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Abstract

Recently, constructing a good graph to represent data
structures is widely used in machine learning based appli-
cations. Some existing trackers have adopted graph con-
struction based classifiers for tracking. However, their
graph structures are not effective to characterize the inter-
class separability and multi-model sample distribution,
both of which are very important to successful tracking.
In this paper, we propose to use a new graph structure
to improve tracking performance without the assistance of
learning object subspace generatively as previous work did.
Meanwhile, considering the test samples deviate from the
distribution of the training samples in tracking applications,
we formulate the discriminative learning process, to avoid
overfitting, in a semi-supervised fashion as �1-graph based
regularizer. In addition, a non-linear variant is extended
to adapt to multi-modal sample distribution. Experimental
results demonstrate the superior properties of the proposed
tracker.

1. Introduction
Visual object tracking is an essential component of sev-

eral practical vision applications such as automated surveil-

lance, vehicle navigation, traffic monitoring, and so on.

Generally speaking, a typical tracking system consists of

three components: 1) an adaptive appearance model, which

can evaluate the likelihoods of the candidate object regions;

2) a motion model, which relates the locations of the candi-

dates over time; and 3) a search strategy for finding the most

likely location in the current frame. We refer the readers to

[22] for a thorough review of these components. Note that

this paper is focused on dealing with the first component.

Current tracking algorithms use two typical techniques

to learn the varieties of appearance models, i.e., either gen-

erative or discriminative approaches. Generative method-

s mainly concentrates on how to construct robust objec-

(a)david with out-of-plane rotation

(b) trellis with dramatic illumination change and out-of-plane rotation

Figure 1: Collected object samples in the david and trellis sequences.

t representation in specified feature spaces, such as gray-

scale image vector subspace learning [18], log-Euclidean

Riemannian subspace learning [16, 9], multiple patch votes

with each patch represented by gray-scale histogram fea-

tures [1] or multi-cue integration [6], sparse principal com-

ponent analysis (SPCA) of a set of feature templates (e.g.

hue, saturation, intensity, and edge) [11, 12], and so on.

These methods have achieved great success in the tracking

literature, however they suffer a problem that the informa-

tion for classification in the background is discarded. Dis-

criminative methods formulate visual tracking as a binary

classification problem to separate the object from the back-

ground, such as graph embedding based classifiers [26, 14],

feature selection based boosting classifiers [2, 7, 8, 13],

graph mode-based SVM classifier [15], and so on. Among

them, one kind of promising methods is based on graph em-

bedding [26, 14], which capture the underlying geometry of

collected object/background samples based on the manifold

assumption. This novel trial has demonstrated good perfor-

mance of graph embedding in tracking applications thanks

to the introduction of local structure preservation property,

however more aspects need to be fully exploited as follows.

Motivations. Zhang et al. [26] use a PCA graph and

a local-geometry-preserved graph to construct an objec-

t graph and a background graph respectively. Meanwhile,

they use inter-class margin [4, 24] to characterize the sep-

arability of different classes. All of the above result in a

discriminative subspace. They also use incremental PCA

subspace as the object subspace to assist the discriminative

subspace. A combination of generative and discriminative
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models based on the object subspace and the discrimina-

tive subspace respectively forms the final appearance mod-

el. There are several shortcomings existing in this work.

