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Abstract

In this paper, we present a novel and original framework
for computing Local Binary Pattern (LBP)-like patterns on
a triangular mesh manifold. This framework, dubbed mesh-
LBP can be adapted to all the LBP variants employed in
2D image analysis. As such, it allows extending the re-
lated techniques to mesh surfaces. First, we describe the
foundations, the construction and the features of the mesh-
LBP. In the experiments, we first show evidence of the pres-
ence of the “uniformity” aspect in the mesh-LBP patterns.
Then, we show the mesh-LBP repeatability across differ-
ent instances of same objects, reporting also the application
of mesh-LBP to the problem of 3D texture-classification in
comparison to standard 3D surface descriptors.

1. Introduction

Local Binary Pattern (LBP) is a local shape descriptor
that has been introduced by Ojala et al. [16, 17] for the pur-
pose of describing 2D textures. Its computational simplicity
and discriminative power attracted the attention of the im-
age processing community, and rapidly it found other ap-
plications in visual inspection, remote sensing, face recog-
nition and motion analysis. However, all the LBP-based
methods developed so far operate either on photometric in-
formation provided by 2D color images, or on geometric
information in 2D depth images.

Triangular mesh manifold is a simple, compact and flex-
ible format for encoding shape information widely used in
many fields, such as animation, medical imaging, computer-
aided design and many others. The recent advances in shape
scanning and modeling also allowed the integration of both
photometric and geometric information into a single sup-
port defined over a 2D mesh-manifold. Despite the abun-
dance and the richness of mesh manifold modality, to the
best of our knowledge, there is no a computational support
that allows the computation of LBP on this format. Since
LBP requires an ordered support for its computation, in our
opinion the major factor that contributed in this deficiency
is the lack of an intrinsic order in the triangular mesh man-
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ifold. On the contrary, computation of LBP on 2D images
benefit of the implicit ordering of the 2D image array. In
this paper, we address the challenge of computing LBP on
a mesh manifold by proposing an original computational
framework, which we dubbed mesh-LBP that allows the
extraction of LBP-like patterns in a triangular mesh man-
ifold. With this framework, we can therefore build on the
current 2D LBP analysis methods, extending them to mesh
manifolds as well as to the mesh modality that embeds both
geometrical and photometric information.

The paper is organized as follows: In the remaining of
this Section, first we provide an overview of the LPB litera-
ture, then the main features of our contribution are empha-
sized; In Sect. 2, we describe the technical foundation of the
mesh-LBP, and extend it to a multi-resolution framework
in Sect. 3; Then we present some experimental studies and
we show different application scenarios of the mesh-LBP
in Sect. 4. Finally, concluding remarks and future work are
drawn in Sect. 5.

1.1. LBP: Overview

The original LBP operator [16] forms labels for the im-
age pixels by thresholding a 3 x 3 neighborhood of each
pixel with the center value, and considering the result as
a binary number (Fig. 1). This number encodes the mu-
tual relationship between the central pixel and its neigh-
boring pixels. The histogram of the so obtained numbers
can then be used as a texture descriptor. This operator is
distinguished by its simplicity and its invariance to mono-
tonic gray-level transformations. An extended version that
can operate on different circular neighborhood sizes, also
allowing sub-pixel alterations, was proposed in [17]. Other
neighborhood variants appeared later, like the oriented el-
liptic neighborhood proposed by Liao et al. [13], which ac-
counts for anisotropic information, and the multi-block LBP
(MB-LBP) that compares averages of intensities of neigh-
boring pixels rather than pixel values, in order to capture
macrostructure features in the image [25]. Other versions
have been proposed to improve the discriminative power,
such as the ILBP [11] in which pixel values are compared
with the neighborhood mean, and ELPB [9] which encodes,
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Figure 1. Left: computation of basic LBP code from a 3 x 3 neigh-
borhood. Each pixel, starting from the upper left corner is com-
pared with the central pixel to produce 1 if its value is greater and
0 otherwise. The result is an 8-bit binary code. Right: an example
of circular neighborhood.

