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Abstract

Plant phenomics research requires different types of sen-
sors be employed to measure the physical traits of plant
surface and to estimate the plant biomass. Of particular
interest is the hyperspectral imaging device which captures
wavelength indexed band images that characterise material
properties of objects under study. In this paper, we intro-
duce a proof of concept research that builds 3D plant model
directly from hyperspectral images captured in a controlled
lab environment. We show that hyperspectral imaging has
shown clear advantages in segmenting plant from its back-
ground and is promising in generating comprehensive 3D
plant models.

1. Introduction
Plant phenomics is an area of plant biology that studies

the influence of genetics and environment on both the phys-
ical and biochemical traits of plant organisms [7]. One of
the main tasks in this area is dissecting plant function and
performance via measurement of plant appearance. Such
measurements provide inputs to other key tasks in plant
phenomics, including investigating carbon partitioning and
photosynthesis in plants, as well as finding mechanisms of
drought tolerance and flowering behavior. Therefore, ro-
bust and accurate plant measurement methods are of great
importance.

The development of sensing technology has enabled
many measurement tools such as radar, RGB camera, in-
frared camera and hyperspectral camera be bedded in plant
observation process. Among them, of particular interest is
the hyperspectral imaging device, which generates tens or
hundreds of contiguous narrow spectral band images in-
dexed by the light wavelength. These band images con-

tain rich information on the spectral and spatial distribu-
tions of distinct surface materials. They enable more ac-
curate and reliable object detection and material classifica-
tion than using panchromatic or multispectral imagery. As
a consequence, hyperspectral imaging techniques have been
widely used in remote sensing, environmental monitoring,
and surveillance in agriculture, industry and military [9].
When applied to plant research, hyperspectral imaging has
shown success in detecting traits of disease or nutrition de-
ficient [6, 1].

Despite its advantages in object detection and analysis,
the research on hyperspectral imaging in computer vision is
still very limited. In recent years, thanks to the production
of relatively low cost hyperspectral imaging devices, com-
puter vision researchers have started to explore this area.
More understanding of the statistical properties of hyper-
spectral imagery have been reached [4], and some tradi-
tional computer vision topics have been covered, such as
camera sensitivity analysis [10], feature extraction [13], and
illumination estimation [8].

In this paper, we address one of the fundamental prob-
lems of computer vision, 3D reconstruction, in the context
of plant modelling using hyperspectral images. Some re-
search have already incorporated hyperspectral data into 3D
models. For example, Brusco et al presented an interest-
ing work on modeling historical building with multispectral
data, while the depth information was captured by a range
camera based on laser scanner [2]. Similarly, Nieto et al
built 3D model based on depth data captured by a laser scan-
ner and mapped hyperspectral image to 3D Model to display
geological mineral information [16]. More recently, Kim
et al integrated a hyperspectral camera into a 3D scanning
system to enable the measurement of the diffuse spectral re-
flectance and fluorescence of specimens [12]. However, all
of these have not explicitly built 3D models directly from
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hyperspectral data.
Our method, on the contrary, attempts to build a 3D

plant model directly from a sequence of hyperspectral im-
ages captured in a controlled lab environment. The spec-
tral data is first used to segment plant from its background.
Then keypoints are extracted from plant, which are used
to find correspondences between a pair of spectral images.
Finally a structure from motion based model is developed
to reconstruct the 3D plant. The initial results show that
the spectral data can be used for effective plant segmenta-
tion, which is an important step for 3D modelling. Fur-
thermore, the 3D models produced from difference bands
contains mostly consistent structural information of plants,
and in some cases, complement each other. This implies
that different band images can capture different properties
of plant surface. If these models can be properly com-
bined, they will lead to promising approach in building a 3D
model that reflects more complete structural information of
the plants than that can be reconstructed by traditional sys-
tems [17, 20]. This technique can also be combined with
existing 3D plant modelling methods based on laser scan-
ners or Kinect [15] in order to build more accurate plant
models.

The rest of paper is organised as follows. Section 2 de-
scribes the hyperspectral plant imaging system. Section 3
introduces the proposed 3D plant modelling method. Sec-
tion 4 presents the experimental results, with conclusions
and future work given in Section 5.

2. Hyperspectral Imaging of Plants
Our hyperspectral imaging system consists of three main

components, i.e. objective lens, a hyperspectral filter, and a
high sensitivity camera, with the hyperspectral filter con-
necting the lens and the camera. In this research, we have
used an acousto-optical tunable filter (AOTF) that supports
imaging from 400nm to 1000nm at 10nm in spectral resolu-
tion. A control unit is connected to the filter to let the light
in designated wavelength pass through to reach the cam-
era. By scanning through the visible to infrared wavelength,
grayscale images can be generated to form different bands
of the hyperspectral image. The output of the imaging pro-
cess is a data cube with the first two dimensions show the
spatial positions of pixels, and the third dimension indexes
the bands. Therefore, each pixel on the image is a vector of
responses across the visible to infrared spectrum.