First, due to the variations of collected object samples (see

Fig. 1), it is not appropriate to approximate the object sam-

ple distribution by a Gaussian and construct a PCA graph

as the object graph for discriminative learning. Second, it

is not appropriate to assume that maximization of the inter-

class margin only based on the marginal samples is equiv-

alent to maximization of the inter-class separability, espe-

cially when the marginal samples are selected by the kNN

(k nearest neighbors) method in a high-dimensional man-

ifold. This selection process is easily corrupted by noise

and outliers. That is why Zhang’s work needs assistance of

learning object subspace generatively to track objects accu-

rately. However, when the object undergoes severe appear-

ance variations, the generatively learned object subspace

can not capture these variations, and the straightforward

combination of generative and discriminative models may

degrade the superiority of discriminative learning. We plug

Zhang’s graph into our system and make a direct compar-

ison in Section 3.1. Third, since the tracking environment

severely varies from frame-to-frame, the test samples col-

lected from the current frame deviate from the distribution

of the training samples. Semi-supervised learning can avoid

overfitting under such circumstances while Zhang’s work

does’t take it into account. Last but not least, the graph em-

bedding with each vertex represented by image-as-vector (a

32×32 image patch results in a 1024-dimensional vector) is

faced with the curse of dimensionality problem, which is an

ill-conditioned problem when the dimension of the original

data space is larger than the number of the training samples.

Li et al. [14] inherit Zhang’s work and introduce a novel

Volterra kernel for non-linear embedding, however they do

not pay more attention to the aforementioned shortcomings.

Several years have witnessed great developments in

graph construction [4, 20, 24, 3, 10, 23, 5, 21, 27], especial-

ly in face recognition and image classification applications.

Experimental results in these applications demonstrate that

graph embedding based machine learning applications have

two key premises: i) constructing a good graph to repre-

sent data structures; ii) making use of the unlabeled sam-

ples appropriately. Inspired by above insights, we propose

a new graph embedding based semi-supervised discrimina-

tive tracker (GSDT). The main contribution is three-fold.

First, in order to get rid of the assistance of learning ob-

ject subspace generatively, we add an edge between each

pair of samples from different classes to characterize the

separability of different classes instead of only between the

marginal samples. It is robust to noise and outlier corrup-

tions. Second, considering that the test samples deviate

from the distribution of the training samples in the real-

world complex tracking environment, we formulate the dis-
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Figure 2: The architecture of the tracking framework.

criminative learning process, to avoid overfitting, in a novel

semi-supervised fashion as �1-graph [23] based regulariz-

er. It imposes a cluster assumption based regularizer to our

graph embedding framework. Meanwhile, the �1-graph ex-

plores higher order relationships among more data points,

and hence is more powerful to model the neighborhood

relationship than the custom kNN method. Third, a non-

linear variant of our semi-supervised discriminant learning

method is extended to adapt to multi-modal sample distribu-

tion. We also introduce the well-known covariance matrix

descriptor measured under log-Euclidean Riemannian met-

ric for feature extraction to reduce feature dimension and

avoid encountering the curse of dimensionality problem.

Semi-supervised learning has recently been introduced

for tracking in [8] and later extended by “Covariate Shift” in

[13]. These two studies both add cluster assumption based

loss function terms to the original feature selection based

boosting classifiers using a “SemiBoost” technique. Li et
al. [15] construct an adjacency graph using all the samples

to capture the useful contextual information, and hence de-

velop a new contextual kernel for SVM tracking. The simi-

larity measures in these work only characterize the pairwise

relationships of samples, however do not explore higher or-

der relationships among all the samples. The covariance

matrix descriptor measured under log-Euclidean Riemanni-

an metric has widely used for tracking (e.g. [16, 9, 14]).

However, they only use it for constructing generative learn-

ing based appearance models, and hence do not explore it-

s discriminant capability when used in the discriminative

learning based appearance model. A direct comparison of

results between the methods of [8, 9] and ours is given in

Section 3.2.

2. The Proposed Approach
Fig. 2 is an overview of the proposed GSDT. For better

illustration, we elaborate the important components of the

proposed approach in this section, mainly including feature

extraction for vertex representation, graph structure con-

struction, and the formulations of semi-supervised fashion

and non-linear extension.