in addition to the binary comparison between pixels values,
the amplitude of their difference using additive binary dig-
its. To improve the robustness, Tan et al. [21] introduced
the so-called local ternary pattern (LTP), which substitutes
the original binary code by a 3-value code (1, 0 and -1) by
means of a user-defined threshold. This new operator ad-
dressed the sensitivity to noise, though at the expense of
the invariance to monotonic gray-level transformations. A
fuzzy-logic version of the LTP was proposed later in [1],
where a fuzzy membership function substituted the crisp
three state association used in [21].

With regard to 3D shape analysis, most if not all the
LBP-based approaches have been developed in the context
of face recognition. All the techniques developed in this
context operate on the standard depth images where the z
coordinate is mapped to a gray-level value. This format
allowed a straightforward employment of 2D LBP opera-
tors as it was demonstrated in the pioneering work of Li et
al. [12]. Later, Huang et al. [8, 10] extended it to ELBP.
Sandbach et al. [20] proposed local normal binary pattern
(LBPN), which used the angle between normals at two
points rather than the depth value. Fehr and Burkhardt [5]
attempted an LBP tailored for volumetric data by sampling
a sphere of a given radius around a central voxel. The ap-
proach is computationally expensive in that the rotation-
invariance had to be addressed with complex techniques in-
volving spherical correlation in the frequency domain.

1.2. Paper contribution

In this paper, we propose a framework, which we dubbed
mesh-LBP for designing and extracting local binary pat-
terns from a 2D mesh-manifold. In addition to its orig-
inality, this framework is characterized by the following
features: 1) Effectiveness: This framework operates di-
rectly on 3D triangular mesh, thus avoiding expensive pre-
processing, such as registration and normalization, required
to obtain depth images; 2) Generalization: By its ability of
handling mesh data, this framework can deal with a larger
spectrum of surfaces (e.g., closed, open, self occluded) as
compared to its counterpart in depth images; 3) Adaptabil-
ity: This framework can be adapted to hold most if not all
the LBP versions proposed for 2D and depth images; 4)
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Simplicity: mesh-LBP preserves the simplicity of the orig-
inal LBP, not requiring any surface parametrization, apart
the standard mesh arrangement into facets and vertex ar-
rays, while keeping linear computational complexity.

2. The mesh-LBP

The mesh-LBP is built upon the idea of establishing a
local ordered arrangement in the mesh allowing to browse a
ring of facets in a circular fashion.

Let S(V, F') be the triangular mesh representation of an
open or closed surface, where V' and F’ are, respectively, the
sets of vertices and facets in the mesh. Let consider a con-
vex contour on a mesh, which we assume regular, i.e., each
vertex has a valence of six. Consider the facets that have
an edge on that contour (Fig. 2(a)). We dub these facets
Fout facets, as they seem pointing outside the contour. Let
us consider also the set of facets that are one-to-one adja-
cent to the Fout facets and which are located inside the
convex contour. Each facet in this set, which we dub F'in,
shares with its corresponding Fout facet an edge located
on the convex contour. Let assume that the Fout facets
are initially ordered in a circular fashion across the contour.
Given that initial arrangement, we bridge the gap between
each pair of consecutive Fout facets, i.e., we extract the se-
quence of adjacent facets, located between the two consecu-
tive Fout facets and which share their common vertex (the
vertex on the contour). We dub these facets Fgap facets
(Fig. 2(b)). In so doing, we obtain a ring of facets that are
ordered in a circular fashion (Fig. 2(c)). The arrangement
inherits the same direction (clock-wise or anti-clockwise) of
the initial sequence of Fout facets. The ring construction
algorithm is described in the procedures “GetRing” (Algo-
rithm 1) and “Bridge” (Algorithm 2).

Algorithm 1 — GetRing

Notation:

Fout: sequence of n facets, fouty, fouta, ...
vex contour

Fin: sequence of n facets, fini, fing, ..., fin,, one-to-one adjacent
to Flout, and located inside the area delimited by the contour. Depending
on the contour, the Fin might present duplication.

