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Abstract

In this paper, we propose a spatio-temporal feature
which is based on the appearance and movement of inter-
est SURF keypoints. Given a video, we extract its spatio-
temporal features according to every small set of frames.
For each frame set, we first extract dense SURF keypoints
from its first frame and estimate their optical flows at each
frame. We then detect camera motion and compensate flow
vectors in case camera motion exists. Next, we select in-
terest points based on their movement based relationship
through the frame set. We then apply Delaunay triangula-
tion to form triangles of selected points. From each triangle
we extract its shape feature along with trajectory based vi-
sual features of its points. We show that concatenating these
features with SURF feature can form a spatio-temporal fea-
ture which is comparable to the state of the art. Our pro-
posed spatio-temporal feature is supposed to be robust and
informative since it is not based on characteristics of indi-
vidual points but groups of related interest points. We apply
Fisher Vector encoding to represent videos using the pro-
posed feature. We conduct various experiments on UCF-
101, the largest action dataset of realistic videos up to date,
and show the effectiveness of our proposed method.

1. Introduction
Researches on action recognition can be divided accord-

ing to their scope: recognition of action in still images or

in videos. In the former case, only static cues are exploited.

Our work belongs to the latter case, where motion cues are

additionally employed in order to model the actions. There

exist multiple well-known methods to represent the move-

ments of actors performing the actions such as Histogram of

Oriented Optical Flow (HOOF) [1] or trajectory of interest

points [2]. In addition to exploiting spatial or temporal fea-

tures separately, using spatio-temporal (ST) features which

integrate both visual and motion characteristics of actions

has also been preferred among approaches of action recog-

nition in videos.

To represent videos, in recent years some high-level fea-

tures such as human pose or human-object interaction has

been investigated and obtained promising results [3, 4, 5, 6].

However, they need to setup many hypothesis and face

problems mostly caused by the diversity of human actions.

Thus, low-level features have still been being explored in

order to overcome these problems. To extract local spatio-

temporal features, one of the most popular methods is based

on cuboids [7, 8]. However, to decide the cuboid size is a

tough task. Instead of detecting local cuboids before ex-

tracting features from them, some recent methods tracked

interest points in video sequence then leveraged the mo-

tion information from their trajectories [2, 9]. These ap-

proaches obtained good results for action recognition. To

track interest points, either tracker based technique or point

matching based technique has been employed. Our method

is also based on trajectories of interest points. We apply

LDOF [10] to estimate optical flows of all video frames.

We aim to recognize human actions in realistic videos

where the background is complex. Empirical results have

shown that dense features perform better for complex

videos [2, 11, 12, 13]. In this paper, we propose a spatio-

temporal feature based on dense SURF points that is com-

parable to state-of-the-arts. Our idea is inspired by the work

of Noguchi et al. [14]. This method is the baseline we re-

fer in this paper. They proposed to extract spatio-temporal

features based on moving SURF keypoints. We address

some problems of their method such as their failure in fea-

ture extraction of videos containing camera motion or holis-

tic decision of motion threshold in the selection of interest

points. We propose simple yet effective solutions to solve

these problems. That means, similar to their method, our

method is also based on SURF interest points with robust

movements, nevertheless how we determine those points is

different. Moreover, we propose to improve their feature by

exploring more aspects of selected points and introducing

several novel spatio-temporal descriptors. The experimental

results show significant improvements of our method over
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the baseline as precision boosted approximately 22% by us-

ing our method.

According to the success of the BoV (Bag of Visual

words) model, the most popular framework for pattern rep-

resentation basically consists of the following steps: (1) ex-

tracting local features of patterns, (2) k-means clustering ex-

tracted features to obtain a codebook (“visual vocabulary”),

(3) encoding each pattern as a BoV by assigning each de-

scriptor to its closest visual word in the codebook. Noguchi

et al. also applied this methodology to encode videos. In

this paper, we use Fisher Vector to encode videos. So far,

Fisher kernel has been demonstrated as a powerful frame-

work which integrates the strengths of generative and dis-

criminative approaches for pattern representation. Fisher

vector encoding technique was first applied to image clas-

sification task several years ago, shown to extend the BOV

representation [15]. The advantage of this technique has

been demonstrated that it is not limited to the number of

occurrences of each visual word but it also encodes addi-

tional information about the distribution of the descriptors.

