This ICCV2013 Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Exploiting Sparsity for Real Time Video Labelling

Lachlan Horne, Jose M. Alvarez, and Nick Barnes
College of Engineering and Computer Science, Australian National University, and
NICTA Canberra Research Laboratory
Tower A, 7 London Circuit, Canberra ACT 2600, Australia.

{lachlan.horne,

Abstract

Until recently, inference on fully connected graphs of
pixel labels for scene understanding has been computation-
ally expensive, so fast methods have focussed on neighbour
connections and unary computation. However, with effi-
cient CRF methods for inference on fully connected graphs,
the opportunity exists for exploring other approaches. In
this paper, we present a fast approach that calculates unary
labels sparsely and relies on inference on fully connected
graphs for label propagation. This reduces the unary com-
putation which is now the most computationally expensive
component. On a standard road scene dataset (CamVid),
we show that accuarcy remains high when less than 0.15
percent of unary potentials are used. This achieves a re-
duction in computation by a factor of more than 750, with
only small losses on global accuracy. This facilitates real-
time processing on standard hardware that produces almost
state-of-the-art results.

1. Introduction

Real-time video labelling is important for computer vi-
sion applications such as autonomous driving and driver as-
sistive technologies, but current methods are computation-
ally expensive and impractical for time-critical applications
such as pedestrian detection.

In this paper we propose a framework to enable real-time
pixel-wise semantic segmentation of video. Our method
uses a frame-by-frame approach which is amenable to real-
time streaming applications such as road hazard detection,
and can incorporate data from earlier frames for improved
accuracy in some cases. We reduce the amount of com-
putation required by reducing the number of unary poten-
tials which are calculated in each frame. Figure 1 shows
typical outputs of our algorithm using different numbers of
unary potentials per frame. We show experimentally that
for single images from street scenes, accuracy remains high
when only a small fraction of unary potentials are used. We
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achieve a factor of 768 computational saving for unary po-
tentials on single images with negligible loss of global ac-
curacy. We further show that our approach for video can
achieve improved accuracy with the same computational
saving per frame, and give a more temporally consistent re-
sult.

In Section 2 we describe work related to this paper. In
Section 3 we describe our system in detail, and then in Sec-
tion 4 we present experimental results for our system on a
publicly available dataset. Our experiments show that our
approach can reduce the amount of computation required
for video labelling without significant loss of accuracy, en-
abling real-time video labelling.

2. Related Work

Multi-class segmentation of images and video is a chal-
lenging task, and has been the focus of much recent com-
puter vision research. Often the problem is posed as a max-
imum a posteriori (MAP) inference in a conditional random
field (CRF) defined over image pixels or patches [15, 7, 4].
CREF potentials incorporate local information about a pixel
or patch as unary potentials, and smoothness terms to max-
imize label agreement between similar pixels or patches as
pairwise potentials. The calculation of unary potentials can
take a wide variety of image features into account [13] and
having high quality unary potentials is considered critical to
producing a correct labelling.

The basic CRF model only uses pairwise terms over
neighbouring pixels or patches, which limits its ability to
model long-range connections within the image. In order
to improve segmentation and labelling accuracy, many ap-
proaches have been explored, such as hierarchical methods
[8] and higher order potentials [9]. However, these methods
are computationally demanding [1], and not well-suited to
segmenting video in real-time.

Recent work in fully-connected CRFs is promising.
Fully-connected CRFs use pairwise potentials which con-
nect every pixel or patch in an image or video. These have
been used with some success [12, 14, 5, 11] but were lim-



= 100

= 256

Figure 1: Outputs of our algorithm on four consecutive
frames from the CamVid day test set with different unary
potential densities and no interlacing. n refers to the num-
ber of unary potentials computed per frame. Higher unary
densities allow for finer detail to be segmented. 256 unary
potentials per frame corresponds to a factor of 300 reduc-
tion in the number of unary potentials calculated.

