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Abstract

This paper introduces Cubistic Representation as a novel
3D surface shape model. Cubistic representation is a set of
3D surface fragments; each fragment contains subject’s 3D
surface shape and its color and redundantly covers the sub-
ject surface. By laminating these fragments using a given
pose parameter, the subject’s appearance can be synthe-
sized.

Using cubistic representation, we propose a real-time 3D
rigid object tracking approach by acquiring the 3D surface
shape and its pose simultaneously. We use the particle filter
scheme for both shape and pose estimation; each fragment
is used as a partial shape hypothesis and is sampled and re-
fined by a particle filter. We also use the RANSAC algorithm
to remove wrong fragments as outliers to refine the shape.

We also implemented an online demonstration system
with GPU and a Kinect sensor and evaluated the perfor-
mance of our approach in a real environment.

1. Introduction

Scene understanding is one of the central goals of classic

computer vision research. From the early days in computer

vision, scene understanding is formulated as a 3D geomet-

ric and photometric reasoning process that acquires a 3D

geometric and photometric description of the world from

input images. For example, Marr et al. [18] proposed a fun-

damental framework that uses a generalized cylinder which

represents the geometry of an object’s physical surface, and

that outputs 3D scene description by finding the correspon-

dence between the input image and the shape model. After

leading works, such as [3, 17], scene understanding is now

considered as a mixture of several tasks, such as object de-

tection, pose estimation, 3D reconstruction, and so on.

For these sub tasks, we address two problems. The first

problem is mutual dependencies among image, shape, and

pose. As shown in Fig.1, scene understanding can be con-

sidered as an inverse process that recovers a pair of 3D sur-

face shape Ŝ and its pose P̂ from the input image Î . Here

Î is sensing result that contains degenerated information

of actual shape S , its actual pose parameters P and mea-

surement noise εI . As known as an ill-posed problem or a

chicken-egg problem, these variables depend on each other;

even small differences in a shape and a pose may lead to

considerable appearance differences and variations in im-

ages. As a result, these mutual dependencies create ambi-

guities and difficulties in image interpretation. Moreover,

in a real environment, these variables have another ambigu-

ities delivered from measurement and estimation errors; 3D

shape quantization or its recovering process causes εS , and

pose estimation causes εP . These inseparable dependency

and ambiguity cause the difficulties in simultaneous shape

and pose acquisition from input images.

The second problem is a computational cost. Gener-

ally, it requires vast amount of computations to explore the

large space for possible solutions under the condition of

the mutual dependencies. For example, a possible algo-

rithm takes the form of expectation-maximization algorithm

(EM) and requires a large number of iterations. Moreover,

other important factors in vision, such as shadings and oc-

clusions, may easily make the search space much larger and

intractable. We need much improvement on both on com-

putation algorithms by suppressing the enormous amount of

combination problems and massive computations with fast

and parallel processors such as a graphic processing unit

(GPU).

For this purpose, we introduce a novel 3D shape rep-

resentation, named cubistic representation. As shown in

Fig.2, a cubistic representation consists of a set of 3D sur-

face fragments; each fragment contains subject’s 3D sur-

face shape and its color, and redundantly covers the subject

surface. By laminating the subject with these fragments us-

ing a given pose parameter, the subject’s appearance can be

synthesized.

One of the advantages of cubistic representation is its

redundancy. Cubistic representation allows fragments over-
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Figure 2: An example of cubistic representation: (center) cubistic representation consists of a set of 3D surface fragments;

(left) each fragment is sampled from the input RGB-D images; and (right) the synthesized subject’s appearance.
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Figure 1: Simultaneous shape and pose estimation is an ill-

posed inverse problem: The input image Î is an observed

result of actual shape S and pose P . Recovering the shape

Ŝ and the pose P̂ from Î has to deal with the mutual depen-

dencies among them, and consider the measurement error

εI and the estimation errors εS and εP .

lapping with each others. This characteristic enables the

following two approaches. The first is an online shape ac-

quisition. We can consider that each fragment of a 3D shape

as a particle in the particle filter scheme: possible partial

shapes can be incrementally generated and refined. The sec-

ond is error detection and its correction. According to the

redundancies among the fragments, voting approach can be

used to detect the error. Wrong fragments in the subject’s

shape can be detected by less votes. The wrong fragments

with small votes can be removed without serious deforma-

tion of the acquired shape. Moreover, other 3D geometrical

factor, such as object shadings, surface connectivities and

self-occlusions can be introduced in this process.

