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Abstract

Until recently, inference on fully connected graphs of
pixel labels for scene understanding has been computation-
ally expensive, so fast methods have focussed on neighbour
connections and unary computation. However, with effi-
cient CRF methods for inference on fully connected graphs,
the opportunity exists for exploring other approaches. In
this paper, we present a fast approach that calculates unary
labels sparsely and relies on inference on fully connected
graphs for label propagation. This reduces the unary com-
putation which is now the most computationally expensive
component. On a standard road scene dataset (CamVid),
we show that accuarcy remains high when less than 0.15
percent of unary potentials are used. This achieves a re-
duction in computation by a factor of more than 750, with
only small losses on global accuracy. This facilitates real-
time processing on standard hardware that produces almost
state-of-the-art results.

1. Introduction
Real-time video labelling is important for computer vi-

sion applications such as autonomous driving and driver as-

sistive technologies, but current methods are computation-

ally expensive and impractical for time-critical applications

such as pedestrian detection.

In this paper we propose a framework to enable real-time

pixel-wise semantic segmentation of video. Our method

uses a frame-by-frame approach which is amenable to real-

time streaming applications such as road hazard detection,

and can incorporate data from earlier frames for improved

accuracy in some cases. We reduce the amount of com-

putation required by reducing the number of unary poten-

tials which are calculated in each frame. Figure 1 shows

typical outputs of our algorithm using different numbers of

unary potentials per frame. We show experimentally that

for single images from street scenes, accuracy remains high

when only a small fraction of unary potentials are used. We

achieve a factor of 768 computational saving for unary po-

tentials on single images with negligible loss of global ac-

curacy. We further show that our approach for video can

achieve improved accuracy with the same computational

saving per frame, and give a more temporally consistent re-

sult.

In Section 2 we describe work related to this paper. In

Section 3 we describe our system in detail, and then in Sec-

tion 4 we present experimental results for our system on a

publicly available dataset. Our experiments show that our

approach can reduce the amount of computation required

for video labelling without significant loss of accuracy, en-

abling real-time video labelling.

2. Related Work
Multi-class segmentation of images and video is a chal-

lenging task, and has been the focus of much recent com-

puter vision research. Often the problem is posed as a max-

imum a posteriori (MAP) inference in a conditional random

field (CRF) defined over image pixels or patches [15, 7, 4].

CRF potentials incorporate local information about a pixel

or patch as unary potentials, and smoothness terms to max-

imize label agreement between similar pixels or patches as

pairwise potentials. The calculation of unary potentials can

take a wide variety of image features into account [13] and

having high quality unary potentials is considered critical to

producing a correct labelling.

The basic CRF model only uses pairwise terms over

neighbouring pixels or patches, which limits its ability to

model long-range connections within the image. In order

to improve segmentation and labelling accuracy, many ap-

proaches have been explored, such as hierarchical methods

[8] and higher order potentials [9]. However, these methods

are computationally demanding [1], and not well-suited to

segmenting video in real-time.

Recent work in fully-connected CRFs is promising.

Fully-connected CRFs use pairwise potentials which con-

nect every pixel or patch in an image or video. These have

been used with some success [12, 14, 5, 11] but were lim-
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n = 16 n = 100 n = 256

Figure 1: Outputs of our algorithm on four consecutive

frames from the CamVid day test set with different unary

potential densities and no interlacing. n refers to the num-

ber of unary potentials computed per frame. Higher unary

densities allow for finer detail to be segmented. 256 unary

potentials per frame corresponds to a factor of 300 reduc-

tion in the number of unary potentials calculated.

ited by the vast complexity of the problem when posed as a

fully-connected CRF. This complexity has been overcome

recently with work in efficient approximate inference on

fully-connected CRFs [10], which can produce a pixel-wise

labelling for an image, given precomputed unary potentials,

in 0.2 seconds. However, the calculation of unary potentials

still limits our ability to perform labelling with CRF models

in real time video. Unary potentials must be generated for

each pixel, which remains a prohibitively time consuming

process for realtime applications. For example, [13] reports

1 second per image. Real time performance requires the

labelling for each video frame to be completed before the

next video frame is ready, thus allowing less than 100 mil-

liseconds per frame at 10Hz. It may be feasible to complete

inference in this time, but in order to achieve real-time la-

belling, we must reduce the time taken for unary potentials

by a significant factor. This is where our contribution is fo-

cused.

3. Algorithm

Our framework, outlined in Figure 2, uses the fully-

connected CRF inference method of [10] to produce a pixel-

wise multi-class labelling of input frames. Our contribution

is in the generation of unary potentials.