The methodology is that, (1) extracting local features from

images, (2) modeling the distribution of those features as

mixtures of Gaussian (GMM), training a soft codebook, (3)

applying Fisher kernels on obtained codebook to encode

each image as a Fisher Vector. Recently, some works on

action recognition have also employed this approach to en-

code videos and showed the effectiveness of Fisher Vector

encoding over traditional BoV [16]. In this paper, we apply

Fisher encoding technique as described in [15].

Our contribution is three-fold: first, a method of ex-

tracting spatio-temporal features which is comparable to the

state of the arts, second, a simple yet efficient selection of

interest points, and finally, novel descriptorization of spatio-

temporal features. We conduct our experiments on UCF-

101 1 which is the largest-scale human action dataset up

to date with 101 action categories to validate our proposed

method. This dataset is not only large-scale but also a com-

prehensive benchmark for human action recognition in re-

alistic under challenging settings such as large variations

in camera motion, object appearance and pose, viewpoint

and complicated background, etc. The experimental results

demonstrate the effectiveness of our proposed feature and

spatio-temporal feature based Fisher representation for ac-

tion recognition.

The reminder of this paper is organized as follows: Sec-

tion 2 discusses more about some related works. In sec-

tion 3 the proposed feature is described in detail. Section 4

explains about conducted experiments and presents the re-

sults. Conclusions are presented in section 5.

1http://crcv.ucf.edu/data/UCF-101.php

2. Related work

So far, local spatio-temporal features have become pop-

ular features for representing videos in action recognition

since they can capture both shape and motion character-

istics of videos and provide relatively independent repre-

sentation of actions. Many methods of extraction and de-

scriptorization of spatio-temporal features [7, 17, 13, 8]

have been proposed over the past few years. To determine

space-time regions (called as cuboids) where features are

extracted, Dollar et al. [7] proposed to apply 2-D Gaus-

sian kernels to the spatial space and 1-D Gabor filters to

the temporal direction. Laptev et al. [17] proposed an ex-

tended Harris detector to extract cuboids. Feature descrip-

tors range from higher order derivatives (local jets), gradi-

ent information, optical flow (laptev), and brightness infor-

mation to spatio-temporal extensions of image descriptors,

such as 3D-SIFT [18], HOG3D [19], and Local Trinary Pat-

terns [20]. As another method other than using cuboids, ex-

tracting local features based on trajectories of interest points

also showed good results for action recognition [2, 9, 16].

Matikainen et al. [21] proposed to extract trajectories using

a standard KLT tracker, cluster the trajectories, and compute

an affine transformation matrix for each cluster center.

In this paper, we propose to improve method of extract-

ing ST feature proposed by Noguchi et al. [14]. Follow-

ing [14], we also extract features based on moving SURF

points and use Delaunay triangulation to model the spa-

tial relationships between interest points. We address some

problems of their method such as the inability to handle

camera motion or holistic decision of motion thresholds for

selecting points which cause failure in extracting features of

some videos. We propose to solve these problems by sim-

ple yet efficient methods of motion compensation and point

selection.

As treatment for camera motion, Cinbis et al. [6] applied

video stabilization using homography-based motion com-

pensation approach. They estimated camera flow by cal-

culating the homography between consecutive frames and

compensate optical flow of points by removing estimated

camera flow. Similarly, Jain et al. [9] also removed camera

motion from original optical flow, nevertheless they con-

sider affine motion as camera motion. Wu et al. [22] decom-

posed Lagrangian particle trajectories into camera-induced

and object-induced components for videos acquired by a

moving camera. In [2], Heng Wang et al. did not com-

pensate camera motion in advance but employed motion

boundary histograms which already have constant motion

removed. We also reduce the influence of any existed cam-

era motion by cancelling the constant motion. Our proposed

method of motion compensation improves significantly per-

formance of feature extraction over the baseline since it
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helps not only extract features in case that camera motion

exists but also detect more robust interest points.

3. Proposed spatio-temporal feature

3.1. Overview of proposed feature

Our spatio-temporal feature is based on SURF keypoints

with dominant and reliable movements. SURF keypoints

are extracted densely using Dense SURF [23]. Here domi-

nant and reliable points are supposed to belong to the hu-

man who is performing the action. Our feature extrac-

tion method investigates the triangles of informative SURF

points based on the features of their shape and their move-

ments (flow vectors of their points). These triangles are

produced by applying Delaunay triangulation on selected

SURF points. We show that concatenating these features

with SURF features of interest points can form a powerful

spatio-temporal feature.

