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Abstract

In this paper, we present a novel and original framework

for computing Local Binary Pattern (LBP)-like patterns on

a triangular mesh manifold. This framework, dubbed mesh-

LBP can be adapted to all the LBP variants employed in

2D image analysis. As such, it allows extending the re-

lated techniques to mesh surfaces. First, we describe the

foundations, the construction and the features of the mesh-

LBP. In the experiments, we first show evidence of the pres-

ence of the “uniformity” aspect in the mesh-LBP patterns.

Then, we show the mesh-LBP repeatability across differ-

ent instances of same objects, reporting also the application

of mesh-LBP to the problem of 3D texture-classification in

comparison to standard 3D surface descriptors.

1. Introduction

Local Binary Pattern (LBP) is a local shape descriptor

that has been introduced by Ojala et al. [16, 17] for the pur-

pose of describing 2D textures. Its computational simplicity

and discriminative power attracted the attention of the im-

age processing community, and rapidly it found other ap-

plications in visual inspection, remote sensing, face recog-

nition and motion analysis. However, all the LBP-based

methods developed so far operate either on photometric in-

formation provided by 2D color images, or on geometric

information in 2D depth images.

Triangular mesh manifold is a simple, compact and flex-

ible format for encoding shape information widely used in

many fields, such as animation, medical imaging, computer-

aided design and many others. The recent advances in shape

scanning and modeling also allowed the integration of both

photometric and geometric information into a single sup-

port defined over a 2D mesh-manifold. Despite the abun-

dance and the richness of mesh manifold modality, to the

best of our knowledge, there is no a computational support

that allows the computation of LBP on this format. Since

LBP requires an ordered support for its computation, in our

opinion the major factor that contributed in this deficiency

is the lack of an intrinsic order in the triangular mesh man-

ifold. On the contrary, computation of LBP on 2D images

benefit of the implicit ordering of the 2D image array. In

this paper, we address the challenge of computing LBP on

a mesh manifold by proposing an original computational

framework, which we dubbed mesh-LBP that allows the

extraction of LBP-like patterns in a triangular mesh man-

ifold. With this framework, we can therefore build on the

current 2D LBP analysis methods, extending them to mesh

manifolds as well as to the mesh modality that embeds both

geometrical and photometric information.

The paper is organized as follows: In the remaining of

this Section, first we provide an overview of the LPB litera-

ture, then the main features of our contribution are empha-

sized; In Sect. 2, we describe the technical foundation of the

mesh-LBP, and extend it to a multi-resolution framework

in Sect. 3; Then we present some experimental studies and

we show different application scenarios of the mesh-LBP

in Sect. 4. Finally, concluding remarks and future work are

drawn in Sect. 5.

1.1. LBP: Overview

The original LBP operator [16] forms labels for the im-

age pixels by thresholding a 3 × 3 neighborhood of each

pixel with the center value, and considering the result as

a binary number (Fig. 1). This number encodes the mu-

tual relationship between the central pixel and its neigh-

boring pixels. The histogram of the so obtained numbers

can then be used as a texture descriptor. This operator is

distinguished by its simplicity and its invariance to mono-

tonic gray-level transformations. An extended version that

can operate on different circular neighborhood sizes, also

allowing sub-pixel alterations, was proposed in [17]. Other

neighborhood variants appeared later, like the oriented el-

liptic neighborhood proposed by Liao et al. [13], which ac-

counts for anisotropic information, and the multi-block LBP

(MB-LBP) that compares averages of intensities of neigh-

boring pixels rather than pixel values, in order to capture

macrostructure features in the image [25]. Other versions

have been proposed to improve the discriminative power,

such as the ILBP [11] in which pixel values are compared

with the neighborhood mean, and ELPB [9] which encodes,
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(a) K