We collected plant data in the High Resolution Plant
Phenomics Centre (HRPPC) in the Commonwealth Scien-
tific and Industrial Research Organisation (CSIRO) in Can-
berra, Australia. HRPPC provides integrated plant mea-
surement system that utilises several imaging tools, such as
light detection and ranging sensors, thermal infrared cam-
eras, multispectral and RGB cameras to capture high reso-
lution plant data. The imaging lab provides consistent illu-

mination condition to facilitate the imaging process. Dur-
ing the data capture, a plant was put on a turntable plat-
form and transmitted into the workspace. After the plant
was positioned, the hyperspectral camera captured images
by scanning through the visible to infrared bands. Then the
platform rotated for three degrees to allow another scan be-
ing done. This process continued until the plant had been
rotated for 360 degrees with all views covered. During the
imaging process, camera parameters such as focus length,
zoom, exposure time remained unchanged. At last, 120 data
cubes were obtained for each plant, covering the whole sur-
face of the plant. During the image capture process, a white
balance reflectance target is used to normalised the hyper-
spectral data. Figure 1 shows a plant image example. The
first row of the figure shows band images captured at differ-
ent wavelength from the same angle, while the second row
shows images captured at different angles from the same
band.

3. Plant 3D Modeling
The proposed 3D modelling method contains three steps,

which are image quality improvement, plant segmentation,
and 3D reconstructing. The first two steps can be considered
as the preprocessing steps.

3.1. Image Preprocessing

The hyperspectral images often suffer from noise and
cross band misalignment. The noises mainly come from the
narrow band of light that is allowed to pass the hyperspec-
tral filter within short period of time. Although our camera
is highly sensitive, the signal to noise ratio is still low, espe-
cially in the short wavelength range where the light intensity
is low. To reduce the influence of these bands, those with
very low signal to noise ratio were removed from the data.
Then the rest band images were smoothed using a Gaussian
filter.

Misalignment of band image can be caused by the chro-
matic abberation of camera lens, or the misalignment of
grating component in the tunable filter. Then light in differ-
ent wavelength follows slightly different transmission paths
before reaching the camera. In order to reduce the misalign-
ment, each band image is calibrated against an anchor band
image at 790nm. This is done by maximising the mutual
information of every band to the anchor band, so that the
transformation matrix in the following equation can be op-
timised: x′y′

1

 =

s cos(θ) −s sin(θ) tx
s sin(θ) s cos(θ) ty

0 0 1

xy
1

 (1)

In this equation,
[
x′ y′ 1

]T
and

[
x y 1

]T
are pixels

before and after transformation, respectively. θ, s, tx, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Hyperspectral images: the first row shows band images captured at 600nm, 700nm, 800nm and 900nm from 0 degree; the second
row shows band images captured at 800nm from 0 degree, 60 degrees, 120 degrees, and 180 degrees, respectively.

ty are in-plane rotation angle, scale, and translation param-
eters. After the transformation matrices had been obtained
for each band, a linear regression fitting is performed on the
transformation matrices, so as to make the changes smooth
across different bands.

After quality improvement operations, the next step is
to segment plant image from its background. In this task,
hyperspectral data provides much more information on the
plant material property of objects than that can be captured
from RGB or monochrome images. It shows fine spectral
reflectance changes of the plant surface, which is very use-
ful for segmenting plant from its environment. Another
spectral property that is very useful for the plant segmen-
tation is that in the near infrared wavelength, plants look
much brighter than they appear in the visible range because
of the low absorption rate of plant in the range. The hyper-
spectral data can clearly capture such property, as shown in
the last two images of the first row in Figure 1.

To segment plants from their background, we have ex-
plored two classification methods, including K-means clus-
tering and support vector machines. The principle of K-
means clustering is to minimize the within cluster sum
square error of the whole image, which does not require
training data. SVM classifier, on the other hand, tries to
find an optimal hyperplane to distinguish plant pixels from
neighboring background pixels. Details on how these two
methods were implemented are described in Section 4.

3.2. 3D modeling

Once a plant is segmented from its background, 3D mod-
els are built from the hyperspectral band image sequence
captured at different angles. Here, we followed a band-by-
band 3D modelling strategy, i.e., one 3D model is built from
each band. At each band, our approach follows the stan-
dard structure from motion method as introduced in [11].

This approach consists of four key steps. They are feature
extraction, feature matching, geometry estimation, and 3D
project of key points.

In the feature extraction step, SIFT keypoints are de-
tected with descriptor generated [14]. Then the features
in different angle images are matched using the histogram-
based descriptors to get the correspondences for combina-
tion of images. Because there are 120 images captured from
different angles, there would be 7140 pairwise matches.