2.1. Feature Extraction
By applying affine transformations, we crop the candi-

date object regions from the current frame (gray-scale im-
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Figure 3: Representation of the graph vertex. A sample image patch P is shown in (a). The results of appearance block division are exhibited in (b), where

m∗ is denoted as [m/p], n∗ is denoted as [n/q], and [·] is denoted as the rounding operator. The block-division based covariance matrix descriptor C is

shown in (c). The Log-Euclidean mapping and unfolding are displayed in (d) and (e).

age) and normalize each of them to a patch of size m × n,

which is then divided into several blocks, each of size p×q,

as illustrated in Fig. 3(a) and (b). For each patch P , it-

s blocks are denoted by Pij ∈ Rp×q , and the covariance

matrix is extracted for representing Pij as follows:

Cij =
1

L− 1

L∑
i=1

(fi − μ) (fi − μ)
T

(1)

where μ is the mean of {fi}i=1,...,L, L is the number of

pixels in the block Pij , and fi is the d-dimensional im-

age feature vector defined at the pixel coordinate (x, y) (re-

ferred to [17] for more details). Block-division based ap-

pearance representation has been used in [9]. However, they

do log-Euclidean mapping and construct appearance model

for each block individually, and combine them to a holistic

appearance model using novel filtering. In this paper, we

modify the block-division based appearance representation,

and develop a holistic block-division based covariance ma-

trix descriptor C as illustrated in Fig. 3(c), which is used

to represent patch P . By log-Euclidean mapping under log-

Euclidean Riemannian metric, as illustrated in Fig. 3(d), the

descriptor C is converted into a new one log(C). Due to the

vector space structure of log(C) (referred to [16] for more

details), it can be unfolded into a vector to represent the

graph vertex. Because log(C) is also a symmetric matrix

and has many zero entries, the redundancy entries of the un-

folded vector should be removed (see Fig. 3(e)). This repre-

sentation method can reduce the dimension of the graph ver-

tex representation effectively, and hence avoid encountering

the curse of dimensionality problem while more informa-

tion is retained. For a patch of size 32× 32 (m = n = 32),

we divide it into 16 blocks and each block has 8 × 8 pix-

els (p = q = 8), resulting in a 336-dimensional vector

when d = 6, which is much lower than the original 1024-

dimensional vector.

2.2. Graph Structure for Embedding
In real-world scenarios, objects undergo many kinds of

appearance changes even within a short period of time, the

distributions of the object and background samples are both

multi-modal (not Gaussian). We construct two new graphs

specially designed to model the local geometrical and dis-

criminative structure of the training samples according to

the graph embedding framework [24, 20]. The intrinsic

graph consists of an object graph and a background graph,

each of which has local-geometry-preserved property. The

penalty graph is constructed by adding an edge between

each pair of samples from different classes to characterize

the separability of different classes instead of only between

the marginal samples, so that it can be robust to noise.

Let xi ∈ R
D(i = 1, 2, . . . , l) be D-dimensional vectors

to represent the graph vertices corresponding to the labeled

samples, and yi ∈ {1, 2, . . . , C} be associated class label-

s, where l is the number of the labeled samples and C is

the number of classes. In this paper, yi = 1 indicates the

object, yi = 2 indicates the background, and C = 2. Let

nc be the number of samples in the class c:
∑C

c=1 nc = l.
Using the information about the labeled samples, we aim

to find a discriminative embedding space and map X ≡
(x1|x2| · · · |xl) ∈ R

D×l �→ Z ≡ (z1|z2| · · · |zl) ∈ R
R×l,

where R < D and is the dimension of the embedding s-

pace, such that in the embedding space unlabeled samples

are more reliably to be labeled by the nearest neighbor rule,

owing to the locally discriminative nature. To achieve this

goal, we need to construct two graphs: an intrinsic graph

G = {X,W} and a penalty graph Gp = {X,Wp} where

W and Wp are edge weight matrices, and minimize the

graph-preserving criterion as follows:

Z∗ = argmin
tr(ZLpZT )=R

∑
i,j

‖zi − zj‖2wij

= argmin
tr(ZLpZT )=R

2 tr
(
ZLZT

)
(2)

where the Laplacian matrices L and Lp of G and Gp are

defined by the diagonal matrices D and Dp as follows:

L = D−W, Dii =
∑
j �=i

wij , ∀i (3)

Lp = Dp −Wp, Dp
ii =

∑
j �=i

wp
ij , ∀i . (4)