Our unary potential generation comprises a unary se-
lection method, which determines at which pixel locations

Figure 2: Our framework for video, showing data depen-

dencies for the ith frame. Note that only unary potentials

for the previous m frames are used, and in fact previous

frames can be discarded with only the unary potentials re-

tained in memory.

unary potentials shall be calculated, and what should be

done with pixel locations which do not have unary poten-

tials calculated. We extend this to video by incorporating a

temporal interlacing method, which exploits expected cor-

relation between video frames by using unary potentials cal-

culated for previous frames.

Pairwise potentials for the CRF inference are generated

from pixel locations and color values. Thus for most pixel

locations, due to the sparsity of calculated unary potentials,

only the CRF encodes local information. This means that

the CRF is critical for accurately calculating positions and

shapes of image regions.

The modularity of this framework makes it feasible to

test a variety of approaches for unary selection and temporal

interlacing, and future work should investigate this. In this

paper we focus on results on single images using a simple

grid-based unary selection method with bilinear spatial in-

terpolation, and results on video using interlacing over four

frames.

3.1. Unary Selection

The locations at which unary potentials are calculated

can affect the quality of the labelling produced. Figure 3

shows the effect of sparse unary selection when small fea-

tures are present in the image. It is possible to “miss”

a small image region and not calculate unary potentials

within it, which is likely to lead to a mislabelling of the

region. Changing the locations can change which regions

are missed, so overall accuracy can vary significantly. Sim-

ilarly, when unary potentials vary over a region (due to noise

or clutter in the image) point selection has a strong effect,

which would not be the case when using dense unary poten-

tials, since the effects of noise would more likely be aver-

aged out. Mislabelling can happen when the selected points
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Figure 3: An example of the strong effect of unary selection.

In this artificial example, two different unary selections are

shown. Unary potential locations are shown as circles, col-

ored according to the most likely label for that point. Even

with perfect classifiers, if no unary potentials are calculated

within the region of the car, that region is labelled incor-

rectly. But due to the CRF inference, even if there is only

one unary potential calculated in that region, the region can

be labelled correctly. This is an idealized example, but this

behaviour is often observed in practice.

align with artifacts in the unary potentials.

One way to mitigate this effect is to compute unary po-

tentials at locations which are more likely to be within re-

gions of similar pixels. We experimented with using cen-

troids of superpixels generated by SLIC, as this could avoid

cases where small regions are missed by unary selection.

However we found this did not give significant improve-

ment over a simple static grid of locations, particularly

when taking the extra computational requirements of super-

pixel calculation into account. It can help avoid the case

where unary potentials are calculated at strong image gra-

dients, but these are not neccessarily locations where the

pixel classifier we use (based on TextonBoost) gives am-

biguous results. This idea could yet be expanded upon in

future work.

We generate a regular grid of locations in the image at

which to calculate unary potentials. We vary the number

of unary potentials calculated by varying the density of the

grid. This is a simple approach with negligible computa-

tional cost. We respect the aspect ratio of the image, so that

the same number of rows and columns of grid points is used.

We also add an offset to the grid locations to avoid potential

artifacts caused by unary potentials being calculated at the

edges of the image.

All pixels require valid unary potential values for CRF

inference. We attempted setting the non-computed poten-

tials to a constant value. This means that the label of the

node is only determined via inference, since changing the

label of a node would result in no direct change in the en-

ergy of the graph. However we found this was unable to

achieve sufficiently high accuracy with small numbers of

calculated unary potentials. We found interpolation to be

important for maintaining accuracy as the grid density is re-

duced, since it provides a strong signal for pixels far from

unary potential locations.

We use bilinear interpolation for spatial interpolation of

unary potentials. Since we use a regular grid of unary poten-

tial locations, this interpolation approach is straightforward

to apply. It is also fast, and commonly implemented in re-

altime on consumer graphics processors. We interpolate the

potentials for each label separately.

3.2. Interlacing

We observe that in video, there is usually high correla-

tion between subsequent frames, particularly for cases such

as vehicle-mounted cameras, where the camera egomotion

is limited. We propose exploiting this by reusing unary po-

tentials from previous frames when labelling each frame.

In our system, each frame uses a different unary selection

(eg. a different grid offset) such that new unary potentials

calculated for each frame are in different locations from

the reused unary potentials. Since camera egomotion is

likely to be small between subsequent frames in the vehicle-

mounted camera case, we expect that the error introduced

by this approach will be small. Since we are using data

from multiple frames to label each frame, we expect a tem-

poral smoothing effect, which should improve the temporal

stability of the labelling.

In this paper we use interlacing over cycles of predeter-

mined unary selections. That is, we generate m arrange-

ments of n image locations which are fixed throughout each

experiment. When labelling each frame, we calculate unary

potentials using one of these arrangements, and reuse unary

potentials calculated for the previous m − 1 frames, each

with a different point arrangement. This means that at each

frame, only n unary potentials are calculated, but mn unary

potentials are used in labelling. This is shown diagrammat-

ically in Figure 4. We expect this should also mitigate the

effect of spatially noisy unary potentials, since the effective

density of unary potentials is higher.