We extract features with temporal step size of N frames.

We set the value of N to be small so that the extracted fea-

tures are temporally dense. We operate tracking of interest

points through N frames using LDOF [10]. As trajectories

may drift from their precise locations during the tracking

process, limiting the tracking process within short duration

like this is supposed to be able to overcome this problem. In

our experiments, we fix N as 5. See Fig.1 for the illustra-

tion of our method. The process of extracting our proposed

spatio-temporal feature from each frame set is summarized

as follows:

1. Extract SURF keypoints of the first frame using Dense

SURF [23].

2. Compute optical flows from kth frame (k =
1, 2, ..., N−1) to the next frame (k + 1th frame) using

LDOF [10].

3. Estimate camera motion in each frame and compensate

motion if camera motion detected (Section 3.2).

4. Select points which are expected being more informa-

tive than the others (Section 3.3) and form triangles of

selected points using Delaunay triangulation.

5. Extract a ST feature from each triangle based on its

shape along with motion features of its points through

the frame set (Section 3.4).

The main improvements of our method over the baseline

can be summarized as follows: (1) treatment of camera mo-

tion, (2) selection of interest points and, (3) enhancement

on descriptorization of ST features. We explain in details

these improvements in following subsections.

3.2. Detection and compensation of camera motion

In Noguchi et al.’s work [14], once camera motion has

been detected in a frame set, obtained information would

be considered as noise, thus no points would be selected.

Consequently, no features are extracted if the whole video

contains camera motion. We propose to solve this problem

by following a simple 2-step technique:

1. Step 1: Confirm the existence of camera motion based

on optical flows of SURF keypoints. If detecting cam-

era motion, determine the direction and magnitude of

camera motion before going to the next step.

2. Step 2: Compensate motion by cancelling camera mo-

tion from original flows of SURF keypoints.

Detection of camera motion: At the first step, we aim

to find out at each frame how the camera move in both hor-

izontal direction (forward or backward) and vertical direc-

tion (up or down). This step is based on our assumption that

if most points move toward the same direction, camera mo-

tion exists. Let denote P x+

and P x− as number of points

with positive and negative optical flows, P x+

m and P x−
m as

number of moving points which shift forward and backward

respectively, so that we suppose that camera is moving for-

ward if Eq.1 and Eq.2 are satisfied or backward if Eq.3 and

Eq.4 are satisfied:

P x+

m ≥ kx
+

(1)

P x+

m > P x−
m (2)

P x−
m ≥ kx

−
(3)

P x−
m > P x+

m (4)

Here, k is a fraction threshold representing minimal re-

quired proportion of moving points over all points with the

same direction. In our experiments, we set k as 2
3 . A point

is considered as moving points if its absolute optical flow is

larger than or equal to 1. The camera is supposed as hor-

izontally stable if none of above condition is satisfied. If

the camera is detected as being moved, camera motion is

calculated as the average of absolute optical flows of points

which moved to the same direction as the camera move-

ment. Camera motion for vertical direction is estimated in

the similar manner.

Compensation of camera motion: Flow of each SURF

keypoint is compensated simply as follows:

fi = fi − dfcamera (5)

Here, fi refers to flow of point i, fcamera refers to camera

flow. d equals 1 if camera moved to positive direction or -1
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Figure 1. Overview of our method. Here we show an example of extracting spatio-temporal features from a frame set of 5 consecutive

frames. The shot is from UCF-101 dataset for “Fencing” category. First, dense SURF points of the first frame are extracted and optical flow

vectors of these points through the frame set are estimated (figures in the second row). Next, based on flows of SURF points, camera motion

is compensated and interest points are selected (selected points are shown in the left figure of the third row). Then Delaunay Triangulation

is applied to model the relation between selected points and spatio-temporal features are extracted from each obtained triangle.

if camera moved to negative direction. fcamera is measured

separately for all considered directions (forward, backward,

up and down) and compensation is operated in each of those

directions. By our manner, camera motion can be compen-

sated in most cases except for zooming. Handling this case

of camera motion is one of our future works. See Fig.2 for

an example result of our motion compensation method.