Construct the intrinsic graph G = {X,W}. Some

edges are added between some vertex pairs in G to charac-

terize the similarity relationships between them. Each ele-

ment wij of the edge weight matrix W refers to the weight

of the edge between one vertex pair:

wij =

⎧⎨
⎩

Aij/n1, if yi = yj = 1,
Aij/n2, if yi = yj = 2,
0, if yi �= yj ,

(5)
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where n1 + n2 = l, and the affinity Aij is defined by the

local scaling method in [25]. Without loss of generality, we

assume that the data points in {xi}li=1 are ordered accord-

ing to their labels yi ∈ {1, 2}. When yi = yj = 1,

Aij = exp
(−‖xi − xj‖2/(σiσj)

)
, (6)

where σi =
∥∥∥xi − x

(k)
i

∥∥∥, and x
(k)
i is the kth nearest neigh-

bor of xi among {xj}n1

j=1. When yi = yj = 2,

Aij=

{
exp(−‖xi−xj‖2

σiσj
), if i∈N+

k (j) or j∈N+
k (i),

0, otherwise,
(7)

where N+
k (i) indicates the index set of the k nearest

neighbors of the vertex xi among {xj}lj=n1+1, σi =∥∥∥xi − x
(k)
i

∥∥∥, and x
(k)
i is the kth nearest neighbor of xi a-

mong {xj}lj=n1+1. The parameter k above is empirically

chosen as 7 based on [25].

Construct the penalty graph Gp = {X,Wp}. In Gp,

each element wp
ij of Wp is defined as follows:

wp
ij =

⎧⎨
⎩

Aij (1/l − 1/n1) , if yi = yj = 1,
Aij (1/l − 1/n2) , if yi = yj = 2,
1/l, if yi �= yj ,

(8)

where Aij has the same definition as in G.

Linear discriminative learning. Assuming that the

low-dimensional vector representations of the vertices can

be obtained from a linear projection as Z = PTX, where

P is a D ×R transformation matrix, the objective function

in Eq. (2) becomes

P∗ = argmin
tr(PTXLpXTP)=R

2 tr
(
PTXLXTP

)

= argmin
P∈RD×R

tr

(
PTXLXTP

PTXLpXTP

)
, (9)

where the analytic form of P∗ is obtained by solving a gen-

eralized eigenvalue problem as follows:

PTXLpXTPϕ = λPTXLXTPϕ . (10)

Denoting R principal generalized eigenvectors correspond-

ing to the R largest eigenvalues of Eq. (10) as {ϕr}Rr=1, we

obtain the discriminative projection P∗ = (ϕ1|ϕ2| · · · |ϕR).
An efficient implementation of this process is proposed in

[20].

Discussion. In the intrinsic graph G, we construct the

background graph as same as in Zhang’s work [26], while

construct object graph also with local geometry preserved

due to the variations of the collected object samples (see

Fig. 1). In the penalty graph Gp, we add an edge be-

tween each pair of samples from different classes (wp
ij =

1/l, if yi �= yj) to characterize the separability of different

classes. This can make the samples from different classes

apart even when they are corrupted by noise and outliers,

and avoid kNN selection (easily corrupted) of the marginal

samples in a high-dimensional manifold. Actually, our pro-

posed graph structure is reduced to the graph structure of

linear discriminant analysis (LDA) when all the affinities

are set to 1.

2.3. �1-Graph based Semi-Supervised Regularizer
Considering that the unlabeled candidates deviate from

the distribution of the labeled samples when the appear-

ances of the object and the background undergo severe

changes, we formulate the discriminative learning process,

to avoid overfitting, in a novel semi-supervised fashion as

�1-graph [23] based regularizer as follows.