4. Experiments
We evaluate our approach on the Cambridge Video

dataset (CamVid) [3, 2], a challenging benchmark for multi-

class segmentation for road scenes. This dataset consists

of video frames captured at 30Hz from a vehicle-mounted

camera, driving around Cambridge in moderate traffic con-

ditions. Hand-labelled ground truth is provided for one in

30 frames for an effective rate of 1Hz, with each pixel as-

signed one of 32 semantic classes. Following the experi-

mental setup of [2], the images are down-scaled to 320×240
and the semantic classes are grouped into 11 categories.

Quantitative evaluation is performed using pixel-wise

comparisons of the obtained segmentations with ground-
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Figure 4: Interlaced unary potentials over four frames.

Unary potentials are calculated at different positions in each

frame, then combined when used. A repeating cycle of

unary potential locations is used.

truth. We report the global and per-class average accura-

cies. The former represents the ratio of correctly classified

pixels to the total the number of pixels in the test set. The

latter is computed as the average over all classes of the ratio

of correctly classified pixels in a class to the total number

of pixels in that class. We also show qualitative results on

video, to assess and demonstrate the effect of interlacing on

temporal stability and qualitative labelling performance.

We employed the CamVid training set to learn pixel-

level classifiers using the publicly available DARWIN

framework of [6]. These classifiers were used to generate

unary potentials on the test image set. The features used

were the 17-dimensional features used in [13] incorporat-

ing local color, texture and location. Parameters for the

CRF inference and pairwise term generation were kept fixed

throughout all experiments.

For comparison, we perform labelling with unary poten-

tials calculated for all pixel locations, with and without CRF

inference (shown in Table 2). Using all unary potentials

with CRF inference gives the maximum possible accuracy

of our method, and we base our comparison on this. Our

maximum accuracy is comparable to other state of the art

methods.

4.1. Single Image Results

Since the position of the grid points can drastically af-

fect the output labelling, we used multiple trials of ran-

domly chosen grid offsets to ensure a fair comparison. We

tested frames from the CamVid day test set with 4 trials

per frame, averaging results over the trials. Table 1 shows

the global accuracy of our method over these frames. We

can see that results rapidly converge to near-maximum ac-

curacy for most frames in the sequence. This effect does

depend on image content, variation over different frames is

shown in Figure 5. We can see in Table 1 that we only need

around 100 calculated unary potentials to achieve similar

accuracy to the maximum. This results in a factor of 768

reduction in computation time for unary potentials, which

Figure 5: Global accuracy discrepancy from maximum (all

unary potentials with CRF) for 5 randomly selected frames.

Values for each frame are averaged over 4 trials with differ-

ent unary potential grid offsets. We can observe a common

trend that accuracy values rapidly approach the maximum.

One outlier is shown - some frames require more unary po-

tentials to reach high accuracy and can unexpectedly lose

accuracy at certain grid densities. This is often due to small

(narrow) regions being missed by coarse grids, and repeat-

ing patterns (such as fence regions in CamVid) being sensi-

tive to grid densities more than offsets.

is more than sufficient for real-time performance. Increas-

ing n can further increase accuracy, but instead we use in-

terlacing as another method to increase accuracy without

increasing computation required.

We examined the labellings produced with small num-

bers of unary potentials generated and in most cases they

did not differ greatly from the maximum accuracy la-

bellings. We show a typical example in Figure 6. Smaller

regions can be missed by unary potential point selection,

and be labelled differently due to unary potentials being in-

terpolated. In this case however, the smaller regions were

segmented from the surrounding region due to noise, and

in fact in such cases it is possible for accuracy to be higher

than that for the case where all unary potentials are calcu-

lated.

4.2. Video Results

We performed experiments to test unary potential inter-

leaving on CamVid. For these experiments we fixed the

number of unary potentials calculated per frame to 100,

since the single image experiments show that the accuracy

for most frames is close to maximum by this point, but some

improvement is still possible.

We test video labelling with and without interlacing. We

do not test interlacing with more than four frames at a time,

since interlacing over too many frames constrains our ap-
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n Proportion Unary (interpolated) Pairwise

64 0.08% 12.6 74.9

81 0.11% 11.9 75.3

100 0.13% 11.3 76.1
144 0.19% 10.5 76.9

196 0.26% 9.82 77.4

225 0.29% 9.57 77.5

256 0.33% 9.31 77.7

484 0.63% 8.49 78.7

729 0.95% 7.97 79.1

1024 1.33% 7.69 79.5

2025 2.64% 7.31 80.0

76800 100% 80.5 80.8

Table 1: Global accuracy mean as a function of the num-

ber of unary potentials calculated (n) over frames from the

CamVid day test set. The Proportion column shows the

proportion of image pixels with calculated unary potentials.