Fgap;: sequence of adjacent facets located between a pair of consecutive

, fouty, lying on a con-

Fout facets fout;, fout;o,+1,7 = 1,...,n, being % the modulo op-
erator
Pseudocode:

Ring < GetRing(Fout, Fin)

Ring =11

for all pair (fout;, fout,%,41),9=1,...,ndo

append fout; to Ring
Fgap; < Bridge(fout;, fouto, 1, fin:)
append F'gap; to Ring

end for

For the particular case of a contour formed by the three
facet’s edges, the Fout facets represent the three facets
adjacent to the central facet. In this case, the obtained
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Figure 2. Row 1 — Construction of an ordered ring: (a) Initial Flout
facets; (b) Bridging the gap between the pairs of consecutive Flout
facets with the Fgap facets; (c) The obtained ordered ring; (d)
Ordered ring constructed around a central facet. Row 2 — Multi-
resolution mesh-LBP construction: (e) Extraction of the next se-
quence of Fout facets, as the facets adjacent to F'gap and which
are not part of the current ring; (f) Extracting the F'gap facets;
(g) The second ordered ring extracted; (h) Five concentric ordered
rings. Notice that the first facet of each ring (marked by 1) is lo-
cated at the same relative position. (Figure best seen on softcopy
version.)

Algorithm 2 — Bridge
Fgap; < Bridge(fout;, fout;+1, fin;)
Fgap; =1
v < vertex shared by (fout;, fout;+1)
gf < facet adjacent to fout;, different from fin;, and containing v
prev < fout;
while g f # fout;+1 do
append g f to Fgap;
new_g f < facet adjacent to g f, different from prev and
containing v
prev<+gf

gf < new_gf
end while

ring is composed of 12 ordered facets (Fig. 2(d)). Let
h(f) : S — R, be a scalar function defined on S, e.g.,
photometric data or curvature. The circular ordering of the
facets allows us to derive a binary pattern (i.e., sequence of
0 and 1 digits) from it, and thus to compute a local binary
operator in the same way as in the standard LBP. We define
the basic mesh-LBP operator at a facet f. by thresholding
its ordered ring neighbourhood:

meshLBP(fe) = > s(h(fi) — h(fe)) - a(k) (1)
k=1
s@={4 220, ©

where a(k) is a weighting function. For a(k) = 2F, we
obtain the basic LBP operator firstly suggested by Ojala et
al. [16]. Unless (k) is a constant, different binary patterns
and thus different mesh-LBP values can be derived from the
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central facet and its ring neighborhood.

In order to make the mesh-LBP invariant to the ordering
of the facets in the ring and its traversal, two aspects should
be addressed: The position of the first facet (i.e., the first
Fout facet) in the ring, that is which of the three facets ad-
jacent to the central one the ring starts from; The direction
of the ring traversal (clock-wise or anti-clockwise). The
last aspect can be easily fixed by orienting the normals of
the mesh-manifold. The first aspect can be addressed using
three solutions: 1) Selecting the minimum binary pattern by
performing a circular bit-wise shift as was suggested in the
standard LBP [17]. However, this might affect the discrim-
inative power of the operator. In addition, there is a strong
hypothesis that the mesh-LBP patterns exhibit an “unifor-
mity” aspect similar to the one observed by Ojalaetal. [17]
in their gray level images counterpart. This hypothesis is
confirmed in the experiments reported in Sect. 4.1. Thus,
we think that adopting the solution (1) might compromise
the uniformity aspect; 2) Considering all binary pattern val-
ues, but this solution create redundancy and further burden
the computation; 3) Selecting the first F'out facet with re-
spect to a local reference frame determined based on the lo-
cal morphology of the ring neighborhood. For this purpose,
the method proposed in [22] can be used. In the experi-
ments, we adopted a solution close to this last one, where
the nearest facet to the azimuth plane derived from the local
reference frame of the ring is selected.

