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Abstract

In this paper we present a case-study about recent break-
throughs of three-dimensional (3D) super-resolution live-
cell imaging through thick specimens (50 – 150 µm). This
technology is enabling the deep understanding of cellular
mechanism by obtaining very detailed 3D descriptions of
cells. In particular, we discuss the image analysis problems
related to the accurate localization of single molecules.
This problem is hard because of the extreme noise con-
ditions, the high and heterogeneous density of the cell
molecules and the distortions induced by light-sample in-
teractions on the imaging capabilities. For this reason, ro-
bust computational tools are required to obtain the local-
ization of the photo-activated molecules and to enable the
super-resolution accuracy. In such context, we show that a
novel set of challenges exists and novel Computer Vision ap-
proaches are needed for delivering high-performing imag-
ing systems for life science.

1. Super-resolution imaging and its challenges

In the last years particular attention has been addressed
to the spatial resolution improvement of fluorescence opti-
cal microscopy techniques. The advent of novel fluorescent
probes, with suitable spectral capabilities, lead to the devel-
opment of an innovative family of far field super-resolution
microscopy techniques able to push the resolution limit be-
yond the diffraction barrier. In particular, in the past few
years emerging techniques, based on the localization pro-
cess of single molecule, allowed to image biological struc-
tures at the molecular level since they enabled the investi-
gation of sub-cellular structures with a resolution never at-
tempted before (10-30nm). All these techniques are well
established at the cellular level and they performs optimally
when imaging of thin samples is required. Despite this fact,
imaging of thicker samples still represents a challenge since
the effects induced by the interactions of the light with the

sample, such as the crowded molecular environment, scat-
tering and absorption effects, prevent a strong accuracy in
the single molecule localization process. In particular, one
of the main limitations is represented both by the required
acquisition time and by the decreased localization accu-
racy which induce a consequent worsening of the system
performance in dense live samples. To address this issue,
the development of effective tools able to improve localiza-
tion performances, in particular when the required molecule
sparseness regime is disrupt, represents a key point.

Emerging techniques, based on temporal focusing [21],
selective plane illumination microscopy (SPIM) [4] [3] and
array tomography [15] extended the imaging capabilities
of localization based methods to thicker and thicker sam-
ples thus representing a key point towards super-resolution
imaging in vivo (such as embryos and tissues). However
it is clear that such evolving techniques require an increas-
ing interaction with advanced computational tools that can
provide the needed boost in order to extend further the state
of the art in super-resolution microscopy. The aim of this
paper is to provide an overall view of the mechanism un-
derlying the super-resolution approaches with a focus on
single molecule localization methods. In particular, we will
present a setup developed in [4] that enables the 3D recon-
struction of thick biological samples called IML-SPIM. Our
focus is to unveil the underlying computational problems
that can be of most interest to the Signal Processing and,
in particular, Computer Vision communities. Furthermore,
we will discuss different aspect of this challenging problem
and provide possible directions to increase the performance
of current live cell imaging systems and the related applica-
tions for Bioscience.

The rest of the paper is organized as follows. Section 2
introduces the single molecule localization concept at the
basis of the setup for super-resolution microscopy. Sec-
tion 3 describes the IML-SPIM setup developed in [4] with
more emphasis on the most important computational issues
to solve. Finally, in Section 4 we discuss further improve-
ments and possible future challenges for the computer vi-
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sion community.

Figure 1. Concept behind IML: A small subset of sparse molecules
are imaged, localized and turned off by photobleaching. The cycle
is repeated as long as a sufficient number of molecules have been
localized (from a) to g)). The plotted positions of all the localized
molecules build up the superresolved image (i). The IML image
shows details below the diffraction limit that would not be visible
in conventional optical microscopy (h)

2. Super-resolution based on individual
molecule localization (IML)

The concept behind individual localization techniques
(IML) relies on the image acquisition of separated single
molecules and the subsequent localization of their center.
In the last few years several photoactivation localization
based techniques have been developed, such as PALM [2],
FPALM [8], STORM [16] and PALMIRA [6]. All these
techniques exploit the same principle and they differ for the
optical system used or for the fluorophore employed.

The rapid growth of far field optical super-resolution
techniques brought to a fast development of individual
molecule localization (IML) based techniques and their ex-
tension to three-dimensional imaging [10, 9] and multicolor
applications [1] [17]. Furthermore IML techniques can be
exploited to identify single molecules trajectories [12] and
to perform orientation studies of the molecular orientation
[7] [19].

