. TLD also fails in frame ♯148
during the person turning round. The appearance changes
and the high gradient interference from drastic illumination
changes caused these failures. The AIF tracker effectively
track the target till the target goes out of the scene. Fig.6 is a
person turning round frequently. TLD and VTS separately
fails in frame ♯116 and ♯191. The proposed method over-
comes it with a dynamic adjustment of different Sub-fs. At
the beginning, the HOG descriptor is the main feature for
tracking. Then the LBP descriptor arises instead of HOG
gradually when the target goes into a high gradient back-
ground. During the person turning round, both HOG and
LBP become instable and AIF switches to Color descriptor
adaptively for robust tracking.

Figure 6. Tracking for frame ♯1, 116, 191 and 391, (1st row) AIF
tracker, (2nd row) TLD tracker, and (3rd row) VTS tracker.

4. Conclusions

A novel object tracking algorithm based on an adap-
tive integrated feature is proposed. It integrates features in
terms of invariance and establishes an adaptive target rep-
resentation for robust tracking in low quality real scenes.
An IPCA process is utilized to find the invariance of sub-
features for time efficiency, and is updated by the accu-
racy of tracking results to solve the problem of “updating
dilemma” in adaptive tracking. This algorithm is general,
robust and computationally efficient. Experiments on chal-
lenging datasets show that AIF tracker can handle com-
plex appearance changes of objects and camouflage envi-
ronments. The future work is to improve the AIF to handle
the occlusions of multiple objects.
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