Another advantage of cubistic representation is the es-

sential parallelism of the particle filter scheme. The above

processes can be implemented by using the state-of-the-art

technologies of modern GPU to solve the computational

cost problem.

To show these advantages of cubistic representation, we

implemented an experimental algorithm that extracts a rigid

object from the input RGB-D video stream and recovers

the object’s 3D surface shape with tracking its six-degree

of freedom (DoF) pose parameters. Each fragment is con-

sidered as a shape hypothesis, which is sampled and refined

by a particle filter. Once a shape hypothesis is sampled,

pose estimation can be performed by the so-called model

fitting process that uses a pair of a given input image and

a set of current fragments. The estimated pose is used as

next pose hypothesis for obtaining next fragments. For error

detection and correction, we use a random sample consen-

sus (RANSAC) algorithm [5] to remove wrong fragments

as outliers.

To show the capability and efficacy in a real environ-

ments, we implemented an online demonstration system

with GPU and a Kinect sensor. This system is real-time

head tracking, which detects unknown human head as a sin-

gle rigid object with separating the head from the other body

parts, such as his neck, body and the background. With this

system, we evaluate the performance of our approach in a
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real environment.

2. Related work and problem statement
In this section, we will first discuss the problem of resolving

mutual dependencies in scene understanding. Then, we will

explain our idea to solve the problem.

Simultaneous shape acquisition and pose estimation is

still a challenging problem in computer vision because of

the complexity of the mutual relationship. Many of the

practical techniques in computer vision are dealing with

special cases, for example, where either of the shape or the

pose is known.

When the subject’s shape is given, its pose estimation

from input images can be formulated as a model fitting or a

tracking process. Active appearance model (AAM) [4], for

example, provides a good basis for a shape model. AAM is

a deformable 3D surface representation, with which accu-

rate appearances can be synthesized with various conditions

of 3D geometry and photometry, such as self-occlusions and

shadings. A typical problem associated with these pose es-

timating approaches is that the performance of pose estima-

tion depends on the quality of the shape model. As shown

in Fig.1, if the shape model has some error εS , it will prop-

agate to the pose parameters as εP .

On the other hand, when the subject’s pose is fixed,

shape acquisition from input images can be formulated as

a 3D reconstruction process. Some classical approaches

use voxel-based volume reconstruction [13], surface gen-

eration [15] and 3D shape registration techniques [1, 2]. A

typical problem in these shape acquisitions is also that the

quality of the acquired shapes is affected by the accuracy of

the given poses, i.e., pose errors εP will propagate to shape

errors εS .

Another special case is where the subject’s motion is

known. For example, Tomasi–Kanade factorization can be

used as a direct method which allows resolution of shape

and pose by a one-shot algorithm, especially for a rigid ob-

ject with weak perspective camera model [22]. This is an

elegant and simple solution. However, it doesn’t deal with

the object detection and segmentation problems. Factoriza-

tion is commonly used with some pre-processors, such as

2D image feature detectors and its trackers [16,20]. A typi-

cal problem in these combinations arises from the limitation

of these 2D image processes, i.e., they cannot analyze the

image appearances in term of 3D geometry.

For simultaneous shape acquisition and pose estimation,

we often need a combination of the above processes. For

instance, PTAM [11], DTAM [19] and Kinect Fusion [8]

use this combination. The purpose of PTAM and DTAM

is simultaneous localization and mapping, which estimates

camera positions and orientations and a 3D geometric rep-

resentation of the scene at the same time. PTAM, for ex-

ample, assumes the world as a single rigid object and uses

a point cloud as its representation. Then, PTAM calcu-

lates the point cloud and pose by using the above processes.

DTAM and Kinect Fusion use voxel-based representation

of the scene, which help more correct image analyses con-

sidering 3D geometries such as occlusions.

Although these approaches work fine under ideal con-

ditions, there are two serious problems in a real environ-

ment. The first problem is concerning segmentation. With-

out a proper segmentation process to separate moving ob-

jects from the static background, dynamic scenes with mov-

ing objects would make the shape model inaccurate. The

second problem is concerning cumulative errors. As already

shown in Fig.1, once the acquired shape has considerable

errors, the pose estimation is seriously degraded, and this

poor estimation affects the shape estimation in turn. Previ-

ous works [8, 11, 19] discussed the problem of these errors.