Let {xi}l+u
i=l+1 be D-dimensional vectors to represent the

graph vertices corresponding to u unlabeled samples. De-

note X∗ ∈ R
D×(l+u) as a matrix of all the input samples

(x1|x2| · · · |xl+u), and Z∗ ∈ R
R×(l+u) as a matrix of all

the embeddings (z1|z2| · · · |zl+u). We define n = l + u. In

the cluster assumption, the “similar” samples may have n-

earby embeddings (low-dimensional representations). This

assumption allows the unlabeled samples to regularize the

decision boundary. A popular way to define the inconsisten-

cy between the embeddings {zi}ni=1 of the samples {xi}ni=1

is the quadratic criterion:

F(Z∗) = 1

2

n∑
i,j=1

Sij (zi − zj)
2
= tr(Z∗LrZ∗T ) , (11)

where Sij is the pairwise similarity, and the graph Laplacian

matrix Lr is defined by the diagonal matrix Dr as follows:

Lr = Dr − S, Dr
ii =

∑
j �=i

Sij , ∀i . (12)

We define S by adding an edge between samples xi and

xj if they are “similar”. This concept “similar” is defined

based on the �1 directed graph construction process [23]. If

a directed edge is placed from node i to j (aji �= 0), or from

j to i (aij �= 0), we assume these two samples are “similar”.

Specifically,

Sij =

{
1/n, if aji �= 0 or aij �= 0,
0, otherwise.

(13)

In general, the optimal P∗ in Eq. (9) should also minimize

F(Z∗) = tr(Z∗LrZ∗T ). Thus, a natural regularizer can be

defined as follows:

J (P)=tr(Z∗LrZ∗T ) = tr(PTX∗LrX∗TP). (14)

With this �1-graph based regularizer, we get the objective

function of our semi-supervised formulation of Eq. (9) as

P∗ = argmin
P∈RD×R

tr

(
PT

(
XLXT + βX∗LrX∗T

)
P

PT XLpXT P

)
(15)

where β ≥ 0 is a trade-off parameter. The regularizer im-

poses a cluster assumption based regularizer to our original

graph embedding framework. Meanwhile, the �1-graph ex-

plores higher order relationships among all the samples, and

hence is more powerful to model the neighborhood relation-

ship than the custom kNN method.
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2.4. Non-Linear Extension
Recall that the sample distributions of the object and

background samples are often multi-modal due to the dras-

tic appearance and background changes. In order to find

a more discriminative embedding space, we need to adop-

t a non-linear projection, because non-linear discriminative

boundary tends to provide a more reasonable solution space

than linear one, as illustrated in Fig. 4.

We present the non-linear extension of our semi-

supervised discriminative learning method using the kernel
trick under a graph view [19]. Let φ : x �→ H be a function

mapping the points in the input space to a high-dimensional

Hilbert space. For a proper chosen φ, we replace the

explicit mapping with the inner product K(xi,xj) =
〈φ(xi), φ(xj)〉. In this paper, we use the Gaussian kernel to

define this product: K(xi,xj) = exp
(−‖xi − xj‖2/σ2

)
.

For convenience, we rewrite the vertex matrix in the Hilbert

space as Xφ ≡ (φ(x1)|φ(x2)| · · · |φ(xl)) and Xφ∗ ≡
(φ(x1)| · · · |φ(xn)). According to Representer Theorem,

the optimal P∗ of Eq. (15) in the Hilbert space is given by

pφ∗j =
n∑

i=1

α∗ijφ(xi), j = 1, 2, · · · , R (16)

where α∗ij is the weight that defines how pφ∗j is represent-

ed in the space spanned by a set of over-complete bases

{φ(x1), φ(x2), · · · , φ(xn)}. We rewrite Eq. (15) in the

Hilbert space as follows:

Pφ∗ = argmin
Pφ=Xφ∗α

tr

(
PφT

(
XφLXφT + βXφ∗LrXφ∗T )Pφ

PφT XφLpXφT Pφ

)

(17)

where L and Lp are calculated in the Hilbert space. When

K∗ = Xφ∗TXφ∗ and K = XφTXφ∗ are calculated, we can

further rewrite Eq. (17) as follows:

α∗ = argmin
α

tr

(
αT

(
KT LK + βK∗LrK∗

)
α

αT KT LpKα

)
, (18)

and then the optimal solution can be obtained as Pφ∗ =
Xφ∗α∗. A data point in the Hilbert space can be em-

bedded into a R-dimensional subspace by: φ(x) �→ z =

Pφ∗Tφ(x) = α∗TXφ∗Tφ(x) = α∗TK(:,x), where K(:

,x) = (K(x1,x)| · · · |K(xn,x))
T

.

