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Abstract

We propose a novel framework for detecting multiple ob-
jects from a single image and reasoning about occlusions
between objects. We address this problem from a 3D per-
spective in order to handle various occlusion patterns which
can take place between objects. We introduce the concept of
“3D aspectlets” based on a piecewise planar object repre-
sentation. A 3D aspectlet represents a portion of the object
which provides evidence for partial observation of the ob-
ject. A new probabilistic model (which we called spatial
layout model) is proposed to combine the bottom-up evi-
dence from 3D aspectlets and the top-down occlusion rea-
soning to help object detection. Experiments are conducted
on two new challenging datasets with various degrees of
occlusions to demonstrate that, by contextualizing objects
in their 3D geometric configuration with respect to the ob-
server, our method is able to obtain competitive detection
results even in the presence of severe occlusions. More-
over, we demonstrate the ability of the model to estimate the
locations of objects in 3D and predict the occlusion order
between objects in images.

1. Introduction
The traditional object detection methods (e.g., [22], [5]

and [8]) detect each object in an input image independently

without considering the environment of the object. How-

ever, objects are not isolated in the real world. The con-

textual information around the objects plays an important

role in object recognition [17]. Recently, different types of

contextual information have been utilized to help object de-

tection, such as 3D scene geometry [12] and 2D object co-

occurrence [6]. Despite these efforts, the contextual cues

that arise by considering object occlusions have not been

fully explored yet. When objects occlude each other or are

truncated by other scene elements, only limited portions of

the objects are visible and some of the cues which we typi-

cally use to recognize the objects may not be available (e.g.,

the wheels of the blue car in Fig. 1(a)). In these cases, de-

tecting each object independently is likely to fail (the detec-

(a) input image (b) 2D detection

(c) 3D spatial layout (d) 2D object mask

Figure 1. Illustration of our spatial layout model. Given an input

image (a), our model detects the objects in the image (b), estimates

their 3D spatial layout (c), and predicts the 2D object mask (d)

which shows the occlusion order between objects.

tion score of the blue car in Fig. 1(a) would be low).

Detecting objects under occlusions is challenging due to

various occlusion patterns in the image that can take place

between objects. These occlusion patterns depend on the

relative locations of objects in 3D with respect to the cam-

era and also the shape and pose of the objects. Without

considering these factors, methods which reason about oc-

clusions based on 2D image features only, such as [23] and

[9], are fragile to the uncertainty of the image evidence. In

this paper, we handle occlusions in object detection from a

3D perspective. We design a novel framework that, from

just one single image (Fig. 1(a)), is capable to jointly detect

objects (Fig. 1(b)), determine their 3D spatial layout (Fig.

1(c)) and interpret which object occludes which (Fig. 1(d)).

We call this model the Spatial Layout Model (SLM). First,

inspired by the aspect part representation in [27], we pro-

pose a new 3D object representation using piecewise planar

parts. These parts are fine-grained and suitable for occlu-

sion reasoning in the sense that they can be approximated

as either visible or non-visible. Second, inspired by the

poselet framework for human detection [3], we group the

planar parts in 3D to represent portions of the object. We

call each group a “3D aspectlet”, which is generated au-

tomatically. 3D aspectlets are able to provide more robust
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evidence of partial observations as opposed to the planar

parts themselves. Finally, we generate hypotheses of the lo-

cations and poses of objects and camera in 3D (Fig. 1(c)),

and then verify these hypotheses by combining prior knowl-

edge and evidence from 3D aspectlets. This is achieved by

a Markov Chain Monte Carlo (MCMC) sampling strategy,

where different kinds of moves are designed to explore the

hypothesis space efficiently. In this process, 3D aspectlets

are weighted according to the occlusion patterns induced

by the 3D hypotheses (Fig. 1(d)). Consequently, we com-

bine the bottom-up evidence from 3D aspectlets and the

top-down occlusion reasoning to help object detection. Ex-

periments are conducted on two new challenging datasets,

i.e., an outdoor-scene dataset with cars and an indoor-scene

dataset with furniture, where multiple objects are observed

under various degrees of occlusions. We demonstrate that

our method is able to obtain competitive detection results

even in the presence of severe occlusions. Besides, our

method has the ability to estimate the spatial layouts of ob-

jects in 3D and predict the occlusion order between objects

in images.

