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Abstract

Action recognition is an important precursor for under-
standing human activities in videos. The current paradigm
of action recognition is to classify a video sequence as a
whole. However, actions usually occur only in part of a
video sequence, rendering the rest of the video irrelevant
for action recognition. In this paper, we propose a method
for learning a subsequence classifier which can detect and
classify part of a video that corresponds to the action. The
subsequence classifier is trained from weakly labeled train-
ing videos whose subsequence labels are not provided, but
need to be inferred during learning. We use the frame-
work of multiple instance learning to solve two problems
jointly: i) find the action subsequences in training videos,
ii) train the subsequence classifier using the inferred ac-
tion subsequences. To obtain a robust solution to the MIL
problem, we propose a sequential algorithm that consecu-
tively decreases the number of inferred action subsequences
per video and trims their length until only one short subse-
quence is used as the action representative in each video.
We evaluate the combination of the automatically trained
subsequence classifier and the full sequence classifier on
the very challenging Hollywood2 benchmark set and ob-
serve a significant gain in the performance over the baseline
full sequence classifier. Moreover, a favorable performance
of the subsequence classifier for temporal localization of
actions in videos is evidenced on two categories of the Hol-
lywood2 dataset.

1. Introduction
Action recognition in video is an important research

problem with applications ranging from surveillance and

security to web-based video sharing (e.g. YouTube and

Google videos). Action recognition is also a prerequisite

for the recognition of complex activities that are defined as

sequences of elementary actions [6]. Action recognition is a

difficult problem because videos are usually unconstrained

and actions show a large intra-class variability. Moreover,

videos typically contain adverse effects, such as large cam-

era motion, background clutter, occlusion or change of illu-

mination. As the actions normally occur only in part of the

video sequence, a large part of the video sequence contains

irrelevant clutter that interferes with action classification.

Due to the laborious and costly nature of the video an-

notation process, video datasets are usually only weakly la-

beled. An action label is assigned to a video, if an instance

of the corresponding action class occurs in the video. How-

ever, information about the spatial and temporal location of

the action in the video is not provided. Because of that,

most action recognition approaches so far have proposed

the full sequence classifier as a way to assign a label to

the video. Such methods are typically based on the bag-

of-features (BoF) representation [14, 20], i.e. a histogram

of visual words extracted from the whole video sequence

is calculated and then used by a discriminative classifier to

predict the action label of a video. Recent methods try to

incorporate the spatiotemporal structure of the action to get

better classification performance. Laptev et al. [15] repre-

sent a video by histograms of visual word occurrences over

the spatiotemporal volume corresponding either to the en-

tire video or multiple subsequences defined by a video grid.

However, the grid is fixed and does not adapt to the action

contained by the video. A human-centric approach [12]

detects and localizes human actions in challenging videos

using the generic human detector and tracker, and the ac-

tions are detected only within the discovered human tracks.

However, the method relies on a generic human detector

and tracker that is trained on an external dataset which is

typically not provided.

As actions in videos typically occur only in a small part

of a video, we propose a method to learn a subsequence

classifier that can detect and classify part of a video that

corresponds to the action. The subsequence classifier is

then applied on all subsequences in a video and selects the

subsequence with the highest classification score. The clas-

sification results of the subsequence classifier and the full

sequence classifier are eventually combined into a final ac-

tion classification result. We propose a method that learns
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the subsequence classifier automatically from the weakly

labeled training videos whose subsequence labels are not

provided, but have to be inferred during learning. Thus,

we solve the following two problems jointly: i) find the ac-

tion subsequences in training videos, and ii) train the sub-

sequence classifier using the inferred action subsequences.

We cast the two problems in the framework of multiple

instance learning (MIL), so that video sequences become

bags, and subsequences of a video become instances of a

bag. In MIL, the subsequence classifier is updated from

the subsequences inferred in the previous round of MIL,

and then it is used to infer the subsequence labels during

the next round of MIL. Standard MIL keeps the length of

subsequences fixed and selects only one subsequence per

video for training the subsequence classifier. To improve

the robustness of the MIL method, we propose a sequential

method for multiple instance learning of the subsequence

classifier that consecutively decreases the number of in-

ferred action subsequences per video and trims their length

until only one short subsequence is used as an action rep-

resentative in each video. We evaluate the combination

of the automatically trained subsequence classifier and the

full sequence classifier on the very challenging Hollywood2

benchmark set and observe a significant gain in the perfor-

mance over the baseline full sequence classifier. Moreover,

a favorable performance of the subsequence classifier for

temporal localization of actions in videos is evidenced on

two categories of the Hollywood2 dataset.