There is a clear advantage to using pairwise inference when

sparse unary potentials are used. Accuracy with unary po-

tentials falls as the number of unary potentials increases due

to the effect of small regions being picked up and having

their labels propagated by interpolation. Pairwise inference

mitigates this effect by taking image content into account

when propagating labels. We highlight values for n = 100
since we use this value of n in later experiments.

(a) (b)

Figure 6: Qualitative results for single-image labelling.

Note that smaller features may not be segmented from large

regions, as expected. (a) Labels using unary potentials for

all pixels and pairwise inference. (b) Labels using 100

unary potentials, bilinear interpolation and pairwise infer-

ence.

proach to video with small motion. We expect that in the

CamVid dataset, motion over four subsequent frames is

small enough that it is unlikely to introduce errors.

We specifically want to compare two methods over

video:

No interlacing Only the unary potentials of the current

frame are used. The same grid locations are used in

every frame.

4-cycle interlacing Four grids are used, each with a differ-

n 100 100 76800

Interlacing None 4 None

Building 92.6 94.5 94.3

Car 25.4 42.0 72.5

Column Pole 0.05 0.10 5.08

Fence 0.67 4.95 5.43

Pedestrian 0.00 0.22 6.60

Road 98.6 98.3 97.8

Sidewalk 8.34 18.4 31.6

Sign Symbol 0.04 0.84 3.52

Sky 98.1 97.9 98.1

Tree 39.6 47.4 53.1

Global accuracy 75.9 78.5 80.8

Table 2: Per-class accuracy comparison between methods

over the CamVid day test set. All results are produced with

fully-connected inference, with the only variation between

columns being the unary potentials used. The rightmost col-

umn shows the maximum possible performance of our ap-

proach, with all unary potentials calculated. n refers to the

number of unary potentials calculated per frame and indi-

cates the amount of computation required per frame - which

is reduced by a factor of 768 where n = 100. In the inter-

laced case m = 4 so there are effectively 400 unary poten-

tials used per frame. Note that interlacing increases global

accuracy as expected. Note also that interlacing improves

performance slightly on most labels, and significantly for

Building, Sidewalk and Fence. Bicyclist was not present in

the day test set and so is not shown in this table.

ent offset. Unary potentials from the past 3 frames are

used for each frame.

Note that neither of these methods are informed by im-

age content or domain-specific information. It may be pos-

sible to improve performance by increasing grid density and

decreasing the number of frames used at once, thus improv-

ing spatial and temporal precision, in regions where precise

labelling is more important, such as in peripheral and cen-

tral regions for pedestrian detection in autonomous vehicle

applications.

We tested the above methods on frames with ground

truth from the CamVid day test set. We used earlier frames

as inputs for interlacing. Since the video in CamVid was

captured at 30Hz, 4-cycle interlacing will only use data

from a temporal window of 133 milliseconds.

The accuracy results in Table 2 show the interlacing ap-

proach does improve labelling accuracy as expected, and

performs better for some labels than others. In particular

we observe improvement for classes which typically mani-

fest as small or narrow image regions, such as Car, Fence or

Sidewalk. This suggests that the increased spatial density of

unary potentials allows detection of these classes. Notably
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Without interlacing

With interlacing

Figure 7: Qualitative results for interlaced versus non-

interlaced video labelling. The improved temporal stability

can be seen in the top-left and top-right corners of frame,

with large regions showing less sudden label variation be-

tween subsequent frames. Some instability is still present

with interlacing and this could be improved by increasing

density of calculated unary potentials (increasing calcula-

tion time per frame) or increasing the number of frames

used for interlacing (making the system less robust to strong

motion).

performance for Pedestrian and Sign Symbol remains poor,

which is most likely due to these regions still being small

relative to the denser grid. This suggests future work could

characterise the relationship between object size and grid

density, and find a method to determine the optimal unary

potential density for detecting certain object classes.

In order to confirm that the expected temporal smooth-

ing effect of unary interlacing does in fact improve temporal

stability, we compare frames which exhibit some temporal

artifacts in the non-interlaced cases (ie. labels “flickering”)

and observe the difference when the unary potentials are in-

terlaced. Figure 7 illustrates typical results with and without

interlacing.

5. Conclusions
We proposed a method to enable real-time semantic la-

belling of video, using sparse generation of unary poten-

tials and dense CRF inference to reduce the overall com-

putation required. We achieved this with negligible loss of

accuracy. Further, we propsed an interlacing approach to

improve quantitative and qualitative performance on video

without significant increase in computational requirements.

In doing this we achieved significant accuracy gains for cer-

tain object classes.
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