The localization analysis of single particles is based on
the fact that, although the size of the observed object is lim-
ited by the resolution of the microscope, the center of the
object can be determined with high precision accuracy if
a sufficient number of photons (N ) are collected (Fig. 1
shows a graphical representation). In individual molecule
localization the images consist of a collection of sparse sin-

gle molecules signal and it is therefore possible to determine
the relative positions of the objects to a precision much bet-
ter than the diffraction limited spot. Notwithstanding the ac-
curacy of these measurements is dependent from the count-
ing statistics of the detected signal and from the noise intro-
duced by the detection device and processing electronics.
Additional factors, like background noise and optical sys-
tem characteristics affect the maximum precision achiev-
able in the single molecule localization especially when
imaging of thick and dense samples is performed. For this
reason more robust algorithms and suitable optical arrange-
ments are required to increase the imaging depth capability
of localization based techniques.

The analysis is based on the idea of least-squares fitting
[20] [8] with a Gaussian restricted to the one dimensional
case that can be easily extended to the two-dimensional
case. If the noise in each pixel is dominated by photons
produced by the localized particle, the photon shot noise
starts to play a relevant role. In this case the estimate of
the molecule position is given by the mean of the positions
of the individual detected photons and the error in the lo-
calization can be provided by the standard statistical error
associated with [20]:

σ2
x =

s2

N
, (1)

where N is the number of photon collected and s is the
standard deviation of the Gaussian intensity Point Spread
Function (PSF).

The background noise comprises both dark current noise
and out-of-focus fluorescence and the error in the localiza-
tion in the case of pure background noise can be described
by:

σ2
x =

4 ·
√
π · s3 · b2

a ·N2
. (2)

The total localization precision in bi-dimensional case be
obtained summing the contribution due to photon-counting
noise, pixelation noise and background noise [20]:

σ2
xy =

s2 + a2

12

N
+

8 · π · s4 · b2

a2 ·N2
, (3)

where b is the background noise and a is the pixel size. This
relation shows that the uncertainty falls as the inverse of the
number of photons N for the background noise and as 1√

N
for the photon counting noise. Therefore the maximization
of the number of photons collected for each molecule is a
crucial aspect in IML imaging and it allows to increase the
localization precision. Furthermore, the effective resolution
in IML techniques is affected by the molecular density and
also the distance between contiguous molecules has to be
taken into account. For this reason the overall resolution of
the system takes into account both the localization precision
and the molecules sparseness.
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Figure 2. A set of images of a nanocapsule collected by the IML-SPIM setup

3. IML–SPIM, towards thick samples
Investigation of 3D structures of living biological spec-

imens represents a key point since it provides fundamental
knowledge of the relation between function and structure of
biological molecules. Within this framework, the possibil-
ity to perform imaging at the molecular level of biological
structures directly within entire animals or tissues became a
crucial point. In this context light-sheet based microscopy
(LSM) played a relevant role to overcome the limitations of
conventional IML techniques. In particular, it was recently
proved [4, 11] that individual molecule localization cou-
pled with selective plane illumination microscopy (IML-
SPIM) can be successfully implemented to perform super-
resolution deep within mammary cell spheroids. Light sheet
based microscopy combines the advantages of confocal ap-
proaches in terms of optical sectioning capabilities and the
benefits of wide field microscopy, such as fast acquisition
and high dynamic range. The sample is mounted in agarose
gel and moved within the focal plane in order to perform 3D
imaging. Light sheet based techniques combines the advan-
tages of wide-field and confocal approaches: images can be
acquired with high signal to noise ratio (SNR) and optical
sectioning properties similar to confocal schemes and low
photobleaching and fast acquisition time can be reached as
in wide-field microscopy.
Additionally, SPIM allows to reduce the energy delivered
on the sample providing lower photobleaching and photo-
damage of the sample since the use of a cylindrical lens to
collimate the light in order to create the light sheet brings to
a lower photon density in the focal plane. The intrinsic con-
finement of the excitation volume obtained with the light
sheet illumination provides an higher signal to noise ratio
inducing a consequent improvement of the localization per-
formances.

3.1. IML-SPIM optical system

A single plane illumination set up has been designed and
realized in order to perform 3D imaging of differently sized
biological samples. The set up is composed by three basic
units as shown in fig. 3: the illumination unit which creates
the light sheet from the side of the detection focal plane, the
detection unit, which provides high sensitivity signal detec-

Figure 3. Schematic representation of the SPIM setup: illumina-
tion and detection path are orthogonally oriented.

tion, and the sample movement unit.
A light sheet is created in the focal plane and is used to
excite fluorescence while the emitted photons are orthog-
onally detected by a orthogonally placed objective. Three
dimensional super resolution imaging can be performed us-
ing the astigmatism approach, where a cylindrical lens is
placed before the camera providing ellipticity in the PSF
shape depending on the axial coordinate. For more details
regarding the optical setup please refer to [4].