For the segmentation problem, Kalal et al. approach [9]

proposed a 2D object tracking approach that acquires the

target’s appearances in on-line processing. It is basically a

2D tracking; however, it collects the key views of the target

at the same time. In other work, Wenze et al. proposed an

object recognition approach that uses a hybrid model mix-

ing of 3D and 2D primitives as key views [6]. For the cu-

mulative error problem, a possible solution is to use voting

or RANSAC algorithms. As related works [14, 21] shows,

this voting-based approach can work robustly under real en-

vironment.

Our idea is to solve these problems and issues at the same

time by using the particle filter scheme for not only pose

parameters but also shape representation. As the first, this

paper proposes a novel idea for shape representation, which

achieves a real-time 3D shape acquisition and pose estima-

tion of an unknown rigid object.

3. Cubistic representation
The key idea of our approach is to use a set of hypotheses

for both of shape and pose to overcome the problems men-

tioned in the previous section. For this purpose, we intro-

duce cubistic representation as a 3D surface shape model.

As an example is shown in Figure 2, cubistic representation

is a set of 3D surface fragments. Each fragment f has an in-

formation of 3D geometry, including the surface shape and

its color, and redundantly covers the subject’s surface. This

idea is similar to a set of key views proposed in [6,9]; how-

ever, cubistic representation is different in containing strict

3D geometric information. By laminating these fragments

using a given pose parameter, the subject’s appearance can

be synthesized with correct shadings and self-occlusions.

Cubistic representation has the following three advan-

tages. First, editing 3D surface shape is realized as simple

fragment-wise insertion or deletion operation. This helps

online 3D surface shape acquisition process. Second, the

estimation errors of 3D shape can be detected and corrected
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by using the redundancy among its fragments. Third, the

data structure is designed and optimized for GPU architec-

ture. This helps correct and fast image interpretation with

strict consideration of geometry and photometry.

Using cubistic representation, the 3D shape acquisition

becomes a sampling task that gathers a group of Nf frag-

ments {fk; k = 1, . . . , Nf} that covers the target object

surface S . This also solves the 3D surface segmentation

issues that require separation of the target from other ob-

ject in the scene. The shape’s error detection can be applied

through a task that categorizes all fragments into “inlier”

or “outlier” group; the former is the sub-set of fragments

that supports the current pose hypothesis and the latter is its

complement. Simultaneously, improvement in the acquired

3D surface shape can be achieved as a simple fragment-wise

operation: insertion or deletion of a fragment. Moreover,

the pose estimation can be solved the simple object tracking

by using the group of fragments as subject’s shape model.

We designed the exact data structure of cubistic repre-

sentation so that it can be processed efficiently by GPU

and recent computer graphics techniques. Data structure

for fragment f is defined by the following data; base co-

ordinates, color texture, heightmap texture, and confidence

mask texture. The base coordinates defines a reference uv
plane in the world coordinate system, where u and v are

2D texture coordinates. The heightmap texture is a 2D im-

age defined on uv plane. Heightmap texture stores the 3D

shape information where each pixel stores the surface eve-

lation from the uv plane. Color texture is a 2D image that

stores color of the surface.

When using an RGB-D camera, such as the Kinect sen-

sor or a stereo camera, those heightmap and color textures

can be directly extracted from the input RGB-D image by

image cropping. This is an advantage of our representation

because this process does not add any quantization errors

and distortions. It can avoid any undesirable artifacts and

approximations that are required in existing 3D surface rep-

resentation, such as 3D mesh or parametric representation.

The confidence mask is also a 2D texture on the uv
plane. This texture is used to store the pixel-level segmen-

tation result. Each pixel value indicates the relevance of εP
and is in the range of 0 to 1. The higher value indicates that

the corresponding color and heightmap pixel belong to the

target rigid object and has less error. This confidence mask

can be used as make image for color and depth texture.

In modern computer graphics techniques, the synthe-

sis of constructing a 3D appearance from a combination

of fragment textures and its pose in 3D is the so-called

heightmap rendering process. Fig.2 shows the overview of

the process. A 3D mesh is dynamically generated from the

fragments by using an arbitrary given pose parameter. The

resolution of the 3D mesh is dynamically controlled using a

level-of-detail technique where each triangles on the mesh

is subdivided by GPU’s hardware tessellator with a spec-

ified resolution. As results, a pair of color and depth im-

ages is synthesized. We carefully designed the fragment

data structure by using a set of texture so that recent GPU

can execute these operations in an accurate and faster way.