The paper has the following structure. In Sect. 2 we

review the related work on the action recognition in videos.

Our method for sequential multiple instance learning of the

subsequence classifier is described in Sect. 3. Experimental

results and their comparison to the state-of-the-art are given

in Sect. 4. Finally, Sect. 5 concludes the paper.

2. Related Work
Action recognition in videos has attracted a great atten-

tion in the computer vision community over the last decade.

A large body of literature on action recognition in videos

is addressing the question of feature detection and descrip-

tion in videos. Laptev [14] proposed spatiotemporal in-

terest points obtained by the Harris detector that has been

extended to the spatiotemporal domain. A novel corner-

ness measure that combines the Gaussian filter in space

and Gabor filter in time is proposed by Dollár et al. [8].

Willems et al. [22] proposed to detect spatiotemporal inter-

est points at places where the determinant of the spatiotem-

poral Hessian matrix is maximal. Recently, Wang et al. [21]

showed that dense sampling of feature points has better per-

formance than interest point detectors on the challenging

video datasets.

Best results on the challenging action recognition

datasets such as Hollywood2 have been obtained by build-

ing a bag-of-features (BoF) representation for the whole

video [15, 20]. The video is then classified using the kernel

support vector machine (SVM) based on the L1-normalized

histogram of visual codewords that is calculated from the

quantized spatiotemporal interest points. Laptev et al. [15]

proposed to concatenate BoF representations of subvolumes

defined on the grid in video. Ommer et al. [19] develop

a generic action recognition system that is combined with

compositional object segmentation and tracking. Hoai and

De la Torre [11] propose a max-margin framework for train-

ing the temporal event detector to recognize partial events,

which enables early event detection. Their method is based

on the Structured Output SVM, that they extend to accom-

modate sequential data. However, training of their event de-

tector is supervised and requires an additional annotation.

Gaidon et al. [10] propose a model that uses a sequence

of atomic action units, termed actoms, to represents the tem-

poral structure of the action as a sequence of histograms of

actom-anchored visual features. The actom model is trained

from the actoms-annotated video clips. Niebles et al. [18]

propose to model the complex activities as temporal com-

positions of motion segments. They train a discriminative

model to find a temporal decomposition of a complex activ-

ity. Antić and Ommer [2] create a system for video parsing

that recognizes normal and abnormal objects and actions in

the scene. Lan et al. [13] develop an algorithm for action

recognition and localization in videos that uses a figure-

centric visual word representation. The person location is

treated as a latent variable that is inferred jointly with the

action recognition. Their model is learned from training

videos that are annotated with action labels and bounding

boxes around the people performing the action.

The MIL framework has gained in popularity in recent

years because of its powerful mechanism to deal with label

ambiguities that are common in weakly annotated datasets.

The idea of MIL quickly spread from drug activity predic-

tion [7] to many other disciplines such as document anal-

ysis [1] and computer vision [4, 17, 9, 5]. MIL problem

is normally tackled by alternating the steps of learning the

instance-level classifier and imputing the missing instance

labels. Antić and Ommer [3] proposed the concept of su-

perbags, a random ensemble of sets of bags, whose goal is

to decouple inference and learning steps in MIL and thus

improve its robustness.

3. Sequential Multiple Instance Learning of
Subsequence Classifiers

To recognize an action in video, we first need to find

a subsequence that corresponds to the potential action in

video and then classify it with a subsequence classifier.

However, to train the subsequence classifier we need a set

of training subsequences that correspond to the action. As

the subsequences in training videos are not annotated, we
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Figure 1: The sketch of our method: Subsequence classifier is updated in each iteration t using the best n
(t)
+ subsequences

per positive video and the hardest n
(t)
− subsequences per negative video. Subsequence selection and classifier training are

alternated T times. The number n
(t)
+ of positive subsequences is decreased during training. The number n

(t)
− of negative

subsequences is fixed. Positive and negative subsequences have the same length l(t) that also decreases during MIL. The

scores of the full sequence classifier and the subsequence classifier are then combined into a final classification score.

need to solve two problems jointly: i) training of the sub-

sequence classifier, and ii) detection of subsequences from

the training videos that correspond to the action. We use the

multiple instance learning (MIL) to solve these two prob-

lems jointly.

