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Abstract

In this paper, we present Infinite Latent Conditional Ran-
dom Fields (ILCRFs) that model the data through a mixture
of CRFs generated from Dirichlet processes. Each CRF
represents one possible explanation of the data. In addi-
tion to visible nodes and edges that exist in classic CRFs, it
generatively models the distribution of different CRF struc-
tures over the latent nodes and corresponding edges, impos-
ing no restriction on the number of both nodes and types
of edges. We apply ILCRFs to several applications, such
as robotic scene arrangement and scene labeling, where a
scene is modeled through, not only objects, but also latent
human poses and human-object relations. In extensive ex-
periments, we show that our model outperforms the state-
of-the-art results as well as helps a robot placing objects in
a new scene. 1

1. Introduction
In this work, we are interested in modeling hidden causes

in the data, including latent variables as well as how they

related to observations. Let us consider scene modeling

as an example. A human environment is constructed un-

der two types of relations: object-object and human-object
relations. When only considering object-object relations,

Conditional random fields (CRFs) are a natural choice, as

each object can be modeled as a node in a Markov network

and the edges in the graph can reflect the object-object re-

lations. In fact, CRFs and their variants have thus been ap-

plied to many scene modeling tasks (e.g., [20, 1, 19, 21]).

While objects are easy to observe, humans are often not.

However, modeling them as latent factors in the scene can

be beneficial, as it is human who made the scene as it is.

Modeling possible human poses and human-object in-

teractions (or object affordances) is not trivial because of

several reasons. First, there can be any number of pos-

sible humans in a scene—e.g., in an office scene such as

Fig. 1, some sitting on the couch/chair, some standing by the

1This work was previously published as [11, 7].

shelf/table. Second, there can be various types of human-

object interactions in a scene, such as watching TV in dis-

tance, eating from dishes, or working on a laptop, etc.

Third, an object can be used by different human poses, such

as a book on the table can be accessed by either a sitting

pose on the couch or a standing pose nearby. Last, there can

be multiple possible usage scenarios in a scene. Therefore,

we need models that can incorporate latent factors, latent

structures, as well as different alternative possibilities.

To admit those properties, we propose infinite latent con-

ditional random fields (ILCRFs). Intuitively, it is a mix-

ture of CRFs where each CRF can have two types of nodes:

existing nodes (e.g., object nodes, which are given in the

graph and we only have to infer the value) and latent nodes

(e.g., human nodes, where an unknown number of humans

may be hallucinated in the room). The relations between the

nodes (object-object edges and human-object edges) could

also be of different types. Unlike traditional CRFs, where

the structure of the graph is given, the structure of our IL-

CRF is sampled from Dirichlet Processes (DPs). DPs are

widely used as nonparametric Bayesian priors for mixture

models, the resulting DP mixture models can determine the

number of components from data, and therefore is also re-

ferred as infinite mixture model. ILCRFs are inspired by

this, and we call it ‘infinite’ as it can sidestep the difficulty

of finding the correct number of latent nodes as well as la-

tent edge types. Our learning and inference methods are

based on Gibbs sampling that samples latent nodes, exist-

ing nodes, and edges from their posterior distributions.

The idea of ILCRF can be applied to many tasks, such

as scene labeling [7], robotic scene arrangement [11] and

even document modeling [10]. We instantiate two specific

ILCRFs for two applications: scene arrangement where the

objective is to find proper placement (including 3D location

and orientation) of given objects in a scene, and scene la-

beling where the objective is to identify objects in a scene.

Despite the disparity of the tasks at the first look, we re-

late them through one common hidden cause—imaginary

humans and object affordances. For both tasks, our ILCRF

models each object placement as an existing node, halluci-

nated human poses as latent nodes and spatial relationships

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.42

262

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.42

262



� �

������ ������

��

��� � ��� �

������
�	
�
�

������
��	������
�

Figure 1: An example of instantiated ILCRF for scene understanding. A scene with objects and hallucinated humans in it can be explain

by a latent CRF: Each y node represents an object and x represents its observation; h nodes are latent human configurations, and their links

to y, parameterized by ψ, describe the interactions between humans and objects (referred as ‘object affordances’). Our ILCRF reasons a

scene through a mixture of multiple latent CRFs, generated by two DPs: one for human poses (right) and one for object affordances (left).

See Sec. 2.2 for more details.

among objects or between objects and humans as edges.