Using the model fitting scheme, the similarities of a

shape {f } and a pose p to an image Î is calculated by the

appearance difference D(Î ,G(p, {f })), where G(p, {f })
is an image generated by CG rendering process, and

D(I , I ′) is a function that evaluates the differences in the

two images I and I ′ by comparing the each color and depth.

Model fitting scheme also requires partial derivations for

its non-liner optimization. The partial derivation of D at a

given p with respect to the i-th variable in pose vector p is

approximated as follows:

δD(Î ,G(p, f ))

δTx

≈ D(Î ,G(p +Δpi , f ))−D(Î ,G(p −Δpi , f ))

|Δpi| .

where Δpi is a vector such that only the i-th entry is

nonzero. This calculation is also dispatched by GPU.

Fig.3 shows an example of the pose estimating process

by minimizing D(Î (τ),G(p0 , f0 )). The result is shown in

Fig.3(c), where the color indicates the re-projection errors

that are pixel-wise difference between Î(τ) and fitted f0; a

red pixel indicates no difference and a green pixel indicates

a significant difference. Because some pixels laying on the

neck region are visualized as green, our cubistic represen-

tation can detect each pixel is located target rigid region or

not. Our algorithm estimates the error of shape εS accord-

ing to these pixel-wise differences.

4. Simultaneously 3D shape acquisition and
pose estimation algorithm

Using cubistic representation, we solve the simultaneous

3D shape acquisition and its pose estimation as follows.

First, we formulate the pose estimation task as pose track-

ing process that uses a particle filter scheme. We also use a

particle filter approach for shape acquisition process, which

generates an optimal set of Nc fragments so that maximum

possible target surface is covered.

An overview of our algorithm is shown in Algorithm 1.

This algorithm requires only two inputs; initial seed posi-

tion p(0) and RGB-D image stream {Î(t)}. Once p(0)
is given, our algorithm begins the sampling of fragments

around p(0).
This algorithm uses two particles: {pk(t); k =

1, . . . , Np} for P̂ (t) and {fk; k = 1, . . . , Nf } for Ŝ ,

where Np and Nf are the number of particles. These par-

ticles are updated using the Condensation [7]. For Ŝ(t) es-

timation, RANSAC [5] is also used to categorize {fk} into
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(a) The input image Î(τ) (b) The input fragment f0

(c) Fitting result

Figure 3: An example of pose estimation: (a) the input

RGB-D image at time τ ; (b) the input fragment f0 sam-

pled at another time; and (c) the fitting result. (c) is a syn-

thesized image that shows both of the fitting result and its

re-projection errors; a red pixel indicates a significant error

is almost zero, and a green pixel indicates the error is not

small. Green pixels laying on the neck region mean that

this region is deformed since f0 is sampled.

“inlier” or “outlier” group. The fragment in outlier group

will be randomly selected and replaced with the new frag-

ment.

Please note that this algorithm is not an optimum one;

it just uses the greedy optimization approach. The present

algorithm is designed to show the advantages and effective-

ness of our approach. We have already noticed that the latest

particle filter algorithm, such as the MCMC-based particle

filter [10], would yield better results. This is a future work

of this paper.

5. Experiments

To show the practicality and reliability of our proposed ap-

proach, we implemented a real-time head tracking system.

Since our experimental algorithm requires a 3D seed po-

sition to search a rigid object, we use the Viola–Jones face

detector [23]. Once the face detector detects the frontal face

region, our algorithm starts to extract the head object region

and its motion tracking.

Algorithm 1: Simultaneous 3D shape acquisition and

pose estimation algorithm using cubistic representation

Randomly initializes {f } using the given p(0)
while do

Î(t)← RGB and depth images at time t

Updates {pk(t)} from {pk(t− 1)} by using

Condensation

foreach j in uniformly chosen indices from [1, Np ]
do
F ← Uniformly choose Nc fragments from

{fk}
pj(t)← argmin

p
D(Î (t),G(p,F)) using

pj(t− 1) as initial value

consensusj ← the number of inlier fragments

for pj(t)

P̂ (t)← pk(t) where k = argmax
j

(consensusj)

foreach f in {fk} do
Updates f ’s confidence mask using P̂ (t) and

Î(t)

foreach j in uniformly chosen indices from
[1, Nf ] do

if avg. of confidence values of f j is low then
f j ← New fragment sampled from Î(t)

with P̂ (t)

else
Updates base coord. of f j with

argmin
basis

D(Î (t),G(P̂ (t), f j ))

5.1. System configuration

For experiment, we use the following hardware; nVidia

GTX 580 for GPU, an Intel i7 3.2GHz CPU with linux OS,

and Kinect sensor as the RGB-D camera. Prior to conduct-

ing the experiment, we calibrated the Kinect sensor by using

an established method [12].