3.2. Image analysis and rendering

The setup previously presented collects images that have
to be processed to localise each single molecule activa-
tion in time. Figure 2 shows an example of a set of im-
ages collected in our setup. It is noticeable by visual in-
spection some photo-activated molecules at some time in-
stances in the sequence. The noise level of the image is also
quite remarkable because of fluorescence signal from inac-
tive molecules, from out of focus molecules or by scattered
light. For this reason it i necessary to model such noise and
possibly remove its effect from the image without corrupt-
ing the PSF shape of the photo-activate molecule. More-
over, in order to provide exact metric measurements in the
Z-axis, we have to find a mapping between the PSF distor-
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tion and the molecule depth.

Figure 4. A set of images showing a probe at different focus

System calibration from images. In order to achieve an
accurate localization in depth, a probe molecule (fluorescent
beads with a diameter of 40nm) at different planes is used to
associate the astigmatic distortion of the PSF to an absolute
distance in the Z-axis. Figure 4 shows a set of images of the
probe at different distances. Given this set of images, we fit
for all image pixel at position (x, y) an elliptical Gaussian
function given by :

I(x, y) = Io · e
−2

(
(x−xo)2

r2x
+

(y−yo)2

r2y

)
+ t (4)

where the parameters to estimate given the image I are the
brightness Io proportional to the overall molecule intensity,
the elliptical Gaussian center (xo, yo), the variance pairs
(r2x, r

2
y) and a general image brightness offset t. Given a set

of n images I1, · · · , In we can fit using robust non-linear re-
gression a set of variances pairs (r2x1, r

2
y1), · · · , (r2xn, r2yn).

Given these discrete quantities we further fit two polyno-
mial curves to the set of variances in x and y. These two
curves represent the relational between the PSF distortion
and the depth of the molecule (check Fig. 5). Such cali-
bration stage will be used for the molecule detection stage
using the images of the biological samples.

Figure 5. The red and blue curves represent the calibration of the
microscopy setup that maps the elliptical Gaussian variances to the
molecule depth.

Background subtraction After the acquisition of the en-
tire image series (e.g. Fig. 2) a noise background subtrac-
tion is performed. Background noise can be given either
by fluorescence signal from inactive molecules, by out of
focus molecules or by scattered light. A spatially-invariant
background subtraction can be performed, but a non uni-
form baseline subtraction is in general preferred. In order

to subtract the background in each frame independently, the
subtraction is performed using the roll-ball algorithm [18].

Single molecule localization algorithm. In order to
discriminate single molecules from background signal a
threshold on the number of photons collected for each
molecule has to be set. As a rule of the thumb the number
of photons detected per molecule should be approximately
10 times the photons due to the background noise. The co-
ordinates of the center of mass of each identified molecule
is used as initial parameter for the Gaussian fitting routine
using Eq. (4) for the PSF model. Several criteria, based on
the number of photons collected or on the width of the in-
tensity distribution generated by each single molecule, can
be applied in order to discard events due to the acquisition
of multiple molecules. In particular, the width of the inten-
sity spot produced by single molecule imaging should be
equal to the width of the system PSF. Eventually, larger or
smaller spots in the image can be rejected since they are not
probably associated to single molecules events. The local-
ization precision for each identified molecule is calculated
following Eq. (3).

Final visualisation. Once position, intensity and local-
ization accuracy has been calculated, all these informa-
tion can be used to render the final super-resolution im-
age. A weighted plot can be obtained tracing the localized
molecules as spots with a Gaussian profile in which the am-
plitude is proportional to the number of photons detected
and the radius is determined by the localization precision.

3.3. Localisation results

As an example of the capabilities of the system, we show
the localization performance of IML-SPIM on nanocap-
sules, a micrometer sized model system made by layer-by-
layer technique with positively and negatively charged poly-
electrolytes. A layer of the nanocapsules is stained with
the photoactivatable caged-FITC in order to perform sin-
gle molecule detection. Figure 6 shows the improvement in
the resolution for the mean localization precision reached
is 35nm (E) and the comparison between the IML-SPIM
image (A), reconstructed after localization, and the con-
ventional SPIM image (B). Notice that the borders of the
nanocapsules are now clearly visible.

Additionally the axial coordinate z of each single
molecule can be determined by the shape of the elliptic
Point Spread Function (PSF) obtained introducing a cylin-
drical lens along the detection path. Calibration curves are
obtained with the procedure presented in Sec. 3.2. The 3D
super resolution image containing the axial information can
be shown as a color coded map showing depth changes ac-
cording to the calibration procedure previously described.
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Figure 6. a) A comparison between the super-resolution IML-
SPIM (A) and conventional SPIM (B) imaging of nanocapsules.
The value of the number of photons/molecule collected (C), the
distribution of the molecule radius (in pixels) and the localization
precision calculated according to Eq. (3).