We demonstrate in the experiments that this unified model

achieves the state-of-the-art results. We demonstrate in the

experiments that this model achieves the state-of-the-art re-

sults, and it also helps a robot successfully identify the class

of objects in a new room, and placed several objects cor-

rectly in it.

2. Infinite Latent Conditional Random Fields
In this paper, we propose a type of mixture CRFs—

infinite latent conditional random fields (ILCRFs), which

can capture the following properties:

1. Unknown number of latent nodes.
2. Unknown number of types of potential functions.
3. Mixture CRFs.
4. Informative priors on the structure of CRFs.

We achieve this by imposing Bayesian nonparametric

priors—Dirichlet processes (DPs)—to the latent variables,

potential functions and graph structures.

2.1. Background: Dirichlet Process Mixture Model
Dirichlet process [23] is a stochastic process to generate

distributions that are used to model clustering effects in the

data, especially when the number of clusters is unknown.

A DP mixture model, DP (α,B), defines the following

generative process, with a concentration parameter α and a

base distribution B:

1. Generate infinite number of mixture components, pa-

rameterized by Θ = {θ1, . . . , θ∞}, and their mixture

weights π:

θk ∼ B, bk ∼ Beta(1, α), πk = bk
∏k−1
i=1 (1− bi).

(1)

2. Assign the zthi component to each data point xi and

draw from it:

zi ∼ π, xi ∼ F (θzi). (2)

2.2. ILCRF
ILCRF uses DPs to admit an arbitrary number of latent

variables and potential functions. In brief, it generates latent

variables and potential functions from two DPs respectively,

and each data point builds a link, associated with one poten-

tial function, to one latent variable. Different samples thus

form different CRFs.

Definition 1 A ILCRF(X ,Y, EY , αh, Bh, αψ, Bψ) is a
mixture of CRFs, where the edges in Y are defined in graph
EY and latent variables H as well as the edges between H
and Y are generated through the following process:

1. Generate infinite number of latent nodes H =
{h1, h2, . . . , h∞} and a distribution πh from a DP
process DP (αh, Bh) following Eq. (1); Assign one
edge to each label yi that links to hzi , where zi ∼ πh
following Eq. (2).

2. Generate infinite number of potential functions
(‘types’ of edges) Ψ = {ψ1, . . . , ψ∞} and a distri-
bution πψ from a DP process DP (αψ, Bψ) following
Eq. (1); Assign one potential function ψωi to each edge
(yi, hzi), where ωi ∼ πψ following Eq. (2). �

We will illustrate the process using Figure 1. Consider

first sampled CRF (‘CRF-1’ in the figure) with four visi-

ble nodes yi (i = 1 . . . 4). In the first step, all the yi’s
are connected to h1, because zi’s are sampled as 1 from

DP (αh, Bh). Meanwhile, we also draw the value of h1
from DP (αh, Bh). Thus, we get a CRF with one latent

node. In the second step, the potential function of edge

(y1, h1) is assigned to ψ1, (y2, h1) to ψ2, (y3, h1) to ψ5

and (y4, h1) to ψ1. This is because ωi’s are sampled as

(1, 2, 5, 1) from DP (αψ, Bψ). Since, only (ψ1, ψ2, ψ5) are

active, we have three edge types in this CRF. We draw their

parameters from DP (αψ, Bψ). Repeating this procedure
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Table 1: The Gibbs sampling of ILCRF in the two applications.

Application Phase
Gibbs sampling (Sect. 2.3)

z (3) h (4) ω (5) ψ (6) Y (7)

Scene arrangement
Training � � �
Testing � � �

Scene labeling
Training � � �
Testing � � � �

may generate different latent CRFs such as ‘CRF-K’ which

has two different latent nodes and three different edge types.

In the end, their mixture forms the ILCRF.