3.3. Selection of interest points

According to the baseline, selection of interest points is

based on their optical flows between the first frame and the

middle frame of the frame set. A point is believed as an in-

terest point if its flow is larger than the pre-defined motion

threshold. As a result, in case of no significant movement

than the threshold from the first to the middle frame, no

feature can be extracted. Moreover, their motion threshold

is determined in holistic manner and fixed for every video

of every type of actions. However, due to camera motion,

video resolution, movements of background objects, and

especially the diversity of actions as well as actors, points

selected based on a constant motion threshold may not al-

ways be representative. For example, even though that sig-

nificant movements are expected to be caused mainly by

the actor, in the background there may be objects which

move dominantly at several frames. Hence, the points be-

long to these objects may be mistaken as interest points. In

Figure 2. An example that shows efficiency of proposed method of

reducing camera motion and selecting interest points. The first row

presents a frame set of consecutive frames which contains camera

motion. In this case, interest points are not detected according to

the baseline. The second row shows optical flows of SURF points

at the first frame of the frame set. The most left figure presents

all SURF keypoints before the camera motion compensated. The

middle figure and the right figure respectively present points deter-

mined as interest points by the baseline (with fixed motion thresh-

old) and our method (with flexible threshold) after the camera mo-

tion compensated. This example shows that our method is not only

able to reduce the effect of camera motion but also to select more

representative points than the baseline.

addition, magnitude of movement may vary largely from

action to action. For instance, sport activities such as jump-

ing trampoline or swimming are supposed to cause large

displacements. On the other hand, daily activities such as
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drinking or talking in general generate small movements.

We demonstrate that in order to overcome these problems,

motion threshold should be flexible.

We propose to determine motion threshold flexibly and

select as reliable moving points as possible. The idea is that

robustness of a point should be evaluated based on compar-

ison of its motion to motion of its fellows at the same time

rather than to a fixed motion threshold. In our method, mo-

tion threshold is estimated for every frame in all directions

based on flows of its SURF points. The following equation

represents how we calculate motion threshold for a frame in

forward direction (x+). Thresholds for the remaining direc-

tions are similarly calculated.

threshfx+ = averfx+ + α(maxfx+ - averfx+ ) (6)

Here, threshfx+ means the motion threshold for frame

f in x+ direction. averfx+ and maxfx+ respectively refer

to the average and the maximal flow magnitude at frame f
in x+ direction. The qualification that a point should satisfy

to be considered as a moving point is that in at least one of

four considered directions, its flow magnitude is somewhat

greater than the average flow of that direction. The constant

α controls that qualification. In our experiments, we set α as

0.5. Thus, the motion threshold is near to the median of the

average and the max flows. However, in some case, at some

frames, all objects including actor stay still, thus it is not

necessary that there always must exist moving points. We

suppose that nothing in a frame moved if all its thresholds

are smaller than 1.

After determining which points are moving points, in-

stead of simply taking all of them like Noguchi et al., we

aim to select as many representative points as possible. A

moving point is a point that ever moved at any frame in the

frame set. We postulate a hypothesis that points with more

movements are more reliable and informative. For exam-

ple, through the whole frame set, points moved two times

are expected to be more reliable as well as representative

than points moved only once. Based on this hypothesis, we

propose to select points greedily based on number of times

they moved through the frame set. Our algorithm of point

selection is described in Algorithm 1.

Algorithm 1 Algorithm for selecting interest points

M = maximal number of movements (M ≤ N − 1)
T = total number of moving points

GS = group of selected points (initialized as empty)

for i = M to 1 do
GS = |GS, points moved i times |
if |GS| ≥ βT then

break;

end if
end for
end

Following Algorithm 1, the group of selected points is

only a proportion of moving points but expected to consist

of most representative points. In our experiments, we set β
as 1

2 . Fig.2 shows the effectiveness of our method of select-

ing interest points over the baseline.

3.4. Descriptorization of ST features

After selecting interest points, following the baseline, we

apply Delaunay triangulation to form triples of them. One

ST feature can be obtained from each triple. Our proposed

feature extracted from a triple is constructed based on fol-

lowing descriptors. We classify them to spatial descriptor
which represents static visual features of points, temporal
descriptor which presents movements of points through the

frame set and spatio-temporal descriptor which character-

izes trajectory-based visual features of points or group of

points. Below we describe in detail each descriptor.