2.5. Heuristic Selection of Training Samples
In our proposed tracker, we take a heuristic strategy for

training sample selection from the propagated candidates

generated from the particle filter (see [18]). First, we assign

a reliable confidence to each graph vertex xi corresponding

to each propagated candidate, which reflects the probability

that the candidate belongs to the object. Its confidence can

be defined as follows:

p(xi|z+,α∗) ∝ exp
(−‖z+ −α∗TK(:,xi)‖

)
(19)

where z+ represents the center of the graph vertices corre-

sponding to the positive samples in the embedding space.

Hence, we can determine the optimal object region from

the candidate regions by the MAP (maximum a posterior)

estimation in the Bayesian inference framework, where the

observation model is defined by Eq. (19). Second, we make

a descending sort for the candidates according to Eq. (19),

resulting in a sorted vertex set. By selecting the top one of

the vertices from it, we add it to a positive buffer set N+

with buffer size set to T
+; by selecting the bottom 1/3 of

the vertices from it, we add them to a negative buffer set N−

with buffer size set to T
−.

3. Experimental Results and Analysis
In this section, we present experimental results that val-

idate the superior properties of our new graph embedding

based discriminative tracker with the �1-graph based semi-

supervised regularizer (GSDT). First, to demonstrate the ef-

fectiveness of the proposed tracking approach, we evaluate

each component of our tracker individually, such as the new

graph structure, the �1-graph based semi-supervised regu-

larizer, and non-linear extension. Second, we compare our

tracker with six trackers on various test videos and prove

that our tracker tracks objects robustly and accurately.

Implementation details. All our experiments are done

using MATLAB R2008b on a 2.83GHz Intel Core2 Quad

PC with 4GB RAM. As shown in Fig. 2, we use the par-

ticle filter to draw unlabeled samples from frame It, and

set the number of particles to 300 (u = 300). The pa-

rameters T
+ and T

− are both set to 50 and 300 respec-

tively, indicating that n1 = 50, n2 = 300, l = 350, and

n = 650. For feature vector fi in Eq. (1), we only con-

sider the coordinate (x, y), the intensity value I(x, y), the

first order intensity derivatives Ix(x, y) and Iy(x, y), and√
(Ix(x, y))

2
+ (Iy(x, y))

2
, resulting in a 6-dimensional

feature vector. All the cropped image patches are normal-

ized to size 32 × 32 (m = n = 32), and p = q = 8 in

Fig. 3. Sample representation used in the �1 directed graph

construction process [23] is based on the image-as-vector

representation method, where each sample corresponds to a

149149



�� �� �� �� �� �� 	�

��

���

���

���

���

���

�

�

��� ��� ��� ���

��

��

��


�

���

���

���

���

�

�

�� �� �� �� �� �� 	�
�

���

���

���

��


�

�

��� ��� ��� ���
�

���

���

���

���

���

���

��	

��


�

�

Figure 5: Quantitative comparison of the proposed tracker with our new

graph and Zhang’s graph [26] on two videos. The left two subfigures are

associated with the tracking performance in CLE and VOR on the animal
video, respectively; the right two subfigures correspond to the tracking

performance in CLE and VOR on the david video, respectively.

normalized 10 × 10 image template. The dimension of the

embedding space is empirically set to R = 1, because the

largest eigenvalue is more than ten times larger than the sec-

ond largest one. The trade-off parameter β is set to 0.5. In

Section 2.4, σ in the Gaussian kernel is empirically set to 7.

The above settings remain the same in all the experiments.