3. Multi-resolution mesh-LBP

The mesh-LBP is extended to a multi-resolution frame-
work by deriving from the ordered ring a sequence of subse-
quent rings preserving the ordering property. From the first
ring, the sequence of facets that are one-to-one adjacent to
the F'gap facets are extracted (Fig. 2(e)). This sequence,
which inherits the order property of the F'gap facets, will
constitute the set of Fout facets for the subsequent ring. So,
by filling the gap between each two consecutive facets of
this sequence (Fig. 2(f)), a new ring which exhibits the same
ordered structure of its precedent is obtained (Fig. 2(g)).
By iterating this procedure we build a sequence of concen-
tric ordered rings which represent the primitive entity for
computing multi-resolution mesh-LBP (Fig. 2(h)). Details
of the corresponding algorithm (“Multi-Ring”) are reported
in Algorithm 3. In this case, the “GetRing” procedure is
slightly modified, so that it produces the F gap facets of the
current ring and the Fout facets of the subsequent ring.

It is worth mentioning that in the case the regularity as-
sumption for the mesh is satisfied, the number of facets v
across the rings evolves according to the following geomet-
ric progression from ring 7 to ring 7 + 1:

Py =1 1 12,

3

Given a multi-ring constructed around a central facet f,



Algorithm 3 — Multi-Rings
Nr: Number of rings constructed around a central facet
Rings < [ 1; Fin < Fin_root; Fout < Fout_root
fori = 1to Nrdo
(Ring, NewFout, Fgap) < GetRing(Fout, Fiin)
Append Ring to Rings
Fout +— NewFout
Fin < Fgap
end for

a multi-resolution mesh-LBP operator is derived as follows:

14

> " s(h(fi) — h(fe)) -

k=1

meshLBP) (f.) =

ak), @)

where r is the ring number, and p is the number of facets
equally spaced on the ring. The parameters » and p control,
respectively, the radial resolution and the azimuthal quanti-
zation of the operator.

The repeatability of the mesh-LBP patterns can be ham-
pered by the local mesh tessellation irregularity, for which
the assumption of vertex valence of six does not hold, and
consequently the regular progression of Eq. (3) is not sat-
isfied. This issue can be addressed in different ways: 1)
Adding a pre-processing stage that regularizes the density
of the mesh triangulation; 2) Deriving iso-geodesic contours
from the ordered rings that will act as a support region for
computing mesh-LBP operators; 3) Applying the local den-
sity invariant smoothing, proposed by Darom and Keller [4]
to the ring vertices around the central facet. In our exper-
iments, we rather used a simple technique that interpolates
the scalar function across each ring to obtain a sequence that
matches the ideal progression.

Finally, we observe that the topology of the neighbor-
hood from which the mesh-LBP features are computed can
be changed to accommodate the specificities of a given
shape analysis application. In fact, we can show that most,
if not all, the different LBP neighborhood and operator vari-
ants proposed in the literature can be easily derived from
the ordered rings structure of the mesh-LBP. Because of the
limited space, we just mention the different LBP variants
and illustrate the related mesh-LBP patterns in Tab. 1.

4. Experiments

In the experimentation, we examined three different as-
pects of the proposed framework: 1) Presence of mesh-
LBP uniform patterns; 2) The repeatability of mesh-LBP
patterns; 3) Discriminative capability of mesh-LBP for 3D
texture patterns.

4.1. Uniform patterns

By studying the statistics of the number of bitwise 0-
1 transitions in the binary patterns, Ojala et al. [17] no-
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ticed that the majority of the patterns in textured 2D im-
ages have a number of transitions U equal at most to 2.
These patterns are called “uniform”. In our investigation,
we considered a representative set of three surface mesh col-
lected from different sources. The first surface is a portion
of a pot object from the “MIT CSAIL textured 3D mod-
els database” [7]. This object exhibits textured shape pat-

terns on the surface. The second surface represents a face
scan from the “Binghamton University 3D facial expres-
sion database” (BU-3DFE) [24]. The third one is a closed
surface of a cat model from the “TOSCA high-resolution
database” [3]. These models are shown in Fig. 3(a)-(c), re-
spectively.

