
 

 
Abstract 

 
In the paper we present a method for segmentation of 

insects from the Insect Soup images. The method enables 
reliable segmentation of insects of variable size, shape 
and color. After segmentation, a set of properties are 
assigned to each segmented insect which enables 
classification into different categories. The approach was 
successfully applied on two different types of real life 
images: images from the Insect Soup Challenge and 
images acquired from traps in the field using low 
resolution cameras. 
 

1. Introduction 
Insect classification belongs to the same category as 

image categorization in computer vision. The problem is 
known for being very challenging, and a general solution 
does not exist. Categorization is difficult for several 
reasons: objects that belong to the same category do not 
look exactly the same, they can be viewed under different 
angles, they might vary in size, and they can be occluded. 
Knowing the position of each object of interest is very 
useful information and can be used to support accurate 
classification. 

In this paper we present a method for segmentation of 
insects from the insect soup imagery. The segmentation 
method and its extension to handle small and faint objects 
are described in the following chapters. Next, examples of 
simple classification are given. Finally benefits, issues, 
and potential improvements of the proposed method are 
discussed. 

2. Segmentation Method 
Images given for Insect Soup Challenge are of high 

quality. The background is reasonably even on most of the 
images. Images are mostly noise free and do not require a 
lot of preprocessing. The only preprocessing step we do is 
applying a statistical filter to all images. The filter sorts 
the pixels in a 20x20 patch surrounding each pixel i and 
replaces i with the 220th pixel value in the sorted patch. In 
this way we remove small objects that mostly represent 

noise, we smooth the image and even the background.  
Segmentation consists of two steps: coarse-global and 

fine-local segmentation. In the first step we use a global 
thresholding method. The result of this simple 
thresholding is a binary image, where white part 
represents the background (see Figure 1b) and black parts 
indicate the foreground (insects, bugs etc). Next we 
calculate the size and bounding box of each object in the 
foreground. We eliminate small objects as these are 
mostly noise. For the remaining objects we extend the 
bounding box by 30 pixels on each side in order to capture 
the whole insect’s body. Finally we apply Seeded Region 
Growing Algorithm (SRG) [1] separately for each object, 
defined by the extended bounding box. SRG is a robust 
and fast algorithm for segmentation. It does not require 
any parameter tuning but it does require the input of seeds 
for background and foreground. Seeds for the patch within 
the extended bounding box are defined as follows. Pixels 
on the edge (3 pixels wide) represent samples for the 
background and the object itself represents the foreground. 
Pixels on the edge that belong to any other foreground 
objects are excluded from background seeds. After 
applying SRG more details are segmented correctly 
compared to the coarse first step segmentation. Results of 
both segmentation steps are shown on Figure 1 (b, c). In 
Figure 1a, each segmented object is indicated by a 
bounding box. Figure 1b shows results after coarse 
segmentation, and Figure 1c shows segmentation results 
after applying SRG, where comparatively more details are 
segmented correctly. 

3. Handling small and bright objects 
While the majority of objects are not sensitive to the 

global threshold value or size of the statistical filter used 
in preprocessing, small and bright objects are. Statistical 
filtering in the preprocessing step removes small objects 
that represent noise. Unfortunately it also removes tiny 
insects. To identify regions where small objects are 
present, we rerun the segmentation with settings that are 
more fitted for small and bright objects. For statistical 
filtering we use a 10x10 patch size and we replace the 
middle element with the 70th element. The global 
threshold is also increased in order to capture bright 
objects. After coarse segmentation all objects are slightly 
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enlarged. To enlarge objects we use dilation where the 
structuring element is disk with radius 10 pixels. Next, we 
eliminate objects that include insects detected in first run 
of segmentation. In this way we concentrate only on 
objects that were not detected in the first iteration of 
segmentation. The remaining steps are exactly the same as 
those for detecting bigger objects. 

A result of this two iteration process is shown in Figure 
2. While parameters used for segmentation in the first 
iteration fail to identify small insects, parameters for small 
and faint objects used in second iteration identify the vast 
majority of them. 

4. Object properties and classification 
Each image in a given dataset consists of several 

different types of insects. If we want to distinguish among 
them or analyze different visual properties, we have to 
calculate a set of descriptors for each segmented insect. 
We have chosen a set of standard descriptors (e.g. size, 
solidity, minor axis length, major axis length, min pixel 
value, average pixel value, eccentricity, perimeter etc.) 
which enable us to classify objects into simple classes. 
More details about the descriptors can be found in Matlab 
help [3]. All the descriptors are exported into Weka files. 
Weka is an open source program that enables further data 
visualization and exploration using different machine 
learning techniques [2]. 

5. Results and discussion 
The only parameter that we need to set for the whole 

segmentation process is the global threshold in the first 
iteration. It is important that it captures at least part of 
each object and at the same time does not capture too 
much which can cause merging of two or more separate 
objects into one. It turns out that unless we want to capture 
very small and bright objects in the first segmentation 
iteration, the value of the global threshold does not need to 
be set very carefully. The second iteration of segmentation 
can often correct errors from first iteration adding objects 

that were missed. Figure 3 shows an example of the two 
iteration segmentation with different global thresholds 
used in the first iteration. We used threshold 400 for the 
left side and 600 for the right. Note that we worked with 
grayscale images that were obtained from RGB images 
simple by summing pixel values from all channels. One 
can notice that fewer objects were detected in the first 
iteration with lower threshold, and more in the second 
iteration. While segmentation with the higher threshold 
detected more objects initially in the first iteration. 
However, when we combine results from both iterations, 
the results are almost the same.  