3.1. The Effectiveness of Our Tracker
To evaluate each component of our tracker GSDT in-

dividually, such as the new graph structure, the �1-graph

based semi-supervised regularizer, and non-linear exten-

sion, we conduct a set of experiments on four challeng-

ing video sequences with only 2D translation and scale

tracked. For quantitative comparison, two evaluation crite-

ria are introduced, namely, the center location error (CLE)

and the VOC overlap ratio (VOR) between the predict-

ed bounding box Bp and the ground truth Bgt such that

VOR =
area(Bp

⋂
Bgt)

area(Bp

⋃
Bgt)

. If VOR is larger than 0.5, then the

target is considered to be successfully tracked.

Table 1: Comparison of the proposed tracker with/without semi-supervised

learning. ACLE: the average CLE; AVOR: the average VOR; TSR: the

tracking success rate.

david skating1 trellis*
ACLE AVOR TSR ACLE AVOR TSR ACLE AVOR TSR

Semi 3.6 0.74 0.99 6.7 0.67 0.95 4.8 0.72 1.00

non-Semi 6.5 0.50 0.40 36.8 0.41 0.47 20.3 0.57 0.75

Evaluation of our graph structure. To validate the fac-

t that our proposed new graph structure is more effective

to separate the object from the background than Zhang’s

graph [26], we plug Zhang’s graph into our system for

comparison. Fig. 5 shows the corresponding experimen-

tal results of the proposed tracker with our new graph and

Zhang’s graph on the animal and david videos. In the an-
imal video, fast motion and blur indicate large appearance
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(a)

(b)
Figure 6: Comparison of the proposed tracker with/without semi-

supervised learning on the trellis* video. (a) shows tracking performance

in CLE and VOR; (b) shows some screenshots, red dashed line indicates

scenario with semi-supervised learning, blue line indicates without.
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Figure 7: Quantitative comparison of the proposed tracker with/without

non-linear extension on two videos. The left two subfigures are associat-

ed with the tracking performance in CLE and VOR on the trellis video,

respectively; the right two subfigures correspond to the tracking perfor-

mance in CLE and VOR on the david video, respectively.

variations in short time; in the david video, significant out-

of-plane rotation appears around frame #150. From Fig. 5,

we can see that Zhang’s graph easily impose the tracker drift

away from the target due to the shortcoming of separating

different classes only based on marginal samples.

Performance with and without regularizer. To vali-

date the effectiveness of the �1-graph based semi-supervised

regularizer, we extract odd numbered frames of the trellis
video (501 frames in total), and make a new video trellis*
(251 frames in total with low frame rate). In this converted

video, the position and background of the object are dras-

tically changed. Meanwhile, severe illumination change

and out-of-plane rotation translate the appearance of the

object into different one. Fig. 6 shows that the proposed

tracker with the �1-graph based semi-supervised regular-

izer can adapt to these changes and reliably track the ob-

ject. More quantitative comparison results are reported in
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Figure 8: Quantitative comparison of different trackers in terms of CLE on eight videos.

Table 1, which demonstrates that the proposed regularizer

gives the plausible boost.

Evaluation of non-linear extension. We claim that the

non-linear discriminative boundary tends to provide a more

reasonable solution space than linear one, especially in the

complex tracking environment. Experimental results on the

trellis and david videos (see Fig. 7) show that, after the

objects have undergone out-of-plane rotations (after frame

#350 in the trellis video, and after frame #170 in the david
video), the proposed tracker with non-linear extension can

more reliably to capture the original appearances of the ob-

jects than the one without non-linear extension.

3.2. Comparison with competing trackers
To show the superiority of GSDT over other compet-

ing trackers, we perform experiments using SLAM[9],

IVT[18], VTD[11], VTS[12], MIL[2] and SSOBT[8] on

eight videos. SLAM also introduces the covariance matrix

descriptor measured under log-Euclidean Riemannian met-

ric. By comparing GSDT with SLAM, we can intuitively

find how our graph embedding based semi-supervised dis-

criminative appearance model explores the descriptor’s dis-

criminant capability and achieves more robust and accurate

tracking results than SLAM. We implement these tracker-

s using publicly available source codes or binaries provid-

ed by the authors. For fair evaluation, each tracker is run

with appropriately adjusted parameters. Because IVT and

SLAM achieve their best tracking results when their mo-

tion models are set to be affine transform (with 2D transla-

tion, scale, and in-plane rotation tracked), we consider set-

ting the parameters in our tracker such that all these affine

parameters are tracked. This is indicated by the subscrip-

t R. Considering the specificities of VTD, VTS, MIL and

SSOBT, we set the parameters in our tracker such that on-

ly 2D translation and scale are tracked for comparing with

them. This is indicated by no-subscript.

