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Abstract

We propose a new measurement of video saliency termed
thematic video saliency. Video saliency is detected in terms
of finding the thematic objects that frequently appear at the
salient positions in the video scenes. By representing all
image segments in the video as the spatial-temporal con-
text, we build an affinity graph among them, and formulate
the thematic object discovery as a novel cohesive sub-graph
mining problem. A trust region algorithm is also proposed
to solve the challenging optimization problem. Unlike in-
dividual image saliency or co-saliency analysis, our pro-
posed video saliency fully incorporates the whole spatial-
temporal video context. Experiments on our newly devel-
oped eye tracking dataset as well as other two datasets
further validate the effectiveness of our method on video
saliency detection.

1. Introduction

Like the salient object in an image, many videos con-
tain the thematic object, such as the bride and the groom
in a wedding ceremony video (Fig. 1), the birthday girl in
a birthday party video, or a product logo in a commercial
video. As the key object to be highlighted, such a thematic
object appears frequently and occupies salient positions in
the video scenes, thus retain our impression after watching
the video. Our thematic video saliency is estimated by find-
ing the relevance of the locations to the thematic objects in
a scene. Similar to the task-relevance map [1], locations
which have high relevance to the thematic objects are high-
lighted and large values are set to these locations. In prac-
tice, finding such a thematic object is of great interests as
it can help to better understand and summarize the video
contents.

Although visual saliency has been extensively studied in
psychology, neuroscience and computer vision literature,
unfortunately, it remains a challenge to estimate thematic
saliency in a video clip. Different from the existing task
driven based saliency estimation methods, which predict

Figure 1. Sample results of thematic video saliency discovery. The
first row shows the original key-frames with the gaze points over-
lapped. Each green cross ’+’ represents one gaze point. The sec-
ond row shows our detection results and the discovered video the-
matic salient region is rendered in red. The last row shows the heat
map results of the co-saliency method [14]. Hot colors correspond
to large salient values.

humans’ attention with the task of searching a known ob-
ject (e.g. a red wedding car), there is no prior information
about the thematic objects before the search. Moreover,
the leap from image saliency to video saliency analysis is
non-trivial. Although a video is composed of a sequence of
images, most often than not, not every single frame is im-
portant, e.g., contains the thematic object. A wedding car
could be the salient object at a specific frame, but it may
not be the thematic object given the whole wedding video.
It thus requires the help of the video contexts to determine
the thematic object. Despite various types of contexts have
been explored to estimate image/video saliency in either the
bottom-up or the top-down manner [7, 29], few of them ap-
ply the whole video sequence as a context for saliency esti-
mation. On the contrary, some methods explore the spatial-
temporal context but they did not use it for video saliency
estimation [30].

We propose a new way to estimate thematic saliency,
which takes the whole spatial-temporal video context into
consideration. In order to detect the thematic object, a
video is firstly decomposed into salient image segments
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Figure 2. Illustration of the main steps in our method.

and their similarity relationships are presented in an affinity
graph. By discovering the cohesive sub-graph, i.e., a group
of image segments of high similarity, we can discover the
thematic object. The likelihood of each segment belong-
ing to the subgraph identifies the thematic saliency of the
video. Fig. 1 shows our results and the comparison with
the ground truths using eye tracking, and the co-saliency
method in [14] which only emphasizes the common parts
between consecutive frames.

2. Related Work

Regarding to how context has been employed to estimate
saliency, saliency estimation methods are reviewed from the
following three aspects. At first, context is broadly used
in image saliency estimation. A center-surround feature
extraction-integration scheme is used to estimate saliency
at each pixel point in [10]. In [7], image saliency defined
as the best parts to depict the image content is obtained by
detecting salient object and its near background. In [29],
image saliency estimation is modeled as anomaly detection
with regard to different context, such as patch saliency to
patch dictionary and image saliency to image dictionary. In
order to add the global effects to the saliency estimation,
features characterizing the global effects are extracted from
images in [27, 24]. A global center-surround technique is
implemented by using Difference-of-Gaussian (DoG) band
pass filters to estimate image saliency uniformly in [2]. Sec-
ondly, by taking another image as comparison context, co-
saliency as a new concept is proposed to estimate pairwise
image saliency. Methods in [11, 21] aim to detect difference
such as the novel signal or the newly changed positions as
saliency while methods proposed in [15, 6] tend to detect
the common objects in the two images as the saliency. At
last, video saliency estimated from consecutive frame has
also been explored recently [9]. However, most of them
start from finding a wise combination scheme for different