2. Related Work
Recently, the use of context for object detection has re-

ceived increasing attention. Desai et al. [6] formulate the

multiple object detection as a structured labeling problem,

where spatial interactions between objects in 2D are mod-

eled. Hoiem et al. [12] introduce the idea of using 3D scene

geometry to help 2D object detection, where objects are

supposed to be on the ground plane with certain heights.

The ground plane constraint is generalized to supporting

planes of objects by Bao et al. [2]. Richer geometrical and

physical constraints are also explored by different works.

Hedau et al. [11] detect indoor-scene objects by consider-

ing the room layout. Choi et al. [4] propose 3D Geomet-

ric Phases to capture the semantic and geometric relation-

ships between co-occurring objects in 3D. In this work, we

demonstrate that by modeling the spatial context of objects

in 3D, we can successfully enhance object detection and

reason about occlusions between objects.

Previous works that reason about occlusions have mostly

focused on image segmentation [24, 13], object tracking

[25], single object instance recognition [16] and category-

level object detection [26, 23, 9, 28, 18]. Methods for object

detection have leveraged on 2D image features to predict

whether an object is occluded or not, such as [23] and [9].

Very few works have addressed the problem from a 3D per-

spective. Two exceptions are [26] and [25], which reason

about occlusions between humans by generating hypothe-

ses of humans in 3D and verifying these hypotheses using

part-based human detectors. Different from these, we do not

model occlusions with a simplified 2.5D structure of depth

layers, but rather a true 3D representation to predict occlu-

aspect part atomic aspect part

(b)(a) (c) (d)

Figure 2. (a) Aspect part representation of car in [27] (b) A toy

example shows that an AP is partially visible due to occlusion. (c)

AAP representation of car in our model. (d) A toy example shows

that an AAP can be approximated as either visible or non-visible.

sion patterns. Recently, [28] uses 2D masks to represent

occlusion patterns, while [18] learns the occlusion patterns

from training data. In both methods, the occlusion patterns

are view-specific, and only limited number of occlusion pat-

terns can be modeled. Our method infers the occlusion pat-

terns from the 3D spatial layout of objects, which is general

to handle various occlusion patterns.

3. Spatial Layout Model

We propose a novel Spatial Layout Model (SLM) which

is able to model the interactions between objects, 3D scene

and camera viewpoint, especially the occlusions between

objects. Given an input image I , SLM predicts a set of ob-

jects O = {O1, . . . , OM} in the 3D world, their projections

in the image plane o = {o1, . . . , oM} and the camera C,

where M is the number of objects in the scene. SLM mod-

els the posterior probability distribution of 2D projections

o, 3D objects O and camera C as

P (o,O, C|I) = P (C)P (O)P (o|O, C, I) (1)

∝ P (C)P (O)

M∏
i=1

P (oi|O, C, I)
∏
(i,j)

P (oi, oj |O, C, I),

where P (C) and P (O) are the prior distributions over cam-

era and 3D objects respectively, P (oi|O, C, I) is the unary

likelihood of 2D projection oi given all the 3D objects, the

camera and the image, and P (oi, oj |O, C, I) is the pairwise

likelihood of a pair of 2D projections. Note that each 2D

projection oi depends on the configuration of all the 3D ob-

jects O. This is because occlusions between objects in 3D

affect the appearances of projections in 2D. SLM explicitly

models the occlusions between objects.