ited by the vast complexity of the problem when posed as a
fully-connected CRF. This complexity has been overcome
recently with work in efficient approximate inference on
fully-connected CRFs [10], which can produce a pixel-wise
labelling for an image, given precomputed unary potentials,
in 0.2 seconds. However, the calculation of unary potentials
still limits our ability to perform labelling with CRF models
in real time video. Unary potentials must be generated for
each pixel, which remains a prohibitively time consuming
process for realtime applications. For example, [|3] reports
1 second per image. Real time performance requires the
labelling for each video frame to be completed before the
next video frame is ready, thus allowing less than 100 mil-
liseconds per frame at 10Hz. It may be feasible to complete
inference in this time, but in order to achieve real-time la-
belling, we must reduce the time taken for unary potentials
by a significant factor. This is where our contribution is fo-
cused.

3. Algorithm

Our framework, outlined in Figure 2, uses the fully-
connected CRF inference method of [ 1 0] to produce a pixel-
wise multi-class labelling of input frames. Our contribution
is in the generation of unary potentials.

Our unary potential generation comprises a unary se-
lection method, which determines at which pixel locations
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Figure 2: Our framework for video, showing data depen-
dencies for the i*" frame. Note that only unary potentials
for the previous m frames are used, and in fact previous
frames can be discarded with only the unary potentials re-
tained in memory.

unary potentials shall be calculated, and what should be
done with pixel locations which do not have unary poten-
tials calculated. We extend this to video by incorporating a
temporal interlacing method, which exploits expected cor-
relation between video frames by using unary potentials cal-
culated for previous frames.

Pairwise potentials for the CRF inference are generated
from pixel locations and color values. Thus for most pixel
locations, due to the sparsity of calculated unary potentials,
only the CRF encodes local information. This means that
the CRF is critical for accurately calculating positions and
shapes of image regions.

The modularity of this framework makes it feasible to
test a variety of approaches for unary selection and temporal
interlacing, and future work should investigate this. In this
paper we focus on results on single images using a simple
grid-based unary selection method with bilinear spatial in-
terpolation, and results on video using interlacing over four
frames.

3.1. Unary Selection

The locations at which unary potentials are calculated
can affect the quality of the labelling produced. Figure 3
shows the effect of sparse unary selection when small fea-
tures are present in the image. It is possible to “miss”
a small image region and not calculate unary potentials
within it, which is likely to lead to a mislabelling of the
region. Changing the locations can change which regions
are missed, so overall accuracy can vary significantly. Sim-
ilarly, when unary potentials vary over a region (due to noise
or clutter in the image) point selection has a strong effect,
which would not be the case when using dense unary poten-
tials, since the effects of noise would more likely be aver-
aged out. Mislabelling can happen when the selected points



Figure 3: An example of the strong effect of unary selection.
In this artificial example, two different unary selections are
shown. Unary potential locations are shown as circles, col-
ored according to the most likely label for that point. Even
with perfect classifiers, if no unary potentials are calculated
within the region of the car, that region is labelled incor-
rectly. But due to the CRF inference, even if there is only
one unary potential calculated in that region, the region can
be labelled correctly. This is an idealized example, but this
behaviour is often observed in practice.

align with artifacts in the unary potentials.

One way to mitigate this effect is to compute unary po-
tentials at locations which are more likely to be within re-
gions of similar pixels. We experimented with using cen-
troids of superpixels generated by SLIC, as this could avoid
cases where small regions are missed by unary selection.
However we found this did not give significant improve-
ment over a simple static grid of locations, particularly
when taking the extra computational requirements of super-
pixel calculation into account. It can help avoid the case
where unary potentials are calculated at strong image gra-
dients, but these are not neccessarily locations where the
pixel classifier we use (based on TextonBoost) gives am-
biguous results. This idea could yet be expanded upon in
future work.

