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Abstract

Detecting traversable road areas ahead a moving vehi-
cle is a key process for modern autonomous driving sys-
tems. Most existing algorithms use color to classify pixels
as road or background. These algorithms reduce the effect
of lighting variations and weather conditions by exploiting
the discriminant/invariant properties of different color rep-
resentations. However, up to date, no comparison between
these representations have been conducted. Therefore, in
this paper, we perform an evaluation of existing color rep-
resentations for road detection. More specifically, we focus
on color planes derived from RGB data and their most com-
mon combinations. The evaluation is done on a set of 7000
road images acquired using an on-board camera in different
real-driving situations.

1. Introduction

The main goal of vision-based road detection is detect-
ing traversable road areas ahead of an ego-vehicle using
an on-board camera. Road detection is a key component
in modern autonomous driving solving specific tasks such
as road following, car collision avoidance and lane keep-
ing [1]. Road detection using a monocular color camera is
challenging since algorithms must deal with continuously
changing background, the presence of different objects like
vehicles and pedestrian, different road types (urban, high-
ways, country side) and varying ambient illumination and
weather conditions. Moreover, these algorithms have the
additional constraint of real-time execution.

A common road detection approach consists of analyz-
ing road homogeneity to group pixels into road and back-
ground areas by training a classifier based on road and non-
road examples. However, the large diversity of non-road ar-
eas and the lack of annotated datasets has motivated the de-
velopment of on-line detection algorithms [2, 3, 4, 5]. The
core of these algorithms is a single class classifier trained on
a small set of positive examples collected from the bottom
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part of the image being analyzed. Therefore, these algo-
rithms do not require examples of the background class and
usually rely on the assumption that the vehicle acquiring the
images is on the road. In addition, these algorithms tend to
represent pixel values using simple (fast) features such as
color [2, 6] or texture [4, 7] to reach the real-time constrain
required in most of the applications. Color offers many
advantages over texture since texture varies with the dis-
tance to the camera due to the perspective effect. Color pro-
vides powerful information about the road despite the shape
of the road or the perspective effect commonly present in
road images. However, using color cues is a challenging
task due to the varying photometric conditions in the ac-
quisition process (e.g., illumination variations or different
weather conditions). Different color planes exhibiting dif-
ferent invariant properties have been used to reduce the in-
fluence of these photometric variations. Color spaces de-
rived from RG B data that have proved to be, to a certain ex-
tent, robust to lighting variations are H SV [2, §, 9], normal-
ized RG B [3], CIE-Lab [10] or their combination [11, 12].
More recently, color constancy has also been used in [5]
to minimize the influence of lighting variations at the cost
of being camera dependent and requiring specific calibra-
tion. Algorithms embed these color representations in com-
plex systems that include inference methods (CRF), post-
processing steps and constraints such as temporal coher-
ence [3, 13] or road shape restrictions [2]. Therefore, is
difficult to compare and, more importantly, obscures the
analysis of different color representations to deal with il-
lumination changes within the road detection context.

In this paper, we focus on evaluating different color rep-
resentations for on-line road detection. More precisely, in
Sect. 2 we devise a simple two stages algorithm consist-
ing of a color conversion and a single class classifier per-
forming in still images. The output of the classifier is then
thresholded to provide a binary mask defining road areas.
In Sect. 3, a large number of experiments is conducted to
evaluate all possible combinations between nineteen color
representations and five different classifiers using a dataset



of 7000 manually annotated images acquired using a cam-
era mounted on a vehicle driving in real-world scenarios.
Finally, in Sect. 4, conclusions are drawn.

2. On-line Road Detection Algorithm

In this section, the road detection algorithm used for the
evaluation. The algorithm performs frame by frame and
consists of two stages: color conversion and pixel classi-
fication (Fig. 1). RGB pixel values are converted to the
selected color representation and used as input to the classi-
fication stage. This classifier considers only target samples
to learn the model used for inference. The model is learned
based on road samples collected from the bottom part of
the image. Thus, the algorithm is based on the assump-
tion that the bottom region of the image belongs to the road
class. This area usually corresponds to a distance of about
four meters ahead the camera and is a reasonably assump-
tion when the car is on the road. The output of the clas-
sifier is a road likelihood £ showing the potential of each
pixel of belonging to the road class. This likelihood ranges
from 0 to 1 where the higher the likelihood the higher the
probability of being a road pixel. State of the art algorithms
build upon this road likelihood to obtain the traversable road
area incorporating post-processing steps such as connected
components [5], temporal coherence [3, 13], shape restric-
tions [2] or even conditional random fields leading to robus-
tified algorithms. Therefore, for fair comparison, we use a
simple threshold to assign pixel labels: if £; > 7, the i-th
pixel is labeled with a road label. Otherwise, a background
label is assigned.