3.1. 3D Object Representation

We represent the 3D objects inspired by the piece-

wise planar representation introduced in the Aspect Lay-

out Model (ALM) [27]. In ALM, a 3D object consists of

a set of Aspect Parts (APs). An aspect part is defined as

“a portion of the object whose entire 3D surface is approx-

imately either entirely visible from the observer or entirely

non-visible” (Fig. 2(a)). While this definition is suitable for
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Figure 3. Camera and world coordinate system in our model.

modeling object self-occlusions (akin to those used in as-

pect graph representations), they are not flexible enough to

handling occlusions caused by other objects in the scene (as

we seek to do). For instance, it is very unlikely that an AP is

entirely occluded by another object - most likely just a por-

tion of it is occluded (Fig. 2(b)). So we propose to represent

a 3D object as a collection of Atomic Aspect Parts (AAPs)

which are obtained by decomposing the original APs into

smaller planar parts (Fig. 2(c)). Each AAP is approximated

to be either visible or non-visible (Fig. 2(d)). This approx-

imation is less coarse if AAPs are used as opposed to APs.

As we can see, smaller AAPs are better for modeling occlu-

sions. However, smaller AAPs are harder to detect due to

the lack of visual features. So there is a trade-off between

the ability of AAPs to model occlusions and the reliability

to detect them in the image.

3.2. Camera Prior

In SLM, 3D objects are rendered using the same internal

virtual camera calibration matrix. As a result, the unknown

camera parameters are the external camera matrix with re-

spect to the world coordinate system. To define the world

coordinate system, we choose one 3D object in the scene as

the “anchor object”, and define the world coordinate origin

as the center of the anchor object. The axes of the world co-

ordinate system are aligned with the dominating directions

of the anchor object. Then the camera location in the world

coordinate system can be specified by its azimuth a, eleva-

tion e and distance d. By assuming the camera is always

looking at the world coordinate origin, the unknown cam-

era parameters to be estimated are the azimuth, elevation

and distance of the camera pose, i.e., C = (a, e, d). A 3D

object Oi can be represented by its coordinates in the world

coordinate system (Xi, Yi, Zi) and its relative orientation

in the X-Y plane with respect to the anchor object Θi, i.e.,

Oi = (Xi, Yi, Zi,Θi). Fig. 3 illustrates the camera rep-

resentation and the world coordinate system in our model.

Note that different anchor objects result in different coordi-

nates of the camera and the 3D objects. The locations of the

2D projections in the image, however, are not affected. So

we can choose an arbitrary 3D object as the anchor object.

We define the camera prior as

P (C) = P (a)P (e)P (d), (2)

where P (a), P (e) and P (d) are the prior distributions for

the azimuth, elevation and distance respectively. We assume

uniform priors for the three variables:

a ∼ U(0, 2π), e ∼ U(0, π/2), d ∼ U(dmin, dmax), (3)

where dmin and dmax are the minimum and maximum dis-

tances of the camera we considered in the model.

3.3. 3D Objects Prior

We design the following prior to impose two constraints

to a set of M objects in 3D: i) all the objects lie on the

“ground plane”; ii) two objects can not occupy the same

space in 3D. We model the prior distribution of 3D objects

using a Markov Random Field (MRF):

P (O) ∝ exp
( M∑

i=1

V1(Oi) +
∑
(i,j)

V2(Oi, Oj)
)
, (4)

where V1 and V2 are the unary potential and pairwise poten-

tial respectively. Recall that the world coordinate system is

defined on one of the 3D objects. If all the 3D objects lie on

the “ground plane”, their Z-coordinates should be close to

zero (Fig. 3). By assuming a Gaussian distribution for the

objects’ Z-coordinates, we design the unary potential as

V1(Oi) = −
Z2
i

2σ2
, (5)

where σ is the standard deviation of the Gaussian distribu-

tion. Note that we do not estimate the real ground plane of

the scene. The unary potential constrains that the 3D objects

are all at similar heights. The pairwise potential penalizes

overlapping between two 3D objects, which is defined as

V2(Oi, Oj) = −ρ
Oi

⋂
Oj

Oi

⋃
Oj

, (6)

where ρ is the parameter controlling the strength of the

penalty,
⋂

and
⋃

denote the intersection and union between

the volumes of two 3D objects. We represent the 3D objects

using voxels, based on which we compute the intersection

and union of two volumes (refer to [1] for details).