In terms of 3D reconstruction, suppose the set of image
correspondences are xi ↔ x′

i and assume that these corre-
spondences comes from a set of 3D points Xi , which are
unknown. Similarly, the position, orientation and calibra-
tion of the cameras are not known. The reconstruction task
is to find the camera matrices P and P ′, as well as the 3D
points Xi such that each pair of points satisfies

xi = PXi, (2)

and
x′
i = P ′Xi, (3)

There are two steps in the geometry estimation phase.
First, fundamental matrix is computed from point corre-
spondences and then the camera matrices are computed
from fundamental matrix. To compute fundamental ma-
trix F , suppose we have xi ↔ x′

i correspondences of
two images, the fundamental matrix satisfies the condition
x′
iFxi = 0 for all i. With the xi and x′

i known, this
equation is linear in the (unknown) entries of the matrix F .
Given at least 8 point correspondences, entries of F can be
solved linearly. With more than 8 equations, a least-squares
solution is can be adopted. If P and P ′ are pair of camera
matrices corresponding to fundamental matrix F , then they
are computes as follows

P = [I|0] (4)
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and
P ′ = [[e′]× F |e′] (5)

where e′ is the epipole such that e′TF = 0 [11].
The 3D projection of keypoint consists of a process

known as triangulation. Let P and P ′ be camera matrices
and x and x′ be two points in two images that satisfy epipo-
lar constraint x′TFx = 0. This constraint may be inter-
preted geometrically in terms of rays in space correspond-
ing to two image points meaning that x′ lies on epipolar line
FX. So it means that two rays back-projected from image
points x and x′ lie in a common epipolar plane (plane pass-
ing through two camera centers). Since two ray lies in a
plane they will intersect at some point. This point is X (3-D
point) which is project via two camera point x and x′ in two
images [11].

During the 3D model reconstruction process, SIFT fea-
tures and matches across image sequence are required so
that correspondences among images can be determined. But
unfortunately, due to the narrow bandwidth of the light al-
lowed to reach the camera during the imaging process, hy-
perspectral images are often very noisy. This has greatly
degraded the extracted features. Furthermore, the homoge-
neous nature of the plant leaves and stems makes it difficult
to detect many SIFT keypoints from images. Therefore, the
number of features obtained from each band are not suffi-
cient to generate continuous correspondences between band
images captured at neighboring angles. This leads to more
than one disassociated 3D models be generated. To solve
the insufficient feature problem, Canny edge detection [3]
is employed to generate edges, and then SIFT keypoints are
extracted at each edge point in order to generate more can-
didate keypoints for correspondence detection.

4. Experimental Results
We have carried out experiments on the acquired hy-

perspectral plant data. Each original data cube consists of
61 bands from 400nm to 1000nm with 10nm interval cap-
tured at 120 different angles. Band images in the 400nm
to 590nm range were removed because of very low image
quality, such that only 41 bands were used for the mod-
elling, which correspond to 2GB data for each plant.

(a) (b) (c)

Figure 2. Segmentation results from a) K-means; b) SVM. c)
shows the final segmented plant.

For the segmentation step, when K-means clustering
were used, the scene was clustered into 4 classes: back-

ground, plant, calibration board, and base. The clustering
method was initialised randomly, and iterated until conver-
gence. When SVM was used, the classifier was trained on
one manually labeled hyperspectral image, and then was
used to classify all other images. To do so, we adopted the
LIBSVM [5] toolbox. An RBF kernel was used with the
default parameters for the SVM. Example results are shown
in Figure 2, which tells that the SVM can generate better
segmentation performance than the clustering method. In
the feature extraction step, we extracted SIFT descriptors at
edge points of plants. Examples of matched keypoints on
images from two angles are given in 3. To generate the 3D
model, we adopted virtual-SFM tool [18, 19].

(a) (b)

Figure 3. Examples of matched keypoints.

Finally, some 3D reconstruction results are displayed in
Figure 4. Images in the same row show 3D model observed
from different viewing angles when constructed from the
same band. From top to bottom, different rows of images
show 3D models reconstructed at 600mn, 800mn, 850mn,
and 900mn, respectively. 3D models at 700mn and 750nm
can not be reconstructed because the reflectance of plant at
these wavelengths is very low.

From the figure, it can be seen that the 3D models ob-
tained are not perfect at this stage. From the 120 images,
several models were generated. However each model only
reconstructed parts of the plant, while the points cloud was
not very accurate. This is mainly due to the low quality of
the hyperspectral images, which makes it difficult to find
sufficient features in the plant surface for correspondence
calculation. This problem can be solved by increase the
exposure so as to generate images with higher signal-to-
noise ratio. On the other hand, it can be seen that differ-
ent bands have generated different partial 3D models of the
plant. These models compensate to each other, so that we
can theoretically build a complete model by merging those
partial models.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Different views of the 3D models at different wavelengths.

5. Conclusions
The proposed work is the first attempt to build a 3D hy-

perspectral plant model solely from hyperspectral images.
The results show that the spectral information is benefi-
cial to the plant segmentation, and that 3D models recon-
structed from different wavelength bands are complement
to each other. This work opens new dimensions that can be
explored in 3D modeling from hyperspectral data. In the
future, we will compare 3D models built from both RGB
and hyperspectral images on the same project. We will also
develop an effective merging technique for 3D models re-
constructed with different spectral information. Other fu-
ture research could be to determine new features for spectral
data.
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