salient clues [23, 22]. Some supervised methods are also
proposed to estimate video saliency [16]. Different from
them, our target here is to automatically detect the video
saliency from the understanding of its themes.

Common object discovery is also related to our work.
It targets at finding the sharing objects among images.
In [20], common object discovery is formulated as the com-
mon subgraph discovery problem in image pairs. There
are also works to discover common objects in image se-
quences [19, 32]. Considering the computation complexity
of graph-based representation of image collections, Yuan et
al. [31] proposed to detect thematic objects by gradually
pruning uncommon patches, but it does not leverage the
visual saliency to identify the thematic object. In this pa-
per, we propose to employ visual saliency as a primary way
to prune unimportant segments and propose a new solution
based on sub-graph mining which is different from any of
the previously proposed methods [19, 32, 31].

3. Our Proposed Method

Fig. 2 illustrates the main steps of our method. First,
the key-frames are sampled from the input video and over-
segmented into superpixels. Then candidate segments are
selected based on the image saliency. The appearance fea-
tures are extracted for the selected segments consequently.
After that the pairwise relations between segments are char-
acterized by an affinity graph, where the red bold lines indi-
cate the positive affinity value, while the green dashed lines
show the negative affinity value. The segments as nodes
on the cohesive sub-graph are obtained by maximizing the
overall affinity score. The detection results are presented in
corresponding key-frames at last.

3.1. Segment Selection and Representation

To obtain the segments, we perform a superpixel seg-
mentation method [3] per key-frame, with the expecta-
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Figure 3. Thematic video object discovery result comparisons with
bottom-up saliency filtering (the third row) and without saliency
filtering (the second row).

tion that some segments could correspond to object regions
while some may fail to agree with object boundaries. Sev-
eral types of bag-of-features histograms are used to describe
each segment and the details can be found in Sec. 4.2.

In order to distinguish candidate segments from back-
ground ones, a simple saliency estimation is performed to
select image segments. To obtain the simple saliency, we
use a linear combination of spatial saliency [8], motion
saliency [18], and a face mask [28] to represent our simple
video saliency. The face detector is also employed to em-
phasize human being’s particular interests to human faces.
Before the fusion, each saliency map is normalized into
[0, 1] by min-max normalization. Similar to [2, 4], a seg-
ment is kept as a salient object region if its average saliency
is larger than its saliency density. Fig. 3 shows the benefits
of saliency filtering for segment selection. After the seg-
ment selection, more thematic objects rather than the back-
ground have been correctly detected. It is worth noting that,
even if some segments of the thematic objects are occasion-
ally missed by the bottom-up saliency, our method can still
discover them considering their frequent occurrences in the
whole video.

3.2. Affinity Graph of Image Segments

Before giving the affinity estimation, we explain the con-
cept of support segment set firstly. For a specific segment Si

in a key-frame Im, we select segments which have similar
appearance as Si from all other key-frames. All these se-
lected segments are the support segment set of Si which is
defined as {Ψmi}, where Ψmi = {Smi} represents all sup-
port segment of Si in key-frame Im, and Smi is one support
segment in key-frame Im. To reduce the size of the support
segment set, we only select one support segment which has
a smaller distance with Si. In other words, the size of Ψmi

is set to be 1. The support segment set formulation inte-
grates not only the spatial information of the salient object,
but also the temporal trajectory information. Therefore, by
comparing the support segment sets of two segments, we
can obtain the affinity relationship of these two segments.
If two support sets have an intersection of large size, then

the two segments have high affinity relationship. Otherwise,
these two segments have weak affinity relationship.