3.4. 3D Aspectlets

In order to obtain evidence of partial observations of ob-

jects, we introduce the concept of “3D aspectlet” inspired

by the poselet framework for human detection [3]. A 3D

aspectlet is defined as a portion of the 3D object, which

consists of a set of the AAPs in our case. Not all the com-

binations of AAPs can form 3D aspectlets. We require the
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(a) (b)
Figure 4. (a) Generating 3D aspectlet candidates by sampling ellip-

soids in the space of the 3D object. (b) Examples of 3D aspectlets

generated, where blue AAPs belong to the 3D aspectlets.
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full-object model 3D aspectlet 1 3D aspectlet N.  .  .
Figure 5. The graph structures of the full-object model and the 3D

aspectlets, where the blue squares indicate that the bounded nodes

can contain more than one template.

AAPs of a 3D aspectlet to have the two properties: i) they

are geometrically close to each other in 3D; ii) there exists

at least one viewpoint from which all the AAPs are visi-

ble, i.e., not self-occluded. If property ii) is not satisfied,

we can represent the set of AAPs by smaller 3D aspectlets.

To generate a 3D aspectlet with the two properties, we first

randomly sample an ellipsoid in the 3D space of the 3D ob-

ject (Fig. 4(a)), and select the AAPs inside the ellipsoid to

form the 3D aspectlet. Then we check whether property ii)

is satisfied. If not, we keep sampling ellipsoids until it is

satisfied. Fig. 4(b) shows some 3D aspectlets of car gen-

erated in this way, where the blue AAPs belong to the 3D

aspectlets.

To obtain evidence of objects from the image, we pro-

pose to represent the whole object and the 3D aspectlets

an ensemble of tree models {T0, T1, . . . , TN}. Fig. 5 il-

lustrates the graph structures of the trees. One of the tree

models T0 represents the whole object, which is called the

full-object model. The other N tree models {T1, . . . , TN}
correspond to N 3D aspectlets, which represent portions

of the object. The full-object model has a three-level tree

structure which consists of the root level, the 3D aspectlet

level and the AAP level. The root connects to all the 3D

aspectlets in the mid-level, while a 3D aspectlet connects to

all the AAPs it contains. By introducing 3D aspectlets as

the mid-level, the full-object model is more robust to noises

in the image. In theory, all the 3D aspectlets can be placed

in the mid-level level. However, this would produce a com-

plicated tree structure which makes the training and infer-

ence infeasible. Instead, 3D aspectlets which are not in the

full-object model are represented by independent two-level

tree structures. In our experiments, the 3D aspectlets in the

full-object model correspond to the original APs in [27].

In the tree models, the AAPs are view-invariant, which

means we only need to train one part template for each AAP

regardless of the number of viewpoints. This is achieved by

using rectified HOG features as in [27]. But the root and

the 3D aspectlets are viewpoint dependent. We train mul-

tiple templates for them, where each template captures the

visual appearance of the object from a specific view sec-

tion. For example, we train eight templates for the root with

each template covering 45◦ azimuth. The number of tem-

plates for a 3D aspectlet depends on the range of its visi-

ble view section (i.e., not self-occluded). The blue squares

in Fig. 5 indicate that there are multiple templates in these

nodes. During inference, given a specific viewpoint hypoth-

esis, only one template for each node is activated according

to whether the given viewpoint hypothesis is inside its view

section or not.

3.5. 2D Projection Likelihood

The 2D projection likelihood measures the compatibility

between the hypothesis of the locations and poses of ob-

jects and camera in 3D and the image evidence. Let the 2D

projection oi denote the 2D location of the ith object in the

image plane, i.e., oi = (xi, yi). We model the unary 2D

projection likelihood as

P (oi|O, C, I) ∝ P0(oi|Oi, C, I)+ (7)

N∑
k=1

wk(O, C)Pk(oi|Oi, C, I), s.t.