2.3. Gibbs Sampling for Learning and Inference
Inspired by the Gibbs sampling algorithm for DP mix-

ture models [17], here we present our sampling algorithm:

• Sample the graph structure, i.e., one edge for each yi
to one latent node:

zi = z ∝
{

nh−i,z
n+m−1+αh

ψωi(yi, hz) nh−i,z ≥ 0,
αh/m

n+m−1+αh
ψωi(yi, hz) otherwise

(3)

• Sample values for each latent node in the graph:

hk = h ∝ Bh(h)×
∏
i:zi=k

ψωi(yi, h) (4)

• Assign the type of potential functions to each edge:

ωi = ω ∝
⎧⎨
⎩

nψ−i,ω
n+m−1+αψ

ψω(yi, hzi) nψ−i,ω ≥ 0,
αψ/m

n+m−1+αψ
ψωi(yi, hzi) otherwise

(5)

• Sample the parameters of each selected potential func-

tion:

ψk = ψ ∝ Bψ(ψ)×
∏

i:ωi=k

ψω(yi, hzi) (6)

• Sample labels:

yi = y ∝ ψωi(y, hzi)×
∏

(yi,yj)∈E
ψ(yi, yj) (7)

As for learning the EY , when labels are given in the

training data, EY is independent with latent variables H
(if the partition function is ignored), and therefore can be

learned separately.

2.4. Scene Arrangement
We apply ILCRFs to the application of 3D scene ar-

rangement, where the goal is to find appropriate locations

and orientations for placing given objects. We define yi ∈ Y
as the placement (location and orientation) of an object and

xi ∈ X as its given object class. The edges between the vis-

ible nodes Y model the object-object spatial relationships.2

2It is defined as a multi-variate Gaussian distribution of the location

and orientation difference between the two objects.

We model possible human poses as latent nodes H. A

human pose is specified by its pose, location and orienta-

tion. Following [8], we use six types covering different sit-

ting and standing poses.

We model object affordances as the potential functions

Ψ. We use the spatial relationship between a human pose

and the object to represents its affordance. It is defined

as a product of several terms: Euclidean distance, relative

angle, orientation difference, and height (vertical) distance.

(See [8] for details.)

Learning. During training, our goal is to learn the object af-

fordances (i.e., a set of potential functions ψ in the ILCRF).

As shown in Table 1, we perform sampling on the human-

object edges, human poses and object affordances, given

placements Y and edge types ωi, according to Eq. (3), (4)

and (6). (Here, since xi as the object class label is given, we

set ωi = xi in this application.) The object-object structure,

EY is learned based on object co-occurence, as computed

from the training data.

Inference. During testing on a new scene, our goal is to

predict placements yi, given objects X . We perform in-

ference by sampling the human-object edges, human poses

and placements, using the learned object affordances (see

Eq. (3), (4) and (7)). In order to predict the most likely

placement for object i, we choose the placement area sam-

pled most because that represents the highest probability.

2.5. Scene Labeling
In this task, the goal is to identify the class of each object

(represented as a segment in a 3D point cloud) in the scene.

We define yi ∈ Y as the object class of the segment and

xi ∈ X as its location and appearance features. The object-

object edges are the spatial relationships as described in [1].

During training, we learn object affordances by sampling

human-object edges, human poses and object affordances

according to Eq. (3), (4) and (6). EY is learned separately

using max-margin learning [1].

During testing a new scene, we sample all other variables

in ILCRF, except the object affordances already learned

from the training data, using Eq. (3), (4) and (5).

2.6. Related Work
To our best knowledge, there is little work about arrang-

ing/placing objects in robotics (e.g., [4, 22, 6, 12, 9]), and

none of these works consider reasonable arrangements for

human usage. Recent works [8, 7] considered hallucinating

humans for object placements and scene labeling, but did

not model human-object and object-object relationships in

a joint model.

There are other recent works applying object affordances

in tasks of predicting human workspaces [5], 3D geome-

try when humans are observed [3], improving human robot

interactions [18], detecting and anticipating human activ-

ity [14, 15, 16].
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Table 2: Results of arranging partially-filled scenes and arranging

empty scenes in synthetic dataset, evaluated by the location and

height difference to the labeled arrangements.

Algorithms
partially-filled scenes empty scenes

location (m) height (m) location (m) height (m)

Chance 2.35±0.23 0.41±0.04 2.31±0.23 0.42±0.05

CRF 1.69±0.05 0.12±0.01 2.17±0.07 0.39±0.01

Human+obj [8] 1.44±0.18 0.09 ±0.01 1.63±0.19 0.11±0.01

FLCRF 1.55±0.06 0.12±0.01 1.63±0.06 0.14±0.01

ILCRF 1.33±0.19 0.09±0.01 1.52±0.06 0.10±0.01

Table 3: Object and Attribute Labeling Results. The table shows

average micro precision/recall, and average macro precision and

recall for 52 scenes. Computed with 4-fold cross-validation.