Given the support set of each segment, the pairwise seg-
ment affinity can be estimated spatial-temporally. Based on
the Jaccard similarity coefficient, the affinity value of two
segments is defined as:

Ai,j =

{
|{Ψmi}

⋂
{Ψmj}|

|{Ψmi}
⋃
{Ψmj}|

if |{Ψmi}
⋂{Ψmj}| > 0

τ else
, (1)

where τ is a negative value and |.| represents the cardinality
of one set. If Si and Sj have strong affinity, the value of
Ai,j is positive and vice versa. If the support segment sets
of Si and Sj don not have any intersection, Ai,j is set to be
a constant τ .

3.3. Cohesive Sub-graph Building and Mining

According to our observation, the segments belonging to
the same thematic object share the similar appearance and
have strong mutual affinity relationship. On the other hand,
they tend to have weak affinity relationship with the seg-
ments from the background or other objects. Therefore, we
represent the thematic saliency by the cohesive sub-graph
and denote this sub-graph by using its vertices set Ω, where
elements of Ω are the segments belong to the same thematic
saliency. In other words, the thematic saliency can be rep-
resented as the spatial-temporal collocated segment group
Ω ⊆ Π , where all segments Si ∈ Ω belong to the same
thematic saliency. The affinity potential function of the sub-
graph is defined as Ω as f(Ω) =

∑
Si,Sj∈ΩAi,j and the so-

lution to the following optimization problem gives the max-
imum cohesive sub-graph:

Ω∗ = argmax
Ω⊆Π

f(Ω), (2)

i.e., the sub-graph that has the largest affinity potential is
the maximum cohesive sub-graph. Thematic segment pre-
sented by a sub-graph can be discovered one by one with
erasing the corresponding features belonging to previously
found segment.

When obtaining the affinity matrix A for all segment
pairs, the subset optimization problem in Eq. 2 can be con-
verted to a binary optimization problem. Given a sub-graph
Ω, let x = {xi}Ni=1 with xi ∈ {−1, 1} represents its indica-
tor vector. When xi = 1, segment Si belongs to sub-graph
Ω, and vice versa. As the indicator vector x and the sub-
graph Ω correspond to each other, Eq. 2 can be rewritten
as:

x
∗ = argmaxx f(x) =

1
4 (1+ x)TA(1+ x),

s.t. xi ∈ {−1, 1}, i = 1, ..., N,
(3)

where f(x) = 1
4 (1+ x)TA(1+ x) is the objective func-

tion. Eq. 3 is a binary quadratic programming (BQP) prob-
lem. Since A may not be the positive definite matrix, the
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objective function f(x) can be non-convex and the solution
is difficult to be obtained. Inspired by the methods in [32]
and [30], we can obtain our solution as follows.

To solve Eq.3, we relax a binary constraint xi ∈ {−1, 1}
to an equilibrium constraint, i.e.,−1 ≤ xi ≤ 1, (1 +
xi)(1 − xi) = 0, and this equilibrium constraint can be
implied by the nonlinear complementarity problem (NCP)
function ψ(1 + xi, 1 − xi) = 0 [5]. In the implemen-
tation, we select the popular Fischer-Burmeister function
ψ(a, b) =

√
a2 + b2 − (a+ b) and obtain the differentiable

constraints: ψ(1 + xi, 1− xi) =
√
2 + 2x2i − 2 = 0.

For simplification, the Fischer-Burmeister function
ψ(1 + xi, 1 − xi) = 0 is written as ψ(xi) = 0. To deal
with the constraint ψ(xi) = 0, we introduce the quadratic
penalty

∑N

i=1 ψ
2(xi) into the objective function and Eq. 3

can be reformulated as the following continuous optimiza-
tion problem:

x
∗ = argmaxx F (x) = f(x)− β

2

∑N

i=1 ψ
2(xi),

s.t. − 1 ≤ xi ≤ 1, i = 1, ..., N,
(4)

where β > 0 is a penalty parameter. By adding the
−β

2

∑N

i=1 ψ
2(xi) into the objective function, it not only in-

corporates the constraint but also obtains a concave objec-
tive function when the penalty parameter β is one large pos-
itive value (the supplementary material provides the proof).