We generate a regular grid of locations in the image at
which to calculate unary potentials. We vary the number
of unary potentials calculated by varying the density of the
grid. This is a simple approach with negligible computa-
tional cost. We respect the aspect ratio of the image, so that
the same number of rows and columns of grid points is used.
We also add an offset to the grid locations to avoid potential
artifacts caused by unary potentials being calculated at the
edges of the image.

All pixels require valid unary potential values for CRF
inference. We attempted setting the non-computed poten-
tials to a constant value. This means that the label of the
node is only determined via inference, since changing the
label of a node would result in no direct change in the en-
ergy of the graph. However we found this was unable to
achieve sufficiently high accuracy with small numbers of
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calculated unary potentials. We found interpolation to be
important for maintaining accuracy as the grid density is re-
duced, since it provides a strong signal for pixels far from
unary potential locations.

We use bilinear interpolation for spatial interpolation of
unary potentials. Since we use a regular grid of unary poten-
tial locations, this interpolation approach is straightforward
to apply. It is also fast, and commonly implemented in re-
altime on consumer graphics processors. We interpolate the
potentials for each label separately.

3.2. Interlacing

We observe that in video, there is usually high correla-
tion between subsequent frames, particularly for cases such
as vehicle-mounted cameras, where the camera egomotion
is limited. We propose exploiting this by reusing unary po-
tentials from previous frames when labelling each frame.
In our system, each frame uses a different unary selection
(eg. a different grid offset) such that new unary potentials
calculated for each frame are in different locations from
the reused unary potentials. Since camera egomotion is
likely to be small between subsequent frames in the vehicle-
mounted camera case, we expect that the error introduced
by this approach will be small. Since we are using data
from multiple frames to label each frame, we expect a tem-
poral smoothing effect, which should improve the temporal
stability of the labelling.

In this paper we use interlacing over cycles of predeter-
mined unary selections. That is, we generate m arrange-
ments of n image locations which are fixed throughout each
experiment. When labelling each frame, we calculate unary
potentials using one of these arrangements, and reuse unary
potentials calculated for the previous m — 1 frames, each
with a different point arrangement. This means that at each
frame, only n unary potentials are calculated, but mn unary
potentials are used in labelling. This is shown diagrammat-
ically in Figure 4. We expect this should also mitigate the
effect of spatially noisy unary potentials, since the effective
density of unary potentials is higher.

4. Experiments

We evaluate our approach on the Cambridge Video
dataset (CamVid) [3, 2], a challenging benchmark for multi-
class segmentation for road scenes. This dataset consists
of video frames captured at 30Hz from a vehicle-mounted
camera, driving around Cambridge in moderate traffic con-
ditions. Hand-labelled ground truth is provided for one in
30 frames for an effective rate of 1Hz, with each pixel as-
signed one of 32 semantic classes. Following the experi-
mental setup of [7], the images are down-scaled to 320 x 240
and the semantic classes are grouped into 11 categories.

Quantitative evaluation is performed using pixel-wise
comparisons of the obtained segmentations with ground-
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Figure 4: Interlaced unary potentials over four frames.
Unary potentials are calculated at different positions in each
frame, then combined when used. A repeating cycle of
unary potential locations is used.

truth. We report the global and per-class average accura-
cies. The former represents the ratio of correctly classified
pixels to the total the number of pixels in the test set. The
latter is computed as the average over all classes of the ratio
of correctly classified pixels in a class to the total number
of pixels in that class. We also show qualitative results on
video, to assess and demonstrate the effect of interlacing on
temporal stability and qualitative labelling performance.

We employed the CamVid training set to learn pixel-
level classifiers using the publicly available DARWIN
framework of [6]. These classifiers were used to generate
unary potentials on the test image set. The features used
were the 17-dimensional features used in [!3] incorporat-
ing local color, texture and location. Parameters for the
CREF inference and pairwise term generation were kept fixed
throughout all experiments.

For comparison, we perform labelling with unary poten-
tials calculated for all pixel locations, with and without CRF
inference (shown in Table 2). Using all unary potentials
with CRF inference gives the maximum possible accuracy
of our method, and we base our comparison on this. Our
maximum accuracy is comparable to other state of the art
methods.