 

Figure 1: (a) Original image with bounding box around each segmented object. Segmentation is a result of both segmentation steps. 
(b) Results after first step of segmentation. (c) Results after second step of segmentation. Insect in the right bottom corner is enlarged 
in order to see the difference between the two steps of segmentation. SRG captures more details than simple thresholding. 

                        (a)                                                                 (b)                                                                 (c) 

Figure 2: Example of two iteration segmentation. Objects
detected in the first iteration are marked with blue bounding box
while object detected in second iteration are marked with cyan.  

Figure 3: Left side of the image is the result of using lower
threshold in the first iteration, and the right side is a result of using
higher threshold in the first iteration. Blue bounding boxes are
results of first and cyan of second iteration. 
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The second iteration of segmentation is designed to 
capture small and faint objects. Its global threshold is 
fixed to value 700. As insect extremities are usually very 
faint and thin, they are not captured in the segmentation 
results of the first iteration. However, they are often 
picked by second iteration and marked as tiny insects. (For 
example, see the two insects in the top right corner of 
Figure 2). These examples represent the majority of false 
positives and can be eliminated using similar procedures 
used for neurite detection. In a similar way that neurites 
are attached to the cell body of a neuron, insect extremities 
are attached to an insect’s body. For example HCA-vision 
[4] enables reliable analysis of such data. Once extremities 
are identified we can easily eliminate false positives that 
represent insect extremities and not small insects. 

The plate shown in Figure 4 is a very hard example for 
automatic image analysis. Insects are close together and 
there are many examples where they are touching 

oroverlapping. A lot of debris is present in the plate, such 
as broken wings and other insect parts. The trap was most 
likely in the field for a longer period, and insects probably 
got damaged when they tried to escape from the trap, or 
their bodies decayed over time. One of the solutions to this 
problem is to change the sticky plate before it gets too 
crowded and the insects’ bodies decay, which would make 
image analysis easier and more accurate.  One can notice 
that the majority of insects with dark bodies are segmented 
correctly while insects with bright bodies are missed on a 
lot of occasions. The reason for this is that regions at the 
global segmentation in the second segmentation iteration 
are not separated and they merge together. As it is likely 
that part of the merged region was already detected in the 
first iteration the whole region is simply discarded. This is 
not a problem for isolated small/faint insects which are 
mostly correctly detected in the image.  

More results of the two iteration segmentation are given 
in Figure 5 and supplementary material. Note that accurate 
segmentation also enables trivial counting of objects in the 
plate.  

Examples of simple classifications are shown in Figure 

6. Figure 7 shows segmentation examples from low 
resolution cameras. It also indicates basic classification 
where we eliminate false positives (marked with yellow). 
The lure was also segmented but successfully removed 
based on color. False positives were removed based on 
size and shape. 

An example of data exploration using Weka is shown in 
Figure 8. The example shown here is for the image 
depicted in Figure 5 (middle image). We can see that that 
solidity separates insects into two groups – two peaks in 
the graph (Figure 8, left bottom corner). Solidity is a scalar 
specifying the proportion of the pixels in the convex hull 
that are also in the region. When we looked into the two 
classes we noticed that the generated masks for one class 
are much more precise than masks for the second class. 
We cannot classify the insects based on this knowledge 
however we can guide the whole classification process 
towards more accurate results. Masks with solidity close 
to 1 are mostly outliers – they fill the whole bounding box 
and look more like a square than an insect. 

 
 

Figure 4: Example of a very challenging plate for automatic
image analysis.   

Figure 5: Three examples of two iteration segmentation. The method can successfully deal with vast variety of sizes as well as with 
certain degree of clutter. In the last image even beetles that are close together are correctly separated. 
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6. Conclusion 
We presented a method for segmentation and simple 
classification of insects from insect soup images. While 
the method is able to reliably segment and count most of 
the reasonably sized insects in the images, it can be 
improved when it comes to crowded regions with a lot of 
small and bright objects. Calculated descriptors enable a 
basic classification according to visual similarity; however 
this can be improved by incorporating domain specific 
knowledge. The system is a great foundation for a 
sophisticated automated system that would enable an 
automatic or semiautomatic classification of insects caught 
in traps and significantly speed up the sorting and 
cataloguing of insects from the insect soup imagery. 
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Figure 7: Example of a simple classification based on size (left image) and based on average color (right image). In the left image 
larger objects are marked with red bounding box, while smaller objects are marked with blue bounding box. In the right image 
darker insects are marked with blue bounding box and brighter with red bounding box. 

 

Figure 6: Examples of segmentation and object classification of images from low resolution cameras.

Figure 8: Masks classification based on solidity. Red squares 
represent masks with high solidity (>0.75) and the blue one 
masks with low solidity value. 

171171