To solve the optimization problem of Eq. 4 with a spe-
cific penalty parameter β, we employ the trust region new-
ton method [17]. After all iterations, the global and super-
linear convergence of the trust region Newton method leads
to an efficient implementation for the cohesive sub-graph
mining, and the maximum cohesive sub-graph is accord-
ingly obtained as the best solution of our method.

4. Experimental Results

In this section, two public datasets and one self-built eye-
tracker dataset are used to evaluate our approach on the the-
matic video saliency detection.

4.1. Datasets

Eye tracker dataset To validate that the estimated video
saliency can represent human’s understanding of a video
theme, we designed an experiment via asking 10 partici-
pants to find thematic objects for 5 videos and recording
their gaze data at the time by the ASL eye tracker system.
Five videos are all from Youtube.com with averaged length
around 40 seconds. Each video has at least one theme such
as Steve Jobs’ biography, or Prince William with his bride
Kate. Ten participants (5 males, 5 females) are with nor-
mal sight or corrected normal sight. We use the recorded
gaze data as the ground truth to indicate the appearance of
thematic saliency in each video. In particular, we convolve
gaze points by a Gaussian filter to generate the ground truth

of the thematic video saliency as [12] did. All videos and
the corresponding ground truth will be released soon.

RSD saliency dataset [16] The dataset contains videos
from six genres: documentary, ad, cartoon, news, movie
and surveillance. Twenty-three subjects are assigned to
manually label the rectangular regions to indicate the binary
saliency maps. Since this dataset is built for regional video
saliency detection which is different from our aim to find
the thematic video saliency, we only choose ad and news
videos for evaluation in that the labeled regions are coinci-
dent to the video themes.

Commercial video dataset [32] In this dataset, there
are ten commercial advertisement video sequences with the
length of videos ranging from 30 to 40 seconds. The ground
truth, which are the manually labeled bounding boxes for
the thematic object masks, are provided.

4.2. Experimental Setting

Parameters To obtain the segment representation of a
video, we first uniformly sample key-frames at 2 frames
per second from the video. Then each key-frame is seg-
mented multiple times using normalized cut [26] with dif-
ferent number of segments K (K = 3, 5, 7, 9, 11 and 13). To
handle the scale problem, image segmentation is performed
into two scales: original key-frames and a half size of the
original ones. Several types of bag-of-features histograms
are used to describe a segment: SIFT Histograms, Texton
Histograms (TH), Color Histograms (CH), and pyramid of
HOG (pHOG) [13]. After extracting SIFT from each key-
frame, all SIFT features in a video are quantized into 1000
visual words by k-means. For TH, we use a filter bank with
18 bars and edge filters and quantize them to 400 textons
via k-means. For CH, we use Lab color space, with 23 bins
per channel. For pHOG, we use 3 pyramid levels with 8
bins. The concatenation of four types of feature histograms
is used to describe each segment. We empirically set the
negative value τ in Eq. 1 to be -0.05 and the penalty param-
eter β > 0 to be 10. Other parameters of the trust region
methods are set similar with the modern trust region meth-
ods [17]. All these parameters are fixed in our experiments.
All the experiments are performed on an Xeon 2.67GHz
PC. After the segmentation and feature extraction, the pro-
posed method can process the 30-second length video in
one minute.

Evaluation criteria To quantify the performance of
the proposed approach on the employed video datasets,
a precision-recall based measurement is employed. Let
DR and GT be the discovered thematic object region and
the bounding boxes of ground truth, respectively. Preci-
sion and recall can be calculated as: P = |GT∩DR|

|DR| and

R = |GT∩DR|
|GT | . To generally measure P and R, we employ

F -measure = (1+α)×P×R

α×P+R
(α = 0.3 as in [2, 25]) as the
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Figure 4. The performance evaluation of the proposed video saliency detection algorithm, the co-saliency algorithm [14], and the single
image saliency algorithm [2]. (a) shows the results of the eye tracker dataset, (b) shows the results of the RSD dataset. (c) shows the results
of the commercial video dataset.

only evaluation criterion. To obtain F -measure of a video,
F -measure for each key-frame is first calculated and then
the average value of all key-frames is used for the whole
video.