4.1. Single Image Results

Since the position of the grid points can drastically af-
fect the output labelling, we used multiple trials of ran-
domly chosen grid offsets to ensure a fair comparison. We
tested frames from the CamVid day test set with 4 trials
per frame, averaging results over the trials. Table 1 shows
the global accuracy of our method over these frames. We
can see that results rapidly converge to near-maximum ac-
curacy for most frames in the sequence. This effect does
depend on image content, variation over different frames is
shown in Figure 5. We can see in Table 1 that we only need
around 100 calculated unary potentials to achieve similar
accuracy to the maximum. This results in a factor of 768
reduction in computation time for unary potentials, which

635

0.20

o.15T

- 5

e

Global accuracy difference from maximum

0 500 1000 1500 2000 2500 3000
Number of unary potentials calculated

Figure 5: Global accuracy discrepancy from maximum (all
unary potentials with CRF) for 5 randomly selected frames.
Values for each frame are averaged over 4 trials with differ-
ent unary potential grid offsets. We can observe a common
trend that accuracy values rapidly approach the maximum.
One outlier is shown - some frames require more unary po-
tentials to reach high accuracy and can unexpectedly lose
accuracy at certain grid densities. This is often due to small
(narrow) regions being missed by coarse grids, and repeat-
ing patterns (such as fence regions in CamVid) being sensi-
tive to grid densities more than offsets.

is more than sufficient for real-time performance. Increas-
ing n can further increase accuracy, but instead we use in-
terlacing as another method to increase accuracy without
increasing computation required.

We examined the labellings produced with small num-
bers of unary potentials generated and in most cases they
did not differ greatly from the maximum accuracy la-
bellings. We show a typical example in Figure 6. Smaller
regions can be missed by unary potential point selection,
and be labelled differently due to unary potentials being in-
terpolated. In this case however, the smaller regions were
segmented from the surrounding region due to noise, and
in fact in such cases it is possible for accuracy to be higher
than that for the case where all unary potentials are calcu-
lated.

4.2. Video Results

We performed experiments to test unary potential inter-
leaving on CamVid. For these experiments we fixed the
number of unary potentials calculated per frame to 100,
since the single image experiments show that the accuracy
for most frames is close to maximum by this point, but some
improvement is still possible.

We test video labelling with and without interlacing. We
do not test interlacing with more than four frames at a time,
since interlacing over too many frames constrains our ap-



n Proportion || Unary (interpolated) | Pairwise
64 0.08% 12.6 74.9
81 0.11% 11.9 75.3
100 0.13% 11.3 76.1
144 0.19% 10.5 76.9
196 0.26% 9.82 77.4
225 0.29% 9.57 77.5
256 0.33% 9.31 71.7
484 0.63% 8.49 78.7
729 0.95% 7.97 79.1
1024 1.33% 7.69 79.5
2025 2.64% 7.31 80.0
76800 100% 80.5 80.8

Table 1: Global accuracy mean as a function of the num-
ber of unary potentials calculated (n) over frames from the
CamVid day test set. The Proportion column shows the
proportion of image pixels with calculated unary potentials.
There is a clear advantage to using pairwise inference when
sparse unary potentials are used. Accuracy with unary po-
tentials falls as the number of unary potentials increases due
to the effect of small regions being picked up and having
their labels propagated by interpolation. Pairwise inference
mitigates this effect by taking image content into account
when propagating labels. We highlight values for n = 100
since we use this value of n in later experiments.

(b)

Figure 6: Qualitative results for single-image labelling.
Note that smaller features may not be segmented from large
regions, as expected. (a) Labels using unary potentials for
all pixels and pairwise inference. (b) Labels using 100
unary potentials, bilinear interpolation and pairwise infer-
ence.

proach to video with small motion. We expect that in the
CamVid dataset, motion over four subsequent frames is
small enough that it is unlikely to introduce errors.