N∑
k=1

wk(O, C) = 1,

where P0(oi|Oi, C, I) is the likelihood of object Oi’s 2D

location from the full-object model, Pk(oi|Oi, C, I) is the

likelihood of object Oi’s 2D location from the kth 3D as-

pectlet, and wk(O, C) is the weight of the kth 3D aspect-

let. The weights measure the reliability of the 3D aspectlets,

which relates to the visibility of the 3D aspectlets. Based on

the observation that 3D aspectlets with more visible AAPs

are more reliable, we set the weight of a 3D aspectlet pro-

portional to the number of visible AAPs in it and constrain

that all the weights sum to one. To test the visibility of

AAPs, we project the 3D objects O to the image plane in the

order of increasing distances of the objects from the camera.

During the projection, the visibility test can be performed

by checking whether the 2D regions of the AAPs are occu-

pied by some frontal objects or not (refer to the 2D object

mask in Fig. 1). Consequently, different occlusion patterns

between objects result in different likelihoods. Note that

in the unary 2D projection likelihood, the full-object model

contributes equally with all the 3D aspectlets.

To define the likelihood of a 3D aspectlet for the ob-

ject’s 2D location, we perform a Hough transform from the

3D aspectlet’s 2D location to the object’s 2D location. Let

oik = (xik, yik) be the 2D location of the kth 3D aspectlet.
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Figure 6. Illustration of the transform from the 3D aspectlet’s 2D

location to the object’s 2D location, where the 2D projections of

the two 3D aspectlets are shown in blue, and the yellow dots de-

note the 2D locations of the 3D aspectlets/objects in the projection.

Then

Pk(oi|Oi, C, I) =
∑
oik

P (oi|oik, Oi, C)Pk(oik|Oi, C, I),

(8)

where P (oi|oik, Oi, C) is the probability distribution of the

object’s 2D location conditioned on the 3D aspectlet’s 2D

location, the 3D geometry of the object and the camera

viewpoint, and Pk(oik|Oi, C, I) is the likelihood of the 3D

aspectlet’s 2D location. P (oi|oik, Oi, C) is defined as a

delta function induced from the 3D-2D projection:

P (oi|oik, Oi, C) =

{
1, if oi = oik + vik(Oi, C)

0, otherwise,
(9)

where vik(Oi, C) denotes the vector from the 3D aspect-

let’s 2D location to the object’s 2D location in the projec-

tion of the 3D object Oi according to the camera C. Fig.

6 illustrates the transform. In practice, the equality test in

Eq. (9) is performed by partitioning the image into grids

and testing for inside the same grid.

The likelihood of the object’s 2D location from the full-

object model in Eq. (7) and the likelihoods of the 3D as-

pectlets’ 2D locations in Eq. (8) are all modeled with the

same type of Conditional Random Fields (CRFs) [15] on

their own tree structures (Fig. 5):

Pk(oik|Oi, C, I) ∝ exp
( ∑

p∈Tk

V1(o
p
ik, Oi, C, I)+

∑
(p,q)∈Tk

V2(o
p
ik, o

q
ik, Oi, C)

)
, k = 0, 1, . . . , N, (10)

where p and q index nodes in the kth tree, (p, q) indicates

an edge in the kth tree. P0(oi|Oi, C, I) = P0(oi0|Oi, C, I),
since there is no transform needed for the full-object model.

opik = (xp
ik, y

p
ik) denotes the 2D location of the pth node,

i.e., the 2D location of the root, the 3D aspectlet or the AAP

depending on the type of the node. V1 is the unary potential

modeling 2D visual appearance and V2 is the pairwise po-

tential which constrains the 2D relative locations between

two nodes. We utilize the unary and pairwise potentials

used in [27]. The unary potential is defined as

V1(o
p
ik, Oi, C, I) =

{
wpT

k φ(opik, Oi, C, I), if node p visible

αp
k, if node p self-occluded,

(11)

where wp
k is the template for node p, φ(opik, Oi, C, I) is the

rectified HOG features for the node extracted from the 2D

image, and αp
k is the weight for node p if it is self-occluded.