Our implementation uses no OpenNI or Kinect SDK fea-

tures. Most of the computations are implemented using

OpenGL 4.4 features and executed by GPU. Once the raw

bayer pattern image and disparity image are captured from

the Kinect sensor, these two images are directly forwarded

into GPU’s memory. The rest of processes, such as bayer-

decoding, distortion correction and other processes, are exe-

cuted by GPU. Each processes are implemented using mod-

ern OpenGL shader language (GLSL). For example, we use

geometry shader for real-time tessellation in the rendering

stage and compute shaders for calculation of the function

D() and its partial derivation.
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Table 1: Computational costs of typical operations: each

operations is executed on the GPU, and fast enough for real-

time processing.

Operation Average of Concurrency

computation time

Frag. rendering 0.02 ms 512 frag./GPU

Frag. sampling 0.01 ms 512 frag./GPU

Frag. evaluation 0.03 ms 512 frag./GPU

5.2. Results

First, we measured the processing times of typical fun-

damental operation with cubistic representation. Table 1

shows the benchmark results using cubistic representation.

Each fragment operation, sampling, rendering and evalua-

tion, requires a maximum of only 0.03 ms per fragment.

Moreover, up to 512 fragments can be executed in parallel

with a single GPU.

We also measured the throughput of the 3D shape and

pose estimation system. The system requires approximately

29–80 fps. These benchmark results show that our imple-

mentation is presently fast enough for real-time applica-

tions.
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Figure 4: Accuracy of the pose estimation (red line) with

respect to target x position (green line).

We also measured the accuracy of the pose estimation

by comparing our tracking real-time with the ground truth

data. The ground truth data are captured by an electromag-

netic 3D motion tracking systems, Polhemus LIBERTY. As

this graph shows our algorithm can estimate the 3D pose

accurately in the real environment. Fig.4 illustrates some

of the results where the red line indicates x position of the

head and green line indicates the derived from the ground

truth data.

As 3D shape acquisition results, Fig.6 shows some frag-

(a) Inlier fragments

(b) Outlier fragments

Figure 6: Examples of sampled fragments: some of which

are included in the inlier group (a), while others are included

in the outlier group (b) and rejected. Each rejected frag-

ments contains some artifacts, such as motion blurs or seg-

mentation errors.

ments gathered in the experiment. The fragments in (a) are

the samples accepted as inliers, and the fragments in (b) are

rejected as outliers because of motion blurs and segmenta-

tion failure. As these images show, our algorithm can de-

tect errors in shape acquisition. Fig.6 also shows pixel-level

segmentation result. The inlier fragments are correctly sep-

arated the head region from the other portion, such as neck

and body.

Using the algorithm, we also built an application that

tracks the unknown human’s head shape and pose and esti-

mates where he/she is looking at the digital contents on the

display. The looking area are summarized and visualized

with a heat map in real-time. With the synthesized frontal

portrait shown in Fig.5. The top rows are input images, the

middle are annotated image by using arrow CG model and

the bottom are synthesized frontal portrait image. This sys-

tem can visualize the pair of attention area and correspond-

ing the user’s portrait in real-time. Its performance shows

that our method will be grate helps for the online systems,

such as digital signage one.

6. Conclusion and future Work
In this paper, we proposed a cubistic representation for si-

multaneous shape acquisition and pose acquisition for un-

known rigid object. The most important contribution of this

paper is using the set of fragments to describe the 3D sur-
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Frame # 366 Frame # 369 Frame # 377 Frame # 381 Frame # 384

Figure 5: Head pose estimation results: (top) input images; (middle) the estimated head poses; (bottom) frontal portrait

images synthesized from the pairs of the input image and the estimated pose parameter.

face shape of the target. It makes the online shape acqui-

sition problem can be formulated as online shape sampling

problem and solved with a particle filter based computa-

tion. We also showed the practicality and reliability of our

cubistic representation with online system that detects and

tracks the head of unknown human. For future work, we are

planning to improve the algorithm by using recent MCMC-

based particle filtering.