4.3. Comparisons with Eye Gaze Data

To validate that the estimated video saliency can rep-
resent human’s understanding of a video theme, we com-
pare our results with the ground truth obtained by the eye
tracker system. Fig. 5(a) and (b) show some sample results
of thematic saliency discovery on the eye tracking dataset.
In these videos, the thematic saliency is subject to varia-
tions caused by partial occlusions, scales, viewpoints and
lighting condition changes. But our results still get the best
overlap with the gaze points. The objective measurements
by F -measure for our method on this dataset are shown
in Fig. 4(a). The high value of F -measure demonstrates
that the obtained thematic video saliency gets the best fit to
human’s understanding of a video theme.

4.4. Comparisons with Other Approaches

In order to show the superiority of the proposed ap-
proach on video saliency estimation, we compare with sev-
eral closely related saliency estimation methods: the co-
saliency method [14] and the image saliency model[2]. To
fairly compare our method with [2] and [14], we follow [2]
to select the smallest rectangular region containing at least
95% salient points in each frame as the target salient re-
gion. Due to the thematic objects only appearing in several
frames and every frame will have a bottom-up saliency by
both of the saliency detetion methods, for those key-frames
that the thematic saliency is lost by our method but having
image saliency/co-saliency, we select the top 30% salient
pixels from image saliency/co-saliency map as their detec-
tion results.

Fig. 5(a) and (b) show the sampled detection results on
the eye tracker dataset. From the comparisons, we can see
that our method can correctly avoid the false alarm when

there is no thematic object instance on a frame while the
co-saliency and image-saliency based methods are not so
discriminative in finding thematic objects due to the lack
of spatial-temporal context information, e.g. some back-
ground are wrongly detected as the thematic objects in the
third and the forth rows of Fig. 5(a) and (b). More results
on the commercial video dataset are shown in Fig. 5(c). The
objective measurements by F -measure for three methods
on three different datasets are shown in Fig. 4(a), (b) and
(c), respectively.

It is also worth mentioning that we did not pro-
vide the comparisons with the common object discovery
method [32] in that we have different objectives.

5. Conclusion

Thematic saliency detection in videos is a challenging
problem due to the possibly large visual pattern variations
of the thematic object and the prohibitive computational
cost to explore the candidate set without a priori knowledge
of the thematic object. By representing the relations of all
frame segments in the video as an affinity graph, we formu-
late the thematic object discovery problem as a novel cohe-
sive sub-graph mining problem. Our approach has the abil-
ity to identify the thematic saliency and accurately locate its
regions in the cluttered and dynamic video scenes. Experi-
ments on challenge video datasets show that our method is
efficient, robust and accurate.
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Figure 5. Sample results of video saliency discovery. (a) and (b) show two videos of our eye tracker dataset. (c) shows one commercial
video. The first rows of all three sub-figures show the original key-frame and the gaze points obtained by the eye tracker are also rendered
for (a) and (b). Each green cross ’+’ represents one gaze point. The second rows show our results. The heat map results of image saliency
and co-saliency are shown in the third and fourth rows respectively. Hot colors correspond to large salient values.

352352



state-of-the-art superpixel methods. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
34(11):2274–2282, 2012. 2

[4] K.-Y. Chang, T.-L. Liu, and S.-H. Lai. From co-
saliency to co-segmentation: An efficient and fully
unsupervised energy minimization model. In CVPR,
pages 2129–2136, 2011. 3

[5] C. Chen and O. L. Mangasarian. A class of smooth-
ing functions for nonlinear and mixed complementar-
ity problems. Comput. Optim. Appl., 5:97–138, March
1996. 4

[6] D. Y. Chen and C. Y. Lin. Efficient co-salient video
object detection based on preattentive processing. In
ICME, pages 2097–2104, 2008. 2

[7] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-
aware saliency detection. In CVPR, pages 2376–2383,
2010. 1, 2