In multiple instance learning, training set consists of a

number of bags Xi, and each bag is associated with a bi-

nary label Yi ∈ {−1,+1}. Bag Xi consists of a number

of instances Xi = {xi
j : 1 ≤ j ≤ mi} whose labels

yij ∈ {−1,+1}, 1 ≤ j ≤ mi are not provided. Bag Xi has

the positive label Yi = +1 if at least one of its instances

is positive, i.e. ∃j : yij = +1. If all instances in a bag

are negative, ∀j : yij = −1, the bag is labeled as negative,

Yi = −1. The goal of MIL is then to learn an instance-

level classifier from training instances whose labels are not

provided and thus have to be inferred during training.

In the video subsequence classification problem, bag Xi

corresponds to the full video sequence, and instances xi
j are

the subsequences of the full video sequence. For a posi-

tive video Yi = +1, we are looking for a subsequence that

corresponds to the action in the video, i.e. we want to find

a witness xi
si of the positive class in each positive bag Xi.

This is formulated as the multiple instance learning with in-

stance selection (MI-SVM, Andrews et al. [1]) and leads to

the following joint optimization problem,

min
s

min
w,b,ξ

1

2
‖w‖2 + C

∑

i

ξi (1)

s.t. w�xi
si + b ≥ 1− ξi, for Yi = +1,

−w�xi
j − b ≥ 1− ξi, for Yi = −1 and 1 ≤ j ≤ mi.

A standard solution to this optimization problem is to

perform the following two steps iteratively: i) find the wit-

ness xi
si of a positive bag Xi which is an instance with

the highest score given by the instance-level SVM classi-

fier, and ii) re-train the instance-level SVM classifier (w, b)
using the instances selected in the previous step. The iter-

ative procedure produces only a locally optimal solution of

the SVM model.
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We improve the robustness of the MIL training for the

task of subsequence classification in two ways. First, we

select longer subsequences from positive videos in early

rounds of MIL and then slowly decrease their length in later

rounds. This allows us to gradually discover the action re-

lated part of the sequence when duration of the action is

short. Subsequences from the negative bags have the same

length as the positive subsequences, and thus they are also

decreased successively during the MIL training. The length

of subsequences used during MIL training is hence given as

a monotonically decreasing sequence,

l(0) > ... > l(t) > ... > l(T ) �= 0. (2)

Secondly, we increase the recall rate of the positive in-

stances by selecting initially several instances per positive

bag and then slowly reducing their number until only one

instance is selected per bag. Thus, the number of positive

instances that is selected by the MIL algorithm is a mono-

tonically decreasing sequence,

n
(0)
+ > ... > n

(t)
+ > ... > n

(T )
+ �= 0. (3)

For negative videos, we can train the SVM model with

all subsequences that are extracted from the video. As there

is a large number of subsequences in a video, we actually

work only with a small number n
(t)
− of hard negative sub-

sequences per bag. The hard negative subsequences are

those that have the least negative score produced by the

subsequence classifier, and thus they define the margin in

the max-margin classification setup. The number of hard

negative instances per bag is kept fixed throughout the MIL

training,

n
(t)
− = const., 0 ≤ t ≤ T. (4)

In short, these are the steps of our algorithm for learning

the subsequence classifier:

1. Sample randomly a number of long subsequences from

positive and negative video sequences and train the ini-

tial subsequence classifier from them.

2. Use the subsequence classifier to select the best n
(t)
+

positive subsequences of length l(t) from each positive

video.

3. Use the subsequence classifier to select the hardest n
(t)
−

negative subsequences of length l(t) from each nega-

tive video.

4. Re-train the subsequence classifier from the selected

positive and negative subsequences.

5. Repeat steps 2. - 4. T times while reducing the length

of all subsequences and the number of positive sub-

sequences, and also keeping the number of negative

subsequences fixed.