In the next subsections, we introduce the color represen-
tations and single-class classifiers used in the evaluation.

2.1. Color Conversion

The first stage is the color conversion process aiming
at characterizing RG'B pixel values using color features.
Algorithms have exploited the different invariant/sensitive
properties of existing color spaces to reduce the influence
of lighting variations in outdoor scenes. In this paper,
we analyze the performance of five different color spaces:
RGB and four others spaces derived from direct transfor-
mations (Table 1): normalized RG B, opponent color space,
H SV and CIE-Lab. Thus, these color spaces are device in-
dependent and do not require specific calibration. Each of
these color planes have different properties as summarized
in Table 2. For instance, using R, GG, or B to represent
pixels provides high discriminative power but low invari-
ance to shadows and lighting variations. On the other hand,
using hue or saturation to represent pixels provides higher
invariance but lower discriminative power. Interestingly,
three of the color spaces consider separate the luminance
and the chrominance into different signals. For instance,
in the HSV color space, the V' channel provides discrim-
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Figure 1. Road detection algorithm used in the experiments.

inative power while H and S components provide differ-
ent types of invariance. Similarly, the opponent color space
comprises the luminance component and two channels pro-
viding color information. Thus, these color representations
are uncorrelated and provide diversified pixel information
that can be efficiently exploited by the classifier.

2.2. Single-Class Classifier

In this paper, we consider two non-parametric and three
parametric classifiers. The former are the nearest neighbor
and a model-based classifier and the latter rely on learning
Gaussians from training data.

Nearest neighbor. This is the first and most basic non-
parametric classifier. The road likelihood is the minimum
distance between each pixel and the training data. In this
paper, we consider the minimum squared Euclidean dis-
tance over the training set to obtain the road likelihood for
each pixel. Note that this is slightly different from other im-
plementations using circular distances over specific color
planes.

Model-based. This is a non-parametric classifier that
uses a likelihood measure to approximate the conditional
probability of having a road pixel given a pixel value. This
probability distribution is estimated for each image using
the training samples. In particular, we use the normalized
histogram of the training samples. Therefore, the road like-
lihood as £; = p(z;), where p(-) is the normalized his-
togram. The higher the likelihood value, the higher the po-
tential of being a road pixel.

Single Gaussian (G). This classifier models road train-
ing samples using an unique Gaussian distribution. There-
fore, in this case, the road likelihood for the i-th pixel
is obtained as £; = G(z, pr,0,), where z; is the pixel
value and i, 0, are the parameters of the Gaussian dis-
tribution learned using the training samples. In practice, to
avoid numerical instabilities, we do not estimate the den-
sity. Instead, we use the Mahalanobis distance as follows:
Li = (z; — ) TS (25 — ), where 3, is the covariance
matrix estimated using the training set.

Robustified Gaussian. The previous classifier is sensi-
tive to outliers and noise in the training samples since the
parameters are estimated without robust statistics. In our
case, these outliers are long tails in the distribution mainly
due to lighting conditions or different road textures. There-
fore, the second parametric classifier is based on a single
Gaussian where the parameters are learned using robust
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Table 1. Derivation of the different color spaces used to character-
ize road pixels.

statistics. More precisely, training samples are weighted
according to their proximity to the real mean value. Dis-
tant samples are down weighted to obtain a more robust
estimate. Then, the road likelihood is obtained as in the
previous one.

Mixture of Gaussians (MoG). Previous classifier has
the inconvenient of modeling a single Gaussian distribu-
tion. This can be a constraint when dealing with shad-
ows and lighting variations. Therefore, the last classifier
models the set of training samples using a mixture of N
Gaussians and thus, creates a more flexible description of
the road class. In this case, the road likelihood is given by
L, = 25:1 Pexp=(@=rn) T @i—mn) | where fn and 2,
are the parameters of the different Gaussians involved and
P, is the weight assigned to the n-th Gaussian. In this pa-
per, we optimize these parameters using the EM algorithm
and we also evaluate different values of V.