[8] J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. In NIPS, pages 545–552. MIT Press, 2007.
3

[9] L. Itti and P. Baldi. Bayesian surprise attracts human
attention. In NIPS, volume 19, pages 547–554, 2006.
2

[10] L. Itti, C. Koch, and E. Niebur. A model of
saliency-based visual attention for rapid scene anal-
ysis. TPAMI, 20(11):1254–1259, 1998. 2

[11] D. E. Jacobs, D. B. Goldman, and E. Shechtman. Cos-
aliency: Where people look when comparing images.
In Proc. UIST, pages 219–228, 2010. 2

[12] T. Judd, K. Ehinger, F. Durand, and A. Torralba.
Learning to predict where humans look. In ICCV,
2009. 4

[13] Y. J. Lee and K. Grauman. Object-graphs for context-
aware visual category discovery. TPAMI, 99, 2011. 4

[14] H. Li and K. N. Ngan. A co-saliency model of im-
age pairs. IEEE Trans. on Image Processing (TIP),
110(3):346 – 359, 2011. 1, 2, 5

[15] H. Li and K. N. Ngan. A co-saliency model of image
pairs. TIP, 110(3):346 – 359, 2011. 2

[16] J. Li, Y. Tian, T. Huang, and G. Wen. Probabilistic
multi-task learning for visual saliency estimation in
video. IJCV, 90:150–165, 2010. 2, 4

[17] C.-J. Lin and J. J. More. Newton’s method for
large bound-constrained optimization problems. SIAM
Journal on Optimization, 9:1100–1127, 1998. 4

[18] C. Liu. Beyond Pixels: Exploring New Representa-
tions and Applications for Motion Analysis. PhD the-
sis, MIT, 2009. 3

[19] D. Liu, G. Hua, and T. Chen. A hierarchical visual
model for video object summarization. TPAMI, 2010.
2

[20] H. Liu and S. Yan. Common visual pattern discov-
ery via spatially coherent correspondences. In CVPR,
pages 1609–1616, 2010. 2

[21] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chel-
lappa. Entropy rate superpixel segmentation. In
CVPR, pages 2097–2104, 2011. 2

[22] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang,
and H.-Y. Shum. Learning to detect a salient object.
TPAMI, 99:353–367, 2010. 2

[23] V. Mahadevan and N. Vasconcelos. Spatiotemporal
saliency in dynamic scenes. TPAMI, 32:171–177,
2010. 2

[24] F. Perazzi, P. Krhenbhl, Y. Pritch, and A. Hornung.
Saliency filters: Contrast based filtering for salient re-
gion detection. In CVPR, pages 733–740, 2012. 2

[25] X. Shen and Y. Wu. A unified approach to salient ob-
ject detection via low rank matrix recovery. In CVPR,
pages 853–860, 2012. 4

[26] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. 22:888–905, 2000. 4

[27] R. Valenti, N. Sebe, and T. Gevers. Image saliency
by isocentric curvedness and color. In ICCV, pages
2185–2192, 2009. 2

[28] P. Viola and M. J. Jones. Robust real-time face detec-
tion. IJCV, 57:137–154, 2004. 3

[29] M. Wang, J. Konrad, P. Ishwar, K. Jing, and H. Row-
ley. Image saliency from intrinsic to extrinsic context.
In CVPR, pages 417–424, 2011. 1, 2

[30] J. Xu, J. Yuan, and Y. Wu. Learning spatio-temporal
dependency of local patches for complex motion seg-
mentation. Computer Vision and Image Understand-
ing(CVIU), 115(3):334 – 351, 2011. 1, 4

[31] J. Yuan, G. Zhao, Y. Fu, Z. Li, A. K. Katsaggelos, and
Y. Wu. Discovering thematic objects in image collec-
tions and videos. TIP, 21(4):2207–2219, 2012. 2

[32] G. Zhao and J. Yuan. Discovering thematic patterns in
videos via cohesive sub-graph mining. ICDM, pages
1260–1265, 2011. 2, 4, 5

353353