Spatial Descriptors. To form spatial descriptor, we

combine SURF descriptors of three points of the triple at

the first frame. SURF points are extracted with subregions

of 3 by 3 pixels, Haar filters of 4 by 4 pixels and 4 sub-

regions. Thus we obtain a 64-dimension SURF descrip-

tor for each point [23]. However, concatenating SURF de-

scriptors of three points forms a high-dimensional descrip-

tor (3 × 64 = 192 dimension) which may consist of re-

peated information. Thus, we apply PCA on this descriptor

to acquire a lower dimensional but more representative one,

and also to reduce computational cost. We denote this di-

mension reduced descriptor as PSURF. In our experiments,

PSURF is a 96-dimension vector.

Temporal Descriptors. We propose to extract following

two temporal features:

(1) A histogram of Optical Flow (HOOF). 3(N − 1)
flow vectors of three points are binned to a Bo-bin his-

togram. Following [1], each flow vector is binned according

to its primary angle from the horizontal axis and weighted

according to its magnitude. That means, a flow vector

v = [x, y] with its angle θ = tan−1(y) in the range:

− π

2
+ π

b− 1

Bo
≤ θ < −π

2
+ π

b

Bo
(7)

will contribute by
√
x2 + y2 to the sum in bin b. Finally,

the histogram is normalized to sum up to 1.

(2) A Histogram of Direction of Flows (HDF). Follow-

ing Noguchi et al., we binned flow vectors of three points

within the triple according to their direction. However, in

[14], one histogram is calculated for each point. More

specifically, (N − 1) flow vectors of a point are binned to a

5-bin histogram which represents 5 states: moving forward,

backward, up, down and staying still (every flow equals to

0). Since the value of N is set to be small (N = 5 in

their experiments), many bins become zeros. This makes
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Figure 3. Illustration of proposed spatio-temporal features. We

additionally explore characteristics of interest points by exploiting

angles of triangles formed by them (red ones) and angles shaped

by consecutive trajectories of them (green ones). We show here an

example of trajectories of grouped interest points in a frame set of

5 frames. 2× 5 smallest angles of triangles are binned to obtain a

HAT and 3×3 trajectory based angles are binned to obtain a HAF

following proposed method described in Section 3.4.

the feature be not so informative and have small effective-

ness on action discrimination. Here we propose to bin all

flow vectors of three points (3(N − 1) flows) into 4 bins:

moving forward or horizontally still (|fx+ | ≥ 0), backward

(|fx− | ≥ 0), up or vertically still (|fy+ | ≥ 0), and down

(|fy− | ≥ 0). Similarly to HOOF, this histogram is also

weighted by flow magnitude and normalized to sum up to

1.

Spatio-temporal Descriptors. We propose to generate

the following three descriptors. The first two represent vi-

sual characteristics of triangles through the frame set. The

last one descriptorizes the shape of trajectories. The last two

are newly introduced by us. Refer to Fig.3 for illustration

of these proposed two features.

(1) Areas of Triangle (AT): Following Noguchi et al.’
work, the area of the triangles at all frames is calculated

then concatenated and normalized to form a N -dimension

descriptor.

(2) A Histogram of Angles of Triangle (HAT). To bet-

ter explore the shape characteristics of obtained triangles,

we propose to investigate their angles by binning them

based on their magnitude. Here, we consider only two an-

gles since given the degrees of any two out of three angles,

it is sufficient to characterize the shape of a triangle. Using

two optional angles is not preferred here since they may be

not representative for their triangle. Thus, one can consider

use two largest or two smallest angles. However, two largest

angles can range from 0o to 180o while two smallest angles

range only from 0o to 90o. Hence, selecting two smallest

angles makes it easier to define histogram bin. Moreover, it

can not happen that both of two smallest angles are larger

than 60o. Based on these observations, we propose to set

up histogram bin as follows: for θ > 60o, the histogram bin

Figure 4. An example that illustrates the effect of variety in ve-

locity on action recognition and the efficiency of our proposed

method. We show trajectories of points which belong to two ac-

tors performing the same action in 6 consecutive frames. We as-

sume that the actors move in similar way but at different speed.