Acknowledgment

This work was supported in part by the JST-CREST project

“Creation of Human-Harmonized Information Technology

for Convivial Society.”

References

[1] P. Besl and N. D. McKay. A method for registration

of 3-d shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256, Feb.

[2] P. J. Besl and N. D. McKay. A method for registration

of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell.,
14(2):239–256, Feb. 1992.

[3] R. A. Brooks. Symbolic reasoning among 3D models

and 2D images. AI Journal, 17:285–348, 1981.

[4] T. Cootes, G. Edwards, and C. Taylor. Active appear-

ance models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(6):681 –685, jun 2001.

[5] M. A. Fischler and R. C. Bolles. Random sample con-

sensus: a paradigm for model fitting with applications

to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395, June 1981.

[6] W. Hu and S.-C. Zhu. Learning a probabilistic

model mixing 3d and 2d primitives for view invari-

ant object recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on,

pages 2273–2280, 2010.

[7] M. Isard and A. Blake. Condensation – conditional

density propagation for visual tracking. International
Journal of Computer Vision, 29:5–28, 1998.

[8] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. New-

combe, P. Kohli, J. Shotton, S. Hodges, D. Freeman,

A. Davison, and A. Fitzgibbon. Kinectfusion: real-

time 3d reconstruction and interaction using a moving

depth camera. In Proceedings of the 24th annual ACM

528528



symposium on User interface software and technol-
ogy, UIST ’11, pages 559–568, New York, NY, USA,

2011. ACM.

[9] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learn-

ing of robust object detectors during unstable tracking.

In In Proceedings of the IEEE On-line Learning for
Computer Vision Workshop, pages 1417–1424, 2009.

[10] Z. Khan, T. Balch, and F. Dellaert. MCMC-based par-

ticle filtering for tracking a variable number of inter-

acting targets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(11):1805–1819, 2005.

[11] G. Klein and D. Murray. Parallel tracking and map-

ping on a camera phone. In Proc. of Eigth IEEE and
ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR’09), Orlando, October 2009.

[12] K. Konolige and P. Mihelich. Technical description of
Kinect calibration.

[13] A. Laurentini. The visual hull concept for silhouette-

based image understanding. IEEE Trans. Pattern
Anal. Mach. Intell., 16(2):150–162, Feb. 1994.

[14] Y. Li, L. Gu, and T. Kanade. A robust shape model

for multi-view car alignment. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 2466–2473, 2009.

[15] W. E. Lorensen and H. E. Cline. Marching cubes:

A high resolution 3d surface construction algorithm.

SIGGRAPH Comput. Graph., 21(4):163–169, Aug.

1987.

[16] D. Lowe. Object recognition from local scale-

invariant features. In Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Confer-
ence on, volume 2, pages 1150–1157 vol.2, 1999.

[17] D. G. Lowe. Three-dimensional object recognition

from single two-dimensional images. Artif. Intell.,
31(3):355–395, Mar. 1987.

[18] D. Marr and H. K. Nishihara. Representa-

tion and Recognition of the Spatial Organization

of Three-Dimensional Shapes. Proceedings of
the Royal Society of London Biological Sciences,

200(1140):269–294, 1978.

[19] R. Newcombe, S. Lovegrove, and A. Davison. Dtam:

Dense tracking and mapping in real-time. In Proc.
of IEEE International Conference on Computer Vi-
sion(ICCV), pages 2320 –2327, nov. 2011.

[20] J. Shi and C. Tomasi. Good features to track. In Com-
puter Vision and Pattern Recognition, 1994. Proceed-
ings CVPR ’94., 1994 IEEE Computer Society Con-
ference on, pages 593–600, 1994.

[21] M. Sun, B.-X. Xu, G. Bradski, and S. Savarese. Depth-

encoded hough voting for joint object detection and

shape recovery. In ECCV, Crete, Greece, 09/2010

2010.

[22] C. Tomasi and T. Kanade. shape and motion from im-

age streams: a factorization method. Technical report,

International Journal of Computer Vision, 1991.

[23] P. Viola and M. Jones. Robust real-time object de-

tection. In International Journal of Computer Vision,

2001.

529529