Algorithms

Object Labeling Attribute Labeling
micro macro micro macro

P/R prec recall prec recall prec recall

chance 5.88 5.88 5.88 12.50 12.50 12.50 12.50

Affordances 31.38 16.33 15.99 50.93 34.06 42.02 28.02

Appearance [13] 67.24 53.31 50.48 81.81 60.85 73.30 52.36

Afford. + Appear. 69.36 56.16 53.65 83.04 63.95 78.85 56.00

Koppula et al. [13] 78.72 68.67 63.72 85.52 70.98 80.04 63.07

ILCRF 78.86 71.14 65.07 85.91 73.51 82.76 69.22

Modeling latent variables has been successfully applied

to many vision problems, such as scene understanding [24],

object recognition [21] and gesture recognition [25, 2].

However, the labels and hidden states are discrete and take

only finite number of values.

3. Experiments
In our application, the scenes (including ob-

jects/furniture) are perceived as point-clouds, either

generated from 3D models in synthetic datasets or obtained

using Microsoft Kinect camera in real datasets. For more

details, see [11] and [7].

3.1. Scene Arrangement
Dataset. We use the same datasets as in [8, 9]: a synthetic

dataset consisting of 20 rooms and 47 objects from 19 cate-

gories (book, laptop, light, utensil, etc.). we conduct 5-fold

cross validation on 20 rooms so that the test rooms are new

to the algorithms.

Algorithms. We compare all the following methods:

1) CRF, a ILCRF with only object-object edges, without

latent human nodes. 2) Human+obj. Linear combine the

human- and object-context. [8]. 3) FLCRF, a ILCRF with

fixed number of latent nodes, same for all the scenes. 4)
ILCRF, our full model.

Results. Table 2 presents the results on the synthetic

dataset, where the predicted arrangements are evaluated by

two metrics, same as in [8]: location difference and height

difference (in meters) to the labeled arrangements. From

Table 2 we can see the performance gain of our full ILCRF

model against ILCRF with only object edges (CRF) or Obj.

that uses heuristic object context. Even methods that use hu-

man pose in naive ways (ILCRF-NSH and FLCRF) achieve

better results than methods don’t consider latent humans.

Figure 2: Results of FLCRF with different number of human poses

versus ILCRF. We also show exemplar sampled CRFs and learned

object affordances (in top-view heatmaps) by different methods.

The advantage of using DP mixture models in ILCRF is

being able to determine the number of human poses from

the data instead of guessing manually. In Fig. 2, we com-

pare ILCRF against FLCRF with the number of human

poses varying from 1 to 20. While having five poses in

FLCRF gives the best result, it is still outperformed by IL-

CRF. This is because scenes of different sizes and functions

prefer different number of human poses and incorrect num-

ber of humans may lead to meaningless affordances, either

under-fit (Fig. 2-b) or over-fit (Fig. 2-c).

3.2. Scene Labeling
Dataset. We use the Cornell RGB-D indoor dataset [13, 1]

for our experiments. It consists of 52 scenes labeled with

26 object classes and 10 attribute classes.

Algorithms.
1) Appearance. Only uses local image and shape features.

2) Affordances. Only uses human configuration features.

3) Afford.+Appear. ILCRF without object-object edges.

4) CRF, full model in [13]. 5) ILCRF, our full model.

Results. Table 3 shows that our algorithm performs better

than the state-of-the-art in both object as well as attribute

labeling experiment.

One of our goals is to also learn reasonable object af-

fordance for each class. Fig. 3 shows the affordances from

the top-view and side-view respectively for typical object

classes. From the side views, we can see that for objects

such as wall and books, the distributions are more spread

out compared to objects such as floor, bed and monitor.

From the top view, some objects have strong angular prefer-

ence such as laptop and keyboard, compared to objects such

as floor and tableTop.

3.3. Robotic Experiment
Given a RGB-D scene, our robot first uses ILCRF to

label the scene as well as hallucinating humans. Then, it

uses ILCRF and those human poses to infer proper place-
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wall

top side

floor

top side

tableTop

top side

tableLeg

top side

tableDrawer

top side

bed

top side

printerSide

top side

books

top side

laptopScreen

top side

monitor

top side

keyboard

top side

paper

top side

Figure 3: Examples of learned object-affordance topics. An affordance is represented by the probabilistic distribution of an object in a

5× 5× 3 space given a human pose. We show both projected top views and side views for different object classes.

ments for new objects. To see our PR2 arranging the scene

in action (along with code and data), please visit: http:
//pr.cs.cornell.edu/hallucinatinghumans

4. Conclusion
In this paper, we considered two challenging tasks of

scene understanding, which require an algorithm that can

handle: 1) unknown number of latent nodes (for poten-

tial human poses), 2) unknown number of edge types (for

human-object interactions), and 3) a mixture of different

CRFs (for the whole scene). We therefore presented a new

algorithm, called Infinite Latent Conditional Random Fields

(ILCRFs), together with learning and inference algorithms.