As shown here, Trajectory 1 which corresponds to faster actor and

Trajectory 2 which belongs to lower actor only match at the first

interval (from frame k to k + 1), thus trajectory based descriptors

become nearly totally different. On the other hand, according to

our method, exploiting angles shaped by trajectories help to find

out more the similarity between these two trajectories. The simi-

lar angles (marked by same color) can be binned to the same bin,

hence this angle based descriptor can be expected to reduce the

effect of diversity in velocity of different actors.

is of size 30, otherwise, the histogram bin is of size 15. In

this manner, 2 smallest angles are binned to 5 bins: [0-15],

[15-30], [30-45], [45-60], [60-90]. Each angle is weighted

by sum of magnitude of its two edges. The histogram is also

normalized to sum up to 1.

A Histogram of Angles of Flows (HAF). To exploit tra-

jectories of interest points for modelling the action, some

work straightly employ them as descriptors [2]. However,

this approach suffers from the problem that trajectories may

vary largely due to the velocity of the actor. To reduce

the effect of the variety in velocity, we propose to extract

features based on angles shaped by trajectories. These an-

gles are supposed to be more informative than trajectories

themselves (See Fig.4). The angles are binned by the same

method as shown in Eq. 7. Number of histogram bin for

HAF is denoted as Ba.

Finally all above descriptors are concatenated to form

our ST feature which has 96 (PSURF) + Bo (HOOF) + 4

(HDF) + N (AT) + 5 (HAT) + Ba (HAF) = 105+Bo+N+Ba

dimension. In our experiment, we set N = 5, Bo = Ba =
4, thus we obtain a 118-dimension ST descriptor.

4. Experiments and Results

We conduct various experiments on UCF-101

dataset [24] which is an action recognition data set of

realistic action videos, collected from YouTube, having 101
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Figure 5. Thumbnails of UCF-101. This dataset consists of var-

ious action categories including sport activities such as “Basket-

ball Shooting” or “Biking” and daily activies such as “Blow Dry

Hair” or “Brush Teeth”. The action categories are divided into

five types: 1)Human-Object Interaction 2) Body-Motion Only

3) Human-Human Interaction 4) Playing Musical Instruments 5)

Sports.

action categories. This dataset contains 13320 videos from

101 action categories which are grouped into 25 groups,

where each group can consist of 4-7 videos of an action.

The videos from the same group may share some common

features, such as similar background, similar viewpoint.

Fig.5 shows thumbnails of all action categories in this

dataset.

We follow competition evaluation set up as suggested in

the workshop page 2. We adopt the provided three standard

train/test splits to evaluate our results. In each split, clips

from 7 of the 25 groups are used as test samples, and the

rest for training. The result of each experiment reported

here is calculated as the mean of average accuracies over the

three provided test splits. We train multiclass SVMs [25] to

perform action recognition. The results of our experiments

are shown in Table 1.

To validate the enhancement of proposed feature over the

baseline [14], we conduct experiments with ST feature pro-

posed by the baseline and our proposed feature with Fisher

encoding method. Since following Noguchi et al. [14], no

points are selected if the whole video contains camera mo-

tion, feature extraction was failed for nearly one tenth of the

dataset. We propose to improve their method of point selec-

tion as well as feature extraction and significantly boost the

2http://crcv.ucf.edu/ICCV13-Action-Workshop/

overall precision as shown in Table 1. The results demon-

strate that, our method could select more representative

points and also explore better the visual characteristics of

them.

We also compare our results to the result reported in [24].

According to [24], their result is provided by the state of

the arts for action recognition [26] using standard BoV. Ap-

plying BoV encoding on our proposed feature, we obtain

40.1% precision. Note that [24] follows the old experimen-

tal set up, that is “Leave One Group Out Cross Validation”

which will lead to 25 cross-validations. Our results show

the powerfulness of our proposed feature since we obtained

comparable results to the state of the art although our eval-

uation set up is supposed to be more challenging. Our re-

sults also prove the efficiency of Fisher encoding technique

on action recognition over traditional BoV technique as the

precision is boosted 20% by using Fisher encoding.

Method Average Precision (AP)

[24] (BoV) 44.5%

Our (BoV) 40.1%

[14] (Fisher) 38.2%

Our (Fisher) 60.1%

Table 1. Experimental results on UCF-101.