3. Experiments

In this section, we present our results on the evaluation of
color planes for road detection. For a comprehensive eval-
uation, experiments are conducted on color plane individu-
ally (13 color planes) and the most common combinations
of color planes such as HSV, nrng, HS, O102 and RGB
combined with ten different classifiers: five non-parametric
and five parametric ones. The non-parametric set consists
in the nearest neighbor classifier and four instances of the
model-based one. Two of these instances use directly the
training samples from the bottom part of the road to build
the normalized-histogram with 64 and 100 bins, and the
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Table 2. Properties of different color representations from a theo-
retical point of view. Robustness to each property is indicated with
'+’ and weakness with ’-’.

other two instances extend the training set with noisy sam-
ples. Extending the training set with synthetic samples is
a common practice in the machine learning community to
improve the robustness of the algorithms [14]. In partic-
ular, we duplicate the samples and adding zero mean and
30/256 standard deviation noise to half of it. Then, two dif-
ferent histogram configurations are considered: 100 and 64
bins. Using different number of bins to build the histogram
enables the stability analysis of variations of this parame-
ter. The parametric set consists of the Gaussian and robust
Gaussian classifier and three instances of MoG classifier:
N =2, N = 4 and optimizing N based on the training set.

The classifiers are trained for each image using only road
samples collected from a rectangular area (200 x 65 pix-
els) at the bottom part of the image yielding to a training
set consisting of 13000 road pixels. Note that this area is
suited for right driving situations and it is not extremely
large. Therefore, the variability within the training set is
not always significant and may not represent all the road
areas in the image.

3.1. Road Dataset

The dataset consists of twenty road sequences compris-
ing thousands of images acquired at different days, different
daytime (daybreak, morning, noon and afternoon), different
weather conditions (sunny, cloudy, rainy) and for three dif-
ferent scenarios (urban like, highways and secondary struc-
tured roads). Each of these scenarios exhibits different chal-
lenges: highways contain tunnels with low light conditions,
crowed scenes or extreme lighting variations; secondary
roads contain lighting variations, shadows and the presence
of other vehicles in the scene; finally, urban scenes con-
tain crossings, intersections and the presence of multiple
objects (i.e., other vehicles and pedestrians). Ground-truth
is generated by a single experienced user providing manual
segmentations of a subset of 7000 randomly selected im-
ages (Fig. 2). To our knowledge, this is the largest set of
manually annotated road images today.
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Figure 2. Example of annotated images in the dataset. Best viewed in color.

3.2. Evaluation Measures

Quantitative evaluations are provided using average
ROC curves [15] on the pixel-wise comparison between
ground-truth and results obtained binarizing the road like-
lihood £ (Sect. 2) with different threshold values. ROC
curves represent the trade-off between true positive rate
T PR and false positive rate F'PR [16]. These two mea-
sures provide different insight into the performance of the
algorithm. True positive rate (I'PR = %) or sensitiv-
ity refers to the ability of the algorithm to detect road pixels.
A low sensitivity corresponds to under-segmented results.
False positive rate (FFPR = FP}:_%) or fall-out refers
to the ability of the algorithm to detect background pixels.
Hence, a high fall-out corresponds to over-segmented re-
sults. However, in road images, a low fall-out does not en-
sure a high discriminative power since the number of false
positives that can appear within the road areas is negligi-
ble compared to the number of background pixels. Hence,
small fall-out variations may correspond to significant vari-
ations in the final road detection result. Finally, for perfor-
mance comparison, we consider the area under the curve
(AUC € [0..1]), the higher AUC the higher the accuracy,
and the equal error rate (EER) defined as the intersection
between the curve and the line where error rates are equal
ie.,(1-—TPR)= FPR.

3.3. Results

The summary of AUC values resulting from combining
the nineteen different color representations and the ten in-
stances of single class classifiers is listed in Table 3. As
expected, the worst performance corresponds to the nearest
neighbor and the classifier using a single Gaussian. This is
mainly due to the incapacity of these classifiers to capture
all the information provided in the training samples in the
form of skewed distributions and the presence of long tails
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in these distributions. Further, we can see the stability of the
model-based classifier with respect to the number of bins
used to build the histogram. The relative low performance
of this model-based classifier tends to improve by extending
the training set using noisy samples. This is probably due
to the lack of training samples representing the target (road)
class. Therefore, adding noisy samples improve the variety
of the training data. Note also how the performance of this
model-based classifier drops by considering multiple color
planes. The reason is the lack of ability to capture the joint
distribution of these color planes. These results could be
improved by considering the likelihood provided by each
color plane independently. The use of multiple Gaussian
distributions to characterize the training data yields to the
best performance except when the number of Gaussians is
optimized over the training data. In particular, forcing the
classifier to learn up to four Gaussians leads to a significant
improvement in the performance for most color planes and
their combinations. More importantly, in this case, the im-
provement is even higher if the Gaussians are learned over
multiple color planes. Interestingly, the best accuracy cor-
responds to color planes providing complete luminance and
chrominance information (jointly as RG B or separately as
HSV or Lab). Thus, their combination leads to diversi-
fied color ensembles. That is, ensembles where the compo-
nents exhibit different invariant/sensitivity properties. On
the other hand, combining the opponent color planes car-
rying color information only does not improve the perfor-
mance over single channels. Representative ROC curves
are shown in Fig. 3. As shown, results share a common pat-
tern of accuracy except those exhibiting the highest perfor-
mance. From these results we can conclude that learning
Gaussian distributions using training samples from color
spaces yields to the best accuracy. Moreover, there is no
significant difference between those color spaces having lu-
minance and chrominance information separated.