Figure 3. Mesh models used in the uniformity and surface descrip-
tion experiments: (a) Portion of a pot (MIT CSAIL textured 3D
models); (b) Face surface (BU-3DFE); (c) Cat model (TOSCA
high-resolution).

Four scalar functions on the mesh manifold have been
studied, namely, the mean curvature (H), the gaussian cur-
vature (K), the curvedness (C), and the angle between
facets normals (D). For each of these functions, we com-
puted the number of transitions U in the binary patterns
computed by using the multi-resolution mesh-LBP opera-
tor of Eq. (4), across six levels of spatial resolution (from
1 to 6), and using 12 samples for the azimuthal quantiza-
tion (in this case patterns are uniform for U < 4). The
results are depicted in Fig. 4. We can observe that the num-
ber of uniform patterns exceeds 90% up to the third ring,
across the four scalar functions, for all the three surfaces.
The angle between normals is the function exhibiting the
best uniformity with an overall percentage above 80%. The
mean curvature and the curvedness show virtually the same
rates. Overall, all the scalar functions show a percentage
of uniform patterns above 70%. These observations sug-
gest an evidence on the existence of a “uniformity” aspect
in the triangular mesh manifold, and thus mesh-LBP has
the potential of adapting the uniformity-driven description
suggested by Ojala et al. [17].

4.2. Repeatability

Repeatability of mesh-LBP patterns measures the capa-
bility of the descriptor to assume comparable values when
extracted from corresponding facets of different instances
(i.e., scans) of a same 3D object. For this experiment, we
acquired 32 facial scans of a same subject with neutral or
moderate facial expressions. The four surface functions re-
ported in Sect. 4.1, namely, mean curvature, gaussian cur-
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Figure 4. Percentage of facets having a number of transition U less
than 3 in their mesh-LBP computed for the three mesh models of
Fig. 3. Legend — a: Mean curvature; b: Gaussian curvature; c:
Curvedness; d: Angle between facets normals.

vature, curvedness and angle between facets normals have
been used for computing mesh-LBP. For each of these func-
tions, we considered three different mesh-LBP operators,
that is, oy (k) = 1, az(k) = 2F, and the number of tran-
sitions. Different spatial resolutions corresponding to eight
rings r = 1,...,8 have been also accounted. To compute
the repeatability of mesh-LBP patterns, we followed a simi-
lar approach to that proposed in [14] for 3D keypoints. With
this solution, first fine alignment between each 3D probe
scan and a reference gallery scan is performed using ICP
registration. Then, for each facet in the probe, the near-
est neighbor facet in the gallery is found whose mesh-LBP
value is equal to the mesh-LBP value of the probe facet (the
nearest neighbor distance between facets is computed us-
ing the 3D coordinates of their centroid). This operation
is repeated for each facet in the probe and the distances
computed as above are recorded. Varying a proximity ra-
dius around the facets it is possible to count the repeated
mesh-LBP values between probe and gallery scans, which
are away less than the radius. The overall repeatability is
obtained by iteratively using one of the scan as gallery and
all the remaining as probes. Figures 5(a)-(c) show the ob-
tained average repeatability as a function of increasing val-
ues of the distance radius, respectively, for the three used
mesh-LBP operators. Plots are reported for the 1st-ring, but
a similar behaviour resulted for the other rings. In general,
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we observe that the gaussian curvature and the angle be-
tween facets normals show a similar behaviour, obtaining
the highest repeatability in all the cases. The mean cur-
vature and curvedness, instead, score similar results each
other, showing lower performance especially for the «; and
o weighting functions.