The pairwise potential is defined as

V2(o
p
ik, o

q
ik, Oi, C)

= −wx

(
xp
ik − xq

ik + dpqik (Oi, C)cos(θpqik (Oi, C))
)2

− wy

(
ypik − yqik + dpqik (Oi, C)sin(θpqik (Oi, C))

)2
, (12)

where wx and wy are the parameters controlling the strength

of the pairwise constraints, dpqik (Oi, C) is the computed dis-

tance between the two nodes after projecting the 3D object

to the 2D image according to the camera, and θpqik (Oi, C)
is the relative orientation between the two nodes computed

from the 2D projection. Combining Eq. (7)-(12), we can

obtain the form of the unary 2D projection likelihood.

For the pairwise 2D projection likelihood, it measures

how likely the occlusion between a pair of objects induced

from 3D is compatible with the 2D image evidence. We de-

sign the pairwise 2D projection likelihood to reflect the ob-

servation that the occluding object usually has higher unary

2D projection likelihood than the occluded object:

P (oi, oj |O, C, I) ∝ exp
(
− P (oj |O, C, I)

P (oi|O, C, I)

)
(13)

if Oi occludes Oj and P (oi|O, C, I) is larger than some

threshold to make sure Oi is a confident occluder. As a

result, if the occluded object has higher unary 2D projection

likelihood than the occluding object, the occlusion pattern

is unlikely to be correct.

3.6. Training

Training aims at learning the CRFs of our 3D object de-

tector, which is composed of two tasks: learning 3D as-

pectlets and estimating the model parameters. Since it is not

feasible to use all the 3D aspectlets, we select the “good” 3D

aspectlets automatically. We set up the following three cri-

teria to measure the quality of a set of 3D aspectlets. i) Dis-
criminative power: the selected 3D aspectlets are discrim-

inatively powerful. To achieve this goal, we first sample

a large number of 3D aspectlets according to the sampling

process described in Sec. 3.4. Then we train and test the

CRFs of the 3D aspectlets on the training dataset by cross-

validation. The parameter estimation of the CRFs can be

performed by the structural SVM optimization [21] in [27],

while the inference is conducted by Belief Propagation on

the tree structure of the 3D aspectlet. The discriminative
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power is measured by their detection performance, based on

which we select the 3D aspectlets. ii) Viewpoint coverage:

for a specific viewpoint, there are at least K 3D aspectlets

visible. Because it would be difficult to detect an object

under the viewpoint if too few 3D aspectlets are available.

iii) Atomic aspect part coverage: an AAP is contained at

least in one 3D aspectlet. Otherwise, the AAP is useless.

According to the three criteria, we employ an greedy algo-

rithm to select the 3D aspectlets. The algorithm starts with

an empty set of 3D aspectlets. Then it keeps adding highly

discriminative 3D aspectlets into the set until the viewpoint

coverage and the atomic part coverage are satisfied.

3.7. Inference

The inference problem of our spatial layout model is to

search for the most compatible configuration of 2D projec-

tions, 3D objects and camera given an input image:

(o∗,O∗, C∗) = arg max
o,O,C

P (o,O, C|I), (14)

where P (o,O, C|I) is the posterior distribution defined in

Eq. (1). Due to the complexity of the posterior distribution,

we resort to Markov Chain Monte Carlo (MCMC) simula-

tion to solve the inference problem. MCMC generates sam-

ples from the posterior distribution using a Markov chain

mechanism. Then, the mode of the distribution is approx-

imated by the sample with the largest probability among

all the generated samples. As in [6], we compute the log-

odds ratio from the maximum a posteriori estimation as the

2D detection scores. Specifically, we exploit the reversible

jump MCMC (RJMCMC) algorithm [10]. In RJMCMC,

new samples are proposed by different moves from the pro-

posal distributions. The proposed samples are either ac-

cepted or rejected according to the acceptance probabilities.

The reversible moves enable the algorithm to explore spaces

of different number of objects.

Initialization. We initialize the MCMC sampler with

high confidence detections in the image, which are obtained

by evaluating the unary 2D projection likelihood (Eq. (7))

without considering occlusions between objects. The 3D

objects and the camera are initialized by back-projecting the

2D detections into 3D according to the internal virtual cam-

era calibration matrix and the estimated viewpoints of the

2D detections. A candidate set of objects is also obtained

by evaluating the unary 2D projection likelihood without

considering occlusions, which is used in the add moves and

delete moves described below.