We use the standard bag-of-features representation

(BoF) for the classification of videos and their subse-

quences. The features are obtained as dense trajectories us-

ing the method of Wang et al. [20]. Each feature is encoded

using the trajectory, HoG, HoF and MBH descriptors. The

trajectory descriptor represents the shape of motion trajec-

tory. HoG and HoF encode the static appearance and the

optical flow field in a local spatiotemporal volume around

the trajectory. MBH is the robust representation of the mo-

tion discontinuities in video, and it is invariant to the cam-

era motion. Features are quantized using the vocabulary

learned by the k-means clustering method from randomly

sampled training features. Each feature is quantized into

the nearest codeword, and the histogram of all codewords is

computed to produce the BoF representation of the full se-

quence and the subsequences. The non-linear support vec-

tor machine is used to predict the action classes based on

the BoF representation. We use the histogram intersection

kernel with non-linear SVM classifier because of good clas-

sification performance and the existence of fast computation

method for this kernel (Maji et al. [16]).

To classify a novel video, we combine the scores of the

full sequence and the subsequence classifiers. The full se-

quence classification score is computed from the BoF repre-

sentation of the whole video. The classification score of the

subsequence classifier is obtained by applying the subse-

quence classifier on all subsequences of the same length as

the final-round subsequences of the MIL training. We take

the maximal subsequence classification score and combine

it with the full sequence classification score to yield the fi-

nal score for the video. The combination is performed by a

nonlinear support vector machine that uses the RBF kernel

whose bandwidth is optimized on the validation set. The

sketch of the proposed approach is shown in Figure 1.

4. Experimental Results
We evaluate our approach on the state-of-the-art Holly-

wood2 benchmark set for the action recognition. The Hol-

lywood2 dataset consists of 12 action categories: answer-

ing the phone, driving a car, eating, fighting, getting out

of a car, hand shaking, hugging, kissing, running, sitting

down, sitting up, and standing up. The dataset contains

1707 videos that are divided into the training set (823 video

clips) and the test set (884 video clips). All video clips are

taken from 69 Hollywood movies and they contain realistic,

unconstrained human actions with large amount of camera

motion. Video sequences vary in length from 5 − 25 sec-

onds, and most of the actions are only 1 − 2 seconds long.

Therefore, the length of the action subsequence is several

times shorter than the length of the whole video. This mo-

tivates our subsequence classification approach which auto-

matically finds and classifies the part of the video that cor-

responds to the action. Video sequences in train and test
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Full seq. Comb. classifier

classifier (full + subseq.)

AnswerPhone 28.76% 31.40%
DriveCar 89.13% 89.15%
Eat 61.78% 66.42%
FightPerson 80.47% 82.89%
GetOutCar 49.72% 53.91%
HandShake 30.65% 30.75%
HugPerson 51.25% 55.90%
Kiss 64.04% 65.72%
Run 82.30% 82.71%
SitDown 63.20% 66.25%
SitUp 20.93% 21.46%
StandUp 66.82% 71.09%
mAP 57.42% 59.80%

Table 1: The comparison of the full sequence classifier

(baseline) and the combination of the full sequence and sub-

sequence classifiers on all action classes of the Hollywood2

dataset.

Hollywood2

Wang et al. (2009) 47.7%
Taylor et al. (2010) 46.6%
Ullah et al. (2010) 53.2%

Gilbert et al. (2011) 50.9%
Le et al. (2011) 53.3%

Wang et al. (2011) 58.2%
Wang et al. (2013) 59.9%
Combined classifier 59.8%

Table 2: Comparison of our combined classifier (full se-

quence + subsequence classifier) to the state-of-the-art

methods on the Hollywood2 dataset.

set are taken from different movies. We follow the evalua-

tion protocol of Laptev et al. [15] and train the one-against-

all classifier for each action category. Precision-recall (PR)

curves are calculated from the classification scores, and per-

class performance is based on the average precision (AP)

values computed from the corresponding PR plots. Overall

performance is reported as the mean average precision over

all classes (mAP) and it is used for the comparison with the

state-of-the-art.