4.3. Discriminating 3D Texture Patterns

In this experiment, we investigated the potential of the
mesh-LBP for discriminating 3D texture patterns on mesh-
manifolds. We clarify that with “3D texture pattern” we do
not mean texture-mapped mesh models, but 3D mesh sur-
faces exhibiting regular shape patterns. We also point out
that our goal is not to elaborate a proper method for 3D
shape texture classification, but rather probing the capabil-
ity of the mesh-LBP as a framework for such task that, to
the best of our knowledge, has not been addressed before.

We used surface samples exhibiting a variety of 3D
shape patterns, collected from seven different object mod-
els of the “MIT CSAIL textured 3D models database” [7].
These objects are bagel, bird, gargoyle, head, lion, plaque
and pot. These models have a reasonably uniform mesh,
and the corresponding 3D textures are reported in Fig. 6
(1st row). For each sample, we computed a 1D-histogram
of the mesh-LBP operator (Eq. (4)) for the weighting func-
tions (a1 (k) = 1) and (c2(k) = 2¥), for the spatial resolu-
tionr = 1,...,7, and azimuthal quantization m = 12. For
the weighting function «/, the resulting mesh-LBP patterns
can take values in the interval [0,12], so these are accumu-
lated in a 1-D histogram with 13 bins for each ring. For
the ap function, for which the range of mesh-LBP patterns
is [0,4096], we adopted a uniform/non-uniform mesh-LBP
partition, that is 1123 bins corresponding to uniform pat-
terns having number of transitions equal at most to four,
and one bin for all the rest (the 2973 non-uniform ones).
Based on this, two types of 2D histograms of size (7,13)
and (7,1124), associated with oy and as, respectively, are
computed for each texture model. The histograms are com-
puted on an area of 19 rings, which is sufficient for covering
the 3D texture variation in each texture sample.

To compute the distance between two histograms H;
and Hs the complement of the Bhattacharyya coefficient
B(.),ie., /1 — B(H;, Hy) was used. We repeated the his-
togram computation for each model using four scalar func-
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Figure 5. Repeatability of mesh-LBP: (a) a1 (k) = 1; (b) aa(k) = 2"; (c) number of transitions.

tions, namely, the mean curvature, the gaussian curvature,
the shape index (instead of the curvedness) and the angle
between facets normals. As an example, Fig. 6 (2nd row)
depicts histogram instances, of the first type, obtained with
the angle between facets normals.

bird  gargoyle head lion  plaque

bagel

pot

Figure 6. Top: 3D texture samples from the seven classes. Bottom:
The corresponding histograms obtained with the angle between
facets normals using 7 rings and 12 samples per ring (histograms
with 7 rows and 13 columns).

We compared the mesh-LBP descriptors with other
standard descriptors, including the geometric histogram
(GH) [2], and the shape distribution variants [!8], that is
the distance between a fixed point and one random point on
the surface (D1), the distance between two random points
on the surface (D2), the square root of the area of the tri-
angle between three random points on the surface (D3), the
cube root of the volume of the tetrahedron between four
random points on the surface (D4), and the angle between
three random points on the surface (A3).

The assessment of the discriminative power of the dif-
ferent descriptors is performed as follows. For each texture
class, we have 30 instances and compute descriptors of each
type. From the obtained set, we compute the mean and the
variance. Since all the descriptors have a histogram struc-
ture, the variance we consider here is the variance of the
Bhattacharyya distances between descriptor instances and
their mean. For each descriptor we compute the distance
matrix of the seven texture classes, where the diagonal term
is the mean intra-class distance of the class ¢ and the non-
diagonal term is the distance between the two means of the
the descriptors of the classes ¢ and j.

Figure 7 and 8 depict, respectively, the distance matri-
ces related to the mesh-LBP descriptors and the group of
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other standard descriptors. Due to space limit, we reported
only the results for the Gaussian curvature (K) and the an-
gle between facet normals (D). We notice that the intra-class
distance is quite below the inter-class counterpart across all
mesh-LBP descriptors. Whereas for the other standard de-
scriptors we notice that the intra-class distance exceeds its
inter-class counterpart at many instances (marked in bold).
This is a clear indication of the potential and the appropri-
ateness of the mesh-LBP descriptors for discriminating tex-
tured shapes as compared to other standard descriptors.