Add moves. Add moves add a new object OM+1 to the

scene, where M is the current number of objects. An object

in the candidate set which has not been associated with any

object in the scene is randomly chosen to be added. The pro-

posal distribution is proportional to the unary 2D projection

likelihood. Since the add moves change the dimension of

Table 1. Statistics of the objects in our new datasets.
Category Car Bed Chair Sofa Table

# objects 659 202 235 273 222

# occluded 235 81 112 175 61

# truncated 135 86 41 99 80

the state variables, specific consideration needs to be taken

when computing the acceptance ratio. We map the low di-

mensional distribution into high dimension by assuming a

constant probability P (OM+1) for the new object:

P̂ (o,O, C|I) = P (o,O, C|I)P (OM+1), (15)

where P̂ denotes the expanded posterior distribution. In this

way, distributions of different dimensions can be compared.

Delete moves. Delete moves are the reverse moves of

add moves, which remove one object from the scene and

return it back to the candidate set. We adopt a uniform pro-

posal distribution for delete moves. Similar to add moves,

we map the low dimension distribution into high dimension

by using a constant probability for the deleted object.

Switch moves. The switch moves change the anchor ob-

ject in the scene, which prevents the model from local max-

imums if the anchor object is badly chosen. For example, if

an object which is at different height with the other objects

is selected to be the anchor object, then the other objects are

unlikely to be added to the scene. The proposal distribution

for switch moves is a uniform distribution.

4. Experiments
4.1. Datasets and Evaluation Measures

As far as we know, there is no dataset designed to test the

ability to reason about occlusions in object detection. So

we collected a new outdoor-scene dataset with 200 images

of cars and a new indoor-scene dataset with 300 images of

furniture for experiments, where objects are observed under

various degrees of occlusion. These images are collected

from PASCAL VOC [7], LabelMe [19], ImageNet [14] and

our own photos. Table 1 shows the statistics of the objects

in the two datasets, from which we can see they include a

large number of occluded and truncated objects. The new

datasets are used for testing only. To learn the 3D aspectlets

and train the CRFs, we utilize the 3DObject dataset in [20]

for car and the ImageNet dataset in [27] for bed, chair, sofa

and table. We use the detailed ground truth annotations

in [27], where each object is annotated by discretized az-

imuth, elevation, distance, and AP locations. The ground

truth locations of AAPs and 3D aspectlets can be computed

accordingly. Negative samples are from PASCAL VOC [7].

The same training datasets are used for two baselines: De-

formable Part Model (DPM) [8] and Aspect Layout Model

(ALM) [27]. To measure the object detection performance,

we use Average Precision (AP), where the standard 50%

bounding box overlap criteria of PASCAL VOC [7] is used.
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Figure 7. Sampled 3D aspectlets learnt in our experiments, where

the blue AAPs belong to the 3D aspectlets.

Table 2. APs for the five categories in the two datasets.
Category Car Bed Chair Sofa Table