To quantitatively evaluate the tracking performances (ro-

bustness and accuracy) of the seven trackers under challeng-

Table 2: Tracking object location: average center location errors (pixels).

Bold green font indicates best performance with rotation tracked, Bold
red font indicates best performance without rotation tracked.

Videos MIL VTD VTS SSOBT GSDT GSDTR IVTR SLAMR

dudek 12.9 6.6 7.0 37.8 7.3 2.4 4.0 2.2
car4 38.2 47.5 19.6 87.4 4.1 4.6 5.0 5.5
david 11.7 28.3 7.8 29.5 3.6 4.0 4.0 18.0

animal 19.9 9.7 10.0 10.1 9.3 8.8 9.2 100.9
skating1 79.8 32.0 14.3 133.4 6.7 7.7 192.4 65.5

sylv 9.4 15.7 11.4 14.2 6.6 7.4 58.3 13.4
boat 9.0 8.4 3.5 17.0 3.2 2.8 2.6 1.7

trellis 46.0 35.7 33.2 36.4 2.7 2.8 44.0 4.4

ing scenarios, we have manually labeled the ground truth of

the boat and trellis videos, and downloaded others from the

websites1 of the video providers. The tracking error eval-

uation is based on center location error (CLE) between the

center of the tracking result and that of the ground truth.

Fig. 8 plots the center location error plots (highlighted in

different colors) obtained by the seven trackers in the eight

experiments. Further, we also compute the average of the

center location errors and report the results in Table 2. From

Fig. 8 and Table 2, we can see that our proposed GSDT

outperforms the others in terms of tracking accuracy and

robustness. Some qualitative tracking results especially in

Fig. 9(e), Fig. 9(f) and Fig. 9(h) also show that the proposed

GSDT can handle pose variation and drastic illumination

more robustly than all others.

4. Conclusion
In this paper, we have proposed an effective and robust

new graph embedding based discriminative tracker with the

�1-graph based semi-supervised regularizer. The superiori-

ty of our approach can be attributed to: 1) two new specially

designed graphs for modeling the local geometrical and dis-

1dudek: http://www.cs.toronto.edu/˜dross/ivt/; car4:

http://www.dabi.temple.edu/˜hbling/code_data.htm;

david and sylv: http://vision.ucsd.edu/˜bbabenko/
project_miltrack.shtml; animal and skating1: http:
//cv.snu.ac.kr/research/˜vtd/.
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(a)dudek, occlusion, scale change and out-of-

plane rotation

(b) car4, scale and illumination changes (c)david, scale variation and out-of-plane rotation

(d) animal, fast motion and blur (e) skating1, pose variation, occlusion and illumi-

nation change

(f) sylv, in-plane and out-of-plane rotations

(g) boat, out-of-plane rotation and background clutter (h) trellis, drastic illumination change and out-of-plane rotation
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Figure 9: Screenshots of some sampled tracking results of evaluated approaches on eight challenging videos.

criminative structure of the samples, especially in character-

izing the separability of different classes; 2) a novel semi-

supervised formulation of the discriminative learning pro-

cess using the �1-graph based regularizer, which explores

higher order relationships among all the samples and hence

is more powerful to model the neighborhood relationship in

the cluster assumption for regularizing the decision bound-

ary; 3) a non-linear variant of our semi-supervised dis-

criminative learning method is extended to adapt to multi-

modal sample distribution. Experimental results compared

with several state-of-the-art trackers on challenging videos

demonstrate the effectiveness and robustness of the pro-

posed tracker.
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