Figure 7 shows 3D super resolution imaging both for poly-
electrolyte nanocapsules and for a selected cells of interest
within mammary cellular spheroids. This shows the imag-
ing performances of the system in thin and thick samples.

Figure 7. 3D imaging of polyelectrolyte nanocapsules and 3D
imaging of cells expressing histone H2B fused to photactivatable
monomeric Cherry (H2B-PAmCherry).

4. Conclusions and discussion
Super-resolution techniques based on single molecule

localization opened a path towards the study of biologi-
cal structures within cells at the molecular scale. Despite
several biological questions can be addressed at the cellu-

lar level, the possibility to access information about sub-
cellular structures in vivo represents a key step towards
a better understanding of the molecular mechanisms in-
volved in several oncological and neurodegenerative dis-
eases. Within this framework, the possibility provided
by IML-SPIM to extend the application range of super-
resolution techniques to thicker samples represents an im-
portant point, since it provides a powerful tool to detect and
localize single molecules directly within tissues (such as
brain slices or tumoral tissues) and entire organisms (such
as living embryos). Such understanding of evolving com-
plex biological processes, especially for in-vivo analysis,
requires the design of accurate instruments able to reveal
the most subtle details of cellular dynamics. In such regard
much efforts have been put into designing custom optical
setups that can break the barrier of standard resolution. On
the other hand, the computational aspects have been only
briefly addressed in the literature and there are relevant op-
portunities for the signal processing and computer vision
communities to produce a relevant impact in this field. At
this end, the IML-SPIM setup proposed in [4] is a step-
forward towards the creation of a reliable and robust system
for super-resolution. However, in the following we will dis-
cuss a set of possible improvements to current systems that
can be addressed by researchers in the Signal Processing
and Computer Vision communities.

Super-resolution accuracy and robustness. There are
two main trends for single molecule localization that are
overcoming the classical, but still precise, robust regression
methods. First, compressive sensing algorithms [22] have
been used because the implicit structure of the data. Being
the single molecule activations sparse, it is possible to en-
force a sparse PSF fitting on the data. Drawbacks are related
to the needed discretization of the image grid that is nec-
essary for increasing the super-resolution accuracy. Finer
the grid, more accuracy is achieved. However this is paid
in terms of computational power since sparse optimization
requires, in general, iterative algorithms if the problem is
large scale. This effect is lessened by decimating the im-
age in parts and solving independently a sparse problem
for each image part. Moreover, in the relative optimiza-
tion problem there is a sparsity parameter ruling how much
sparse is the signal i.e. how many molecules might be active
in a given image area. This parameter is in general constant
but it might be varying given the (unknown) density of the
sample. Another interesting strand of research is to adopt a
generative approach by modelling the dynamic tri-states of
photo-activate molecules [5]. Also such framework it has
been applied in deconvolution using a sparsity-promoting
Bayesian framework [14].

Live-cell motion and single molecule tracking. Another
major issue in live-cell imaging scenario is given by the mo-

182182



tion (drift) of the samples during the acquisition. The photo-
activation of several single molecules require a short inter-
val of time, nevertheless we might have an overall trans-
lation or even rotation of the sample. This introduces a
molecule tracking/matching problem [13] that is crucial for
obtaining reliable 2D/3D information. This problem has
similarities with the classical feature matching problem in
multi-view geometry. Given an unknown geometric trans-
formation we have to match the same feature in different
images. The problem here is worsened by the fact we might
have very sparse points to match in time thus providing a
stronger challenge to the community.

Super-resolution images clustering. Another important
issue is mainly related to the post-processing of super-
resolution images in order to detect particular clusters of
molecules. This clustering problem is rather important for
Biologists in order to understand if a sample has a particular
aggregation of molecules that might be a sign of a specific
cellular process. Given the sparse image generation proce-
dure of super-resolution, these clustering methods have to
deal with a large number of 2D/3D points. This may be not
a problem for a batch processing alike pipeline. However,
in a live analysis regime, time might be a computational is-
sue in order to understand important dynamical processes
of the sample in real-time.

Conclusions. The high accuracy provided by the super-
resolution system have given a new tool for biologists en-
abling the inspection of biological processes that were pre-
viously not accessible. At the same time, new computa-
tional challenges have been discovered in such field and the
community is actively searching for answers to these hard
questions. However, one of the main obstacles between the
two communities is the accessibility to the data obtained
by each super-resolution setup. In such regard, the creation
of public datasets for single molecule localization, tracking
and clustering (to name a few) problems might be the most
direct path to promote a stronger interaction between these
two fields.
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