We specifically want to compare two methods over
video:

No interlacing Only the unary potentials of the current
frame are used. The same grid locations are used in
every frame.

4-cycle interlacing Four grids are used, each with a differ-
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n 100 | 100 | 76800

Interlacing || None 4 None
Building || 92.6 | 94.5 | 943
Car || 254 | 42.0 | 725
Column_Pole || 0.05 | 0.10 | 5.08
Fence || 0.67 | 495 | 5.43
Pedestrian || 0.00 | 0.22 | 6.60
Road || 98.6 | 98.3 | 97.8
Sidewalk || 8.34 | 184 | 31.6
Sign_Symbol || 0.04 | 0.84 | 3.52
Sky || 98.1 | 97.9 | 98.1
Tree || 39.6 | 474 | 53.1
Global accuracy || 75.9 | 78.5 | 80.8

Table 2: Per-class accuracy comparison between methods
over the CamVid day test set. All results are produced with
fully-connected inference, with the only variation between
columns being the unary potentials used. The rightmost col-
umn shows the maximum possible performance of our ap-
proach, with all unary potentials calculated. n refers to the
number of unary potentials calculated per frame and indi-
cates the amount of computation required per frame - which
is reduced by a factor of 768 where n = 100. In the inter-
laced case m = 4 so there are effectively 400 unary poten-
tials used per frame. Note that interlacing increases global
accuracy as expected. Note also that interlacing improves
performance slightly on most labels, and significantly for
Building, Sidewalk and Fence. Bicyclist was not present in
the day test set and so is not shown in this table.

ent offset. Unary potentials from the past 3 frames are
used for each frame.

Note that neither of these methods are informed by im-
age content or domain-specific information. It may be pos-
sible to improve performance by increasing grid density and
decreasing the number of frames used at once, thus improv-
ing spatial and temporal precision, in regions where precise
labelling is more important, such as in peripheral and cen-
tral regions for pedestrian detection in autonomous vehicle
applications.

We tested the above methods on frames with ground
truth from the CamVid day test set. We used earlier frames
as inputs for interlacing. Since the video in CamVid was
captured at 30Hz, 4-cycle interlacing will only use data
from a temporal window of 133 milliseconds.

The accuracy results in Table 2 show the interlacing ap-
proach does improve labelling accuracy as expected, and
performs better for some labels than others. In particular
we observe improvement for classes which typically mani-
fest as small or narrow image regions, such as Car, Fence or
Sidewalk. This suggests that the increased spatial density of
unary potentials allows detection of these classes. Notably
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Figure 7: Qualitative results for interlaced versus non-
interlaced video labelling. The improved temporal stability
can be seen in the top-left and top-right corners of frame,
with large regions showing less sudden label variation be-
tween subsequent frames. Some instability is still present
with interlacing and this could be improved by increasing
density of calculated unary potentials (increasing calcula-
tion time per frame) or increasing the number of frames
used for interlacing (making the system less robust to strong
motion).

performance for Pedestrian and Sign_Symbol remains poor,
which is most likely due to these regions still being small
relative to the denser grid. This suggests future work could
characterise the relationship between object size and grid
density, and find a method to determine the optimal unary
potential density for detecting certain object classes.

In order to confirm that the expected temporal smooth-
ing effect of unary interlacing does in fact improve temporal
stability, we compare frames which exhibit some temporal
artifacts in the non-interlaced cases (ie. labels “flickering”)
and observe the difference when the unary potentials are in-
terlaced. Figure 7 illustrates typical results with and without
interlacing.

5. Conclusions

We proposed a method to enable real-time semantic la-
belling of video, using sparse generation of unary poten-
tials and dense CRF inference to reduce the overall com-
putation required. We achieved this with negligible loss of
accuracy. Further, we propsed an interlacing approach to
improve quantitative and qualitative performance on video
without significant increase in computational requirements.
In doing this we achieved significant accuracy gains for cer-
tain object classes.
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