5. Conclusions
In this paper, we propose a method of extracting spatio-

temporal features from videos which is able to efficently

select interest points and descriptorize their features. The

experimental results show significant improvement of our

method over the baseline for action recognition task. In fu-

ture work, we want to introduce recent approach of compen-

sating camera motion in order to handle more complicated

cases such as zooming.

References
[1] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vi-

dal. Histograms of oriented optical flow and binet-

cauchy kernels on nonlinear dynamical systems for the

recognition of human actions. In Proc. of IEEE Com-
puter Vision and Pattern Recognition, pages 1932–

1939, 2009. 1, 5

[2] H. Wang, A. Klaser, C. Schmid, and C-L. Liu. Dense

trajectories and motion boundary descriptors for ac-

tion recognition. International Journal of Computer
Vision, 103(1):60–79, 2013. 1, 2, 6

[3] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3d human pose annotations. In Proc. of

426426



IEEE International Conference on Computer Vision,

2009. 1

[4] S. Maji, L. Bourdev, and J. Malik. Action recognition

from a distributed representation of pose and appear-

ance. In Proc. of IEEE Computer Vision and Pattern
Recognition, 2011. 1

[5] Y. Bangpeng and L. Fei-Fei. Modeling mutual context

of object and human pose in human-object interaction

activities. In Proc. of IEEE Computer Vision and Pat-
tern Recognition, pages 17–24, 2010. 1

[6] N. I. Cinbis and S. Sclaroff. Object, scene and actions:

Combining multiple features for human action recog-

nition. In Proc. of European Conference on Computer
Vision, pages 494–507, 2010. 1, 2

[7] P. Dollar, G. Cottrell, and S. Belongie. Behavior

recognition via sparse spatio-temporal features. In

Proc. of Surveillance and Performance Evaluation of
Tracking and Surveillance, pages 65–72, 2005. 1, 2

[8] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-

feld. Learning realistic human actions from movies.

In Proc. of IEEE Computer Vision and Pattern Recog-
nition, 2008. 1, 2

[9] M. Jain, H. Jegou, and P. Bouthemy. Better exploiting

motion for better action recognition. In Proc. of IEEE
Computer Vision and Pattern Recognition, 2013. 1, 2

[10] T. Brox, C. Bregler, and J. Malik. Large displacement

optical flow. In Proc. of IEEE Computer Vision and
Pattern Recognition, pages 41–48, 2009. 1, 3

[11] F. V. Jensen, H. I. Christensen, and J. Nielsen.

Bayesian methods for interpretation and control in

multi-agent vision systems. In Proc. of SPIE 1708,
Applications of Artificial Intelligence X: Machine Vi-
sion and Robotics, pages 536–548, 1994. 1

[12] E. Nowak, F. Jurie, W. Triggs, and M. Vision. Sam-

pling strategies for bag-of-features image classifica-

tion. In Proc. of European Conference on Computer
Vision, pages IV:490–503, 2006. 1

[13] G. Willems, T. Tuytelaars, and L.V. Gool. An effi-

cient dense and scale-invariant spatio-temporal inter-

est point detector. In Proc. of European Conference
on Computer Vision, pages 650–663, 2008. 1, 2

[14] A. Noguchi and K. Yanai. A surf-based spatio-

temporal feature for feature-fusion-based action

recognition. In ECCV WS on Human Motion: Under-
standing, Modeling, Capture and Animation, 2010. 1,

2, 3, 5, 7

[15] F. Perronnin and C. Dance. Fisher kernels on vi-

sual vocabularies for image categorization. In Proc.
of IEEE Computer Vision and Pattern Recognition,

pages 1–8, 2007. 2

[16] I. Atmosukarto, B. Ghanem, and N. Ahuja.

Trajectory-based fisher kernel representation for

action recognition in videos. In Proc. of IAPR
International Conference on Pattern Recognition,

pages 3333–3336, 2012. 2

[17] I. Laptev and T. Lindeberg. Local descriptors for

spatio-temporal recognition. In Proc. of IEEE Inter-
national Conference on Computer Vision, 2003. 2

[18] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional

sift descriptor and its application to action recognition.

In Proc. of ACM International Conference Multime-
dia, pages 357–360, 2007. 2
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