Through extensive experiments, we showed that our ILCRF

can understand scenes better by hallucinating reasonable

human poses and learning their relations to objects. ILCRF

also helps our robot to arrange a room in practice.

References
[1] A. Anand, H. Koppula, T. Joachims, and A. Saxena. Con-

textually guided semantic labeling and search for 3d point

clouds. IJRR, 32(1):19–34, 2012. 1, 3, 4

[2] K. Bousmalis, S. Zafeiriou, L.-P. Morency, and M. Pantic.

Infinite hidden conditional random fields forbreak human be-

havior analysis. In TNNLS, 2013. 4

[3] V. Delaitre, D. Fouhey, I. Laptev, J. Sivic, A. Gupta, and

A. Efros. Scene semantics from long-term observation of

people. In ECCV, 2012. 3

[4] A. Edsinger and C. Kemp. Manipulation in human environ-

ments. In Humanoid Robots, 2006. 3

[5] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d

scene geometry to human workspace. In CVPR, 2011. 3

[6] D. Jain, L. Mosenlechner, and M. Beetz. Equipping robot

control programs with first-order probabilistic reasoning ca-

pabilities. In ICRA, 2009. 3

[7] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans

as the hidden context for labeling 3d scenes. In CVPR, 2013.

1, 3, 4

[8] Y. Jiang, M. Lim, and A. Saxena. Learning object arrange-

ments in 3d scenes using human context. In ICML, 2012. 3,

4

[9] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to

place new objects in a scene. IJRR, 2012. 3, 4

[10] Y. Jiang and A. Saxena. Discovering different types of top-

ics: Factored topics models. 2013. 1

[11] Y. Jiang and A. Saxena. Infinite latent conditional random

fields for modeling environments through humans. In RSS,

2013. 1, 4

[12] Y. Jiang, C. Zheng, M. Lim, and A. Saxena. Learning to

place new objects. In ICRA, 2012. 3

[13] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Seman-

tic labeling of 3d point clouds for indoor scenes. In NIPS,

2011. 4

[14] H. Koppula, R. Gupta, and A. Saxena. Learning human

activities and object affordances from rgb-d videos. IJRR,

2013. 3

[15] H. Koppula and A. Saxena. Anticipating human activities

using object affordances for reactive robotic response. In

RSS, 2013. 3

[16] H. Koppula and A. Saxena. Learning spatio-temporal struc-

ture from rgb-d videos for human activity detection and an-

ticipation. In ICML, 2013. 3

[17] R. Neal. Markov chain sampling methods for dirichlet pro-

cess mixture models. J comp graph statistics, 9(2):249–265,

2000. 3

[18] A. Pandey and R. Alami. Taskability graph: Towards analyz-

ing effort based agent-agent affordances. In RO-MAN, IEEE,

2012. 3

[19] A. Quattoni, M. Collins, and T. Darrell. Conditional random

fields for object recognition. In NIPS. Citeseer, 2004. 1

[20] A. Saxena, S. Chung, and A. Ng. Learning depth from single

monocular images. In NIPS 18, 2005. 1

[21] P. Schnitzspan, S. Roth, and B. Schiele. Automatic discovery

of meaningful object parts with latent crfs. In CVPR, 2010.

1, 4

[22] M. Schuster, J. Okerman, H. Nguyen, J. Rehg, and C. Kemp.

Perceiving clutter and surfaces for object placement in in-

door environments. In Humanoid Robots, 2010. 3

[23] Y. W. Teh. Dirichlet process. Encyc. of Mach. Learn., 2010.

2

[24] H. Wang, S. Gould, and D. Koller. Discriminative learning

with latent variables for cluttered indoor scene understand-

ing. In ECCV, 2010. 4

[25] S. Wang, A. Quattoni, L. Morency, D. Demirdjian, and

T. Darrell. Hidden conditional random fields for gesture

recognition. In CVPR, 2006. 4

266266