The full sequence classifier is used as the baseline in

our comparison in Table 1. We use the same parameters

as in the paper of Wang et al. [20], except for the choice of

the kernel function. We use the intersection kernel because

there exists a fast method for its computation. Wang et al.
use χ2 kernel function that yields 0.8% higher performance,

but at the price of slower computation of the kernel matrix

(about 3 times longer training and test time).

Table 1 shows the comparison of the full sequence clas-

Category Overlap

SitDown 48.6%
GetOutOfCar 34.4%

Table 3: The detection performance of the subsequence

classifier on two Hollywood2 categories (SitDown and

GetOutOfCar) for which we created the ground truth. The

detection performance expressed as the PASCAL’s overlap

(intersection over union) score.

sifier (baseline) and the combined classifier that aggregates

the scores of the full sequence and subsequence classifiers.

Finding a subsequence in a video that represents the action

and classifying it with the subsequence classifier yields an

improvement over the baseline of 1 − 5% in average pre-

cision for most of the Hollywood2 classes. Largest im-

provements are for the classes StandUp, HugPerson and

Eat, where the gain is almost 5%. On the other hand, classes

such as DriveCar or Run give only a marginal improvement

over the baseline. After averaging all the classes, the com-

bination of the subsequence and full sequence classifiers

yields 2.5% better performance than the baseline (59.8%
vs. 57.4%).

Table 2 shows the comparison of our method and the

state-of-the-art methods on Hollywood2 dataset. We see

that the combination of subsequence and full sequence clas-

sifier outperforms almost all of the state-of-the-art results,

in spite of using slightly inferior kernel function than other

methods (intersection kernel vs. χ2). The most recent re-

sult on the Hollywood2 dataset (Wang et al. 2013) com-

bines the BoF representation with spatiotemporal pyramids

and yields 59.9% mAP. The performance of our method is

only 0.1% weaker than this, although our method does not

use the stronger, but computationally more expensive, pyra-

midal features.

In Table 3 we show the results of detection performance

for our subsequence classifier. We evaluate this perfor-

mance using the PASCAL overlap (intersection over union)

criterion on two categories of the Hollywood2 dataset for

which we have manually labeled the ground truth subse-

quences. The overlap of detected subsequence and the

ground truth for SitDown class is 48.6%, whereas for

GetOutOfCar the overlap is 34.4%. We consider these as

very good results, because the training of our subsequence

detector is automatic.

Finally in Figure 2 to 4 we give some qualitative results

of subsequence detection for two action classes of Holly-

wood2. Figure 2 and 3 illustrate the successful subsequence

detection. In Figure 4 detection failed, most probably be-

cause of the large camera zoom on the main actor’s face,

making his body motion hardly visible while he is perform-

ing the ”SitDown” action.
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5. Conclusion
Actions in video typically occupy only a small part of

a full video. In this paper we propose a method to auto-

matically learn a subsequence classifier that can detect part

of the video that corresponds to the action. As the subse-

quences of training videos are not annotated, our method

jointly trains the subsequence classifier and labels the ac-

tion subsequences in training videos. The framework of

multiple instance learning is used to find subsequences that

correspond to the action which then allow to train the sub-

sequence classifier. To obtain a robust solution to the MIL

problem, we propose a sequential algorithm that consecu-

tively decreases the number of inferred action subsequences

per video and trims their length until only one short subse-

quence remains as the action representative in each video.

The combination of the automatically trained subsequence

classifier and the full sequence classifier is evaluated on the

challenging Hollywood2 dataset where it yields a signifi-

cant improvement over the baseline performance on many

action classes. We also examine the temporal localization

performance of the subsequence classifier on two categories

of Hollywood2 dataset and achieve promising results.
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Figure 2: Detection of the ”GetOutOfCar” subsequence for the test video #234. Overlap of detected subsequence and the

ground truth is 96.7%. The length of the sequence is 134 frames, and the subsequence is detected from 21th to 80th frame.

Figure 3: Detection of the ”SitDown” subsequence for the test video #682. Overlap of detected subsequence and the ground

truth is to 94.9%. The length of the sequence is 169 frames, and the ”GetOutOfCar” subsequence is detected from 81th to

120th frame.

Figure 4: Wrong detection of the ”SitDown” subsequence in the test video #352. The length of the sequence is 438 frames,

and the ground truth covers from 90th to 110th frame.
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