ALM [27] 46.6 28.9 14.2 41.1 19.2

DPM [8] 57.0 34.8 14.4 38.3 15.1

SLM Aspectlets 59.2 35.8 15.9 45.5 24.3

SLM Full 63.0 39.1 19.0 48.6 28.6

Table 3. APs/mAPs on the two datasets with different test image

sets according to the degrees of occlusions.
Dataset Outdoor-scene Indoor-scene

% occlusion <.3 .3-.6 >.6 <.2 .2-.4 >.4

# images 66 68 66 77 111 112

ALM [27] 72.3 42.9 35.5 38.5 25.0 20.2

DPM [8] 75.9 58.6 44.6 38.0 22.9 21.9

SLM Aspectlets 78.7 59.7 47.7 41.9 30.8 24.8

SLM Full 80.2 63.3 52.9 45.9 34.5 28.0

Table 4. 3D localization errors on the outdoor-scene dataset ac-

cording to best recalls of ALM, DPM and SLM respectively.
Recall 54.8 64.6 76.8

ALM [27] 1.90 - -

DPM [8] 2.07 2.39 -

SLM 1.64 1.86 2.33

4.2. Results

After the learning of 3D aspectlets, we obtain 50 3D as-

pectlets for car, and 32, 46, 24 and 25 3D aspectlets for bed,

chair, sofa and table respectively. Fig. 4(b) and Fig. 7 show

some learnt 3D aspectlets in our experiments, where the

blue AAPs belong to the 3D aspectlets (refer to [1] for all

the learnt 3D aspectlets). We compare the object detection

performance of SLM with two baseline methods: the state-

of-the-art object detector DPM [8] and the state-of-the-art

object pose estimator ALM [27]. Table 2 shows the average

precisions of SLM and the two baseline methods on the two

datasets. “SLM Aspectlets” only uses our unary 2D projec-

tion likelihood for detection without considering the occlu-

sions between objects. By using 3D aspectlets, we are able

to achieve better performance than the two baseline meth-

ods, which we attribute to the ability of 3D aspectlets to de-

tect occluded or truncated objects. However, 3D aspectlets

also produce more false alarms compared with the full ob-

ject model since less visual features are available. By rea-

soning about occlusions, our full model “SLM Full” is able

to increase the detection scores of truly occluded objects

and penalize false alarms which introduce wrong occlusion

patterns. As a result, “SLM Full” consistently achieves the

best performance on the five categories in the two datasets.

To clearly see the advantage of SLM in handling occlu-

sions, we partition the test images in the two datasets into

three sets according to the degrees of occlusions respec-

tively, and evaluate the detection performance of SLM on

each of the three sets. For an occluded object, we define its

occlusion percentage as the percentage of area occluded by

other objects. Then the degree of occlusion for one image

can be measured by the maximum occlusion percentage of

the objects in the image. Table 3 shows the number of im-

ages in each set and the APs/mAPs of the three methods

on different test sets. In all the settings, SLM achieves the

best performance. Besides, the improvement for the large

occlusion sets is significant, which demonstrates the ability

of SLM to detect occluded and truncated objects.

In order to evaluate the 3D localization accuracy, we

back-project the ground truth annotations and the 2D de-

tections into 3D respectively and obtain two spatial layouts.

Since their coordinate systems can be different, we first

compute the pairwise distances among objects in each lay-

out, and then evaluate the absolute error between two corre-

sponding pairwise distances across the two layouts. Finally,

we use the mean error in the dataset as the measure for 3D

localization. Since the 3D location of an object is evaluated

only if it is correctly detected, we present the mean pairwise

distance error according to different recalls. Table 4 shows

the errors according to the best recalls of ALM, DPM and

SLM on the outdoor-scene dataset, where unit one is the

length of the 3D car model. SLM achieves better 3D local-

ization at the highest recalls of both ALM and DPM.

Fig. 8 shows some anecdotal detection results from our

method. The 2D detections are high confidence detections

in the MAP estimations from the MCMC inference. The 3D

plots show the 3D spatial layout of the objects and the cam-

era. Based on the detected AAPs, we are able to generate

the 2D mask of an object. Then according to the inferred

occlusions between objects, we can refine the 2D mask to

only contain the visible region of the object, from which it

is possible to clearly see which object occludes which (refer

to [1] for more results).

5. Conclusion
We have proposed a novel Spatial Layout Model (SLM)

for multiple object detection and occlusion reasoning. SLM

contextualizes objects in their 3D geometric configuration

with respect to the observer to help object detection. By

combining the bottom-up evidence from 3D aspectlets and

the top-down occlusion reasoning, SLM is able to estimate

the 3D spatial layout of objects and reason about occlu-
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Figure 8. Anecdotal detection results on our datasets. The 2D detections show the detected objects in the images. The 3D plots show the

spatial layout of objects and camera in 3D. The 2D object masks show the occlusion order in the images.

sions between objects. Experiments on two new challeng-

ing datasets with various degrees of occlusions demonstrate

the ability of our model to detect objects under severe oc-

clusions and predict the occlusion patterns in images.
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