In Fig. 9 we also report the distance matrices between
all the class instances (i.e., 30 instances for each of the 7
classes). In the top row, results for the mesh-LBP computed
using K and D descriptors, and the weighting functions o
and as are given in (a) and (b), respectively. In the bot-
tom row, results for the standard descriptors are shown. In
the mesh-LBP distance matrices, we can easily distinguish
the 30 x 30 blocks related to the inter-class distances be-
tween class pairs. This is not straightforward for the other
descriptors. This observation confirms the superior discrim-
inant capability of the mesh-LBP descriptors. The classifi-
cation accuracy, estimated as the percentage of occurrences
where the inter-class distance is greater than the intra-class
distance across all the classes is reported for each descriptor
beneath the distance matrix in Fig. 9. The obtained results
clearly evidence the performance improvement obtained us-
ing the mesh-LBP approach.

Finally, we compared the discriminative power of the
mesh-LBP descriptors using the following criterion:

M M
j:ZZDiJ-,

i=1 j=i+1

®)

where M is the number of texture classes (7 in our exper-
iment). D;; is the probabilistic-like inter-class separation
between texture classes ¢ and j defined as follows:

1, - ., 1 1 1,0% of
Dij = Edzst(Hi,Hj)Q(EJrE)Jri(U%{’ + 0_12; *2),
i i

where (H;, H;) and (op,,0q,) are the mean histograms
and the variances of the texture classes i and 7, respectively.
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7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13

1 2 3 4 5 6 7
1| 008 | 057 | 049 | 0.55 | 0.58 | 0.58 | 0.54
2| 000 | 013 | 0.54 | 0.51 | 0.60 | 0.62 | 0.53
31000 | 000 | 0.12 | 048 | 0.61 | 046 | 0.36
4| 0.00 | 000 | 0.00 | 0.12 | 043 | 0.52 | 0.47
5| 000 | 0.00 | 0.00 | 0.00 | 0.17 | 0.61 | 0.61
6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.42
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15

Figure 7. Distance matrices between the 3D texture classes, related to o1 (left) and o (right), obtained using Gaussian curvature (K), and

angle between facets normals (D).

The criterion J computed for the different mesh-LBP
descriptors is reported in Tab. 2. We notice that for both
the weighting functions, the descriptors keep the same per-
formance ranking, with D descriptor coming at the top fol-
lowed by the K, then come ST and H.

H K SI D
J(a1) 9.84 | 49.73 | 10.22 | 93.02
J(a2) | 2490 | 29.36 | 26.83 | 30.11

Table 2. Discriminative power J computed for the different mesh-
LBP descriptors.

5. Conclusions

In this paper, we presented mesh-LBP as a novel frame-
work for computing local binary patterns on triangular mesh
manifold. This framework keeps the simplicity and the el-
egance characterizing the original LBP and allows the ex-
tension of all its variants, developed in 2D image analysis,
to the mesh manifold. The mesh-LBP reliefs object surface
data from normalization and registration procedure required
when using depth images, while it extends the spectrum of
LBP analysis to closed surfaces. The experimental tests re-
vealed that mesh-LBP exhibit a kind of “uniformity” as-
pect for the different types of scalar functions, pretty simi-
lar to the one noticed in 2D LBP. Experiments on 3D texture
classification showed clear evidence of the appropriateness
of the mesh-LBP descriptors for such a task, and their su-
perior discriminative power as compared to other popular
descriptors. As future work, we plan extending the mesh-
LBP to global analysis. One potential approach is extracting
ordered blocks from the mesh surfaces and then construct
from them, by concatenation, a global histogram. We be-
lieve that mesh-LBP will open new perspectives for mesh
manifold analysis and will be an appropriate complement
to other mesh manifold analysis techniques.
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