1 2 3 4 5 6 7

1 0.01 0.16 0.17 0.08 0.31 0.07 0.16

2 0.00 0.02 0.12 0.18 0.36 0.16 0.15

3 0.00 0.00 0.01 0.19 0.38 0.15 0.06

4 0.00 0.00 0.00 0.01 0.26 0.09 0.18

5 0.00 0.00 0.00 0.00 0.03 0.32 0.39

6 0.00 0.00 0.00 0.00 0.00 0.02 0.14

7 0.00 0.00 0.00 0.00 0.00 0.00 0.05

(b) D

1 2 3 4 5 6 7

1 0.01 0.37 0.28 0.32 0.44 0.19 0.31

2 0.00 0.02 0.25 0.25 0.47 0.32 0.25

3 0.00 0.00 0.04 0.34 0.54 0.19 0.08

4 0.00 0.00 0.00 0.03 0.30 0.31 0.34

5 0.00 0.00 0.00 0.00 0.08 0.46 0.56

6 0.00 0.00 0.00 0.00 0.00 0.01 0.24

7 0.00 0.00 0.00 0.00 0.00 0.00 0.01

1 2 3 4 5 6 7

1 0.08 0.59 0.51 0.46 0.48 0.53 0.49

2 0.00 0.12 0.55 0.54 0.60 0.61 0.56

3 0.00 0.00 0.09 0.41 0.48 0.48 0.43

4 0.00 0.00 0.00 0.12 0.41 0.44 0.44

5 0.00 0.00 0.00 0.00 0.11 0.51 0.51

6 0.00 0.00 0.00 0.00 0.00 0.09 0.45

7 0.00 0.00 0.00 0.00 0.00 0.00 0.13

1 2 3 4 5 6 7

1 0.08 0.57 0.49 0.55 0.58 0.58 0.54

2 0.00 0.13 0.54 0.51 0.60 0.62 0.53

3 0.00 0.00 0.12 0.48 0.61 0.46 0.36

4 0.00 0.00 0.00 0.12 0.43 0.52 0.47

5 0.00 0.00 0.00 0.00 0.17 0.61 0.61

6 0.00 0.00 0.00 0.00 0.00 0.08 0.42

7 0.00 0.00 0.00 0.00 0.00 0.00 0.15

Figure 7. Distance matrices between the 3D texture classes, related to α1 (left) and α2 (right), obtained using Gaussian curvature (K), and

angle between facets normals (D).

The criterion J computed for the different mesh-LBP

descriptors is reported in Tab. 2. We notice that for both

the weighting functions, the descriptors keep the same per-

formance ranking, with D descriptor coming at the top fol-

lowed by the K, then come SI and H .

H K SI D

J (α1) 9.84 49.73 10.22 93.02

J (α2) 24.90 29.36 26.83 30.11

Table 2. Discriminative power J computed for the different mesh-

LBP descriptors.

5. Conclusions

In this paper, we presented mesh-LBP as a novel frame-

work for computing local binary patterns on triangular mesh

manifold. This framework keeps the simplicity and the el-

egance characterizing the original LBP and allows the ex-

tension of all its variants, developed in 2D image analysis,

to the mesh manifold. The mesh-LBP reliefs object surface

data from normalization and registration procedure required

when using depth images, while it extends the spectrum of

LBP analysis to closed surfaces. The experimental tests re-

vealed that mesh-LBP exhibit a kind of “uniformity” as-

pect for the different types of scalar functions, pretty simi-

lar to the one noticed in 2D LBP. Experiments on 3D texture

classification showed clear evidence of the appropriateness

of the mesh-LBP descriptors for such a task, and their su-

perior discriminative power as compared to other popular

descriptors. As future work, we plan extending the mesh-

LBP to global analysis. One potential approach is extracting

ordered blocks from the mesh surfaces and then construct

from them, by concatenation, a global histogram. We be-

lieve that mesh-LBP will open new perspectives for mesh

manifold analysis and will be an appropriate complement

to other mesh manifold analysis techniques.
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