Individual Color Representations
R G B nr ng O, 0> L a b H S Vv
ENearestneighbor 679 | 70.6 | 70.1 | 723 | 69.6 | 71.5 | 72.9 | 721 | 724 | 71.6 | 70.0 | 70.0 | 71.1
g 3 64 S 76.5 | 77.0 | 78.1 | 787 | 75.2 | 74.0 | 749 | 76.7 | 77.9 | 76.8 | 80.9 | 77.3 | 76.7
o 2 bins | S&N | 79.0 | 79.9 | 81.5 | 78.8 | 75.2 | 73.9 | 75.2 | 81.0 | 77.9 | 77.2 | 81.1 | 77.9 | 81.1
8% 100 S 76.2 | 76.6 | 77.7 | 794 | 77.3 | 75.6 | 76.0 | 76.4 | 784 | 77.3 | 80.8 | 77.7 | 76.3
Z| g bins | S&N | 79.1 | 79.9 | 81.5 | 79.4 | 77.3 | 75.5 | 76.4 | 81.0 | 78.4 | 77.7 | 81.0 | 78.3 | 81.1
o | Gaussian 68.6 | 71.6 | 69.7 | 79.2 | 78.0 | 75.5 | 76.5 | 70.6 | 77.1 | 76.5 | 78.3 | 73.8 | 71.1
g Robust Gaussian 68.6 | 71.6 | 69.7 | 79.2 | 78.1 | 75.3 | 76.6 | 70.6 | 77.1 | 76.6 | 78.2 | 73.9 | 71.1
£ 2 79.3 | 80.0 | 81.7 | 80.0 | 78.2 | 78.1 | 79.2 | 80.2 | 79.6 | 78.6 | 81.2 | 78.6 | 80.4
E MoG 4 79.3 | 80.1 | 81.8 | 80.0 | 78.2 | 783 | 79.3 | 80.2 | 79.9 | 78.7 | 81.3 | 789 | 80.5
Opt. | 69.5 | 61.5 | 61.0 | 788 | 77.6 | 59.9 | 72.8 | 66.0 | 76.3 | 75.4 | 76.2 | 70.6 | 63.6
(a)
Combination of Color Representations

RGB | nrng | O102 | Lab | HSV | HS

g Nearest neighbor 80.6 79.3 76.1 | 82.2 | 80.6 | 76.4

gl 3 64 S 58.0 54.2 68.2 | 54.9 | 53.8 | 53.2

al 2 bins | S&N | 70.6 55.4 68.3 | 534 | 62.8 | 63.0

§/ 2 [ 100 | S 55.8 | 54.0 | 68.9 | 53.9 | 53.2 | 536

“| g bins | S&N | 61.4 55.7 59.5 | 53.7 | 57.6 | 62.3

o | Gaussian 86.2 87.2 80.3 | 86.9 | 86.2 | 83.0

'% Robust Gaussian 81.6 87.0 79.6 84.5 | 73.0 | 82.2

= 2 88.4 88.6 84.6 | 88.6 | 88.8 | 86.1

E MoG 4 88.3 88.6 84.8 | 88.3 | 885 | 86.3

Opt. 61.5 81.5 60.9 | 65.0 | 64.0 | 75.1

(b)

Table 3. Quantative results for our experiments: a) Combinations of classifiers and single color planes. b) Combinations of classifiers and
multiple color planes. The bold value indicates the best performance: a mixture of 2 Gaussians in the H SV color space.

4. Conclusions

In this paper, we introduced a comprehensive evaluation
combining nineteen color representations with five different
single class-classifiers for road detection. Experiments were
conducted on a new large set of road image sequences com-
prising 7000 manually annotated images. From the results
we can conclude that combining multiple color representa-
tions using a parametric classifier outperforms the accuracy
of single color representations. Moreover, in this dataset,
learning a mixture of two Gaussians in color spaces pro-
viding complete luminance and chrominance information
yields best accuracy.
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