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Abstract

Kinect depth maps often contain missing data, or

“holes”, for various reasons. Most existing Kinect-related

research treat these holes as artifacts and try to minimize

them as much as possible. In this paper, we advocate a to-

tally different idea – turning Kinect holes into useful infor-

mation. In particular, we are interested in the unique type

of holes that are caused by occlusion of the Kinect’s struc-

tured light, resulting in shadows and loss of depth acquisi-

tion. We propose a robust detection scheme to detect and

classify different types of shadows based on their distinct

local shadow patterns as determined from geometric anal-

ysis, without assumption on object geometry. Experimental

results demonstrate that the proposed scheme can achieve

very accurate shadow detection. We also demonstrate the

usefulness of the extracted shadow information by success-

fully applying it for automatic foreground segmentation.

1. Introduction

The Kinect sensor uses a structured light technique to

generate a depth map of the scene, wherein a dot pattern

is projected by an IR light projector and captured by a dis-

placed IR camera (see Fig. 1(b)). By calculating the dis-

parities of the projected dots between the IR projector and

camera, the depth of the scene is attained (see Fig. 1(c)).

However, the depth map usually contains significant arti-

facts, among which the most notable ones are missing depth

regions, or “holes”. In some instances, the holes are due

to partial occlusion of the structured light by foreground

objects, leading to shadows in some background regions

which are visible in the IR camera but unreachable by the IR

projector pattern. In other instances, specular or low albedo

surfaces may remove the visibility of the projector pattern

in the IR camera [10].

Most existing Kinect-related research [5, 12] treat Kinect

holes as artifacts and try to minimize them as much as pos-

sible using various filters. In this research, we advocate a

totally different idea of turning Kinect holes into useful in-

formation. In particular, we are interested in the type of

(a) RGB (b) IR image

(c) Unaligned depth (d) Aligned depth

Figure 1. An example of Kinect data with different types of depth

holes marked in red, blue, green and yellow colors for attached

shadow, detached shadow, alignment shadow and non-shadow

holes, respectively. (a) RGB image. (b) IR image with intensi-

ty amplified by 10 times. (c) Unaligned depth map. (d) Aligned

depth map.

holes that result from structured light shadows, which often

occur near the boundary of the objects in the scene, as il-

lustrated in Fig. 1(c)&(d). Such shadow information is very

useful in providing high-level structural information of the

scene.

Utilizing shadow information is not new in the comput-

er vision community. For example, the technique of shape

from shadows [2] has long been studied. In some cases,

shadows were deliberately created. For example, in [8, 3],

Raskar et al. designed and developed a special camera with

multiple flashes strategically positioned around the cam-

era to capture cast shadows along depth discontinuities in

the scene. Conversely, the shadows in Kinect depth maps

are simply an expected but unwanted consequence of us-

ing structured light. Because only a single fixed projector

is used, it is challenging to automatically detect shadows in
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the depth map since they can take different shapes and must

be distinguished from other causes of Kinect holes.

In this paper, we propose to detect different types of

shadows using their distinct local shadow patterns desired

from geometric analysis. In particular, we consider three

types of shadows: attached shadows, detached shadows

and alignment shadows, as shown in Fig. 1(c)&(d). An at-

tached shadow is defined as a shadow that is directly ad-

jacent to its occluding foreground object in the depth map,

while a detached shadow is the one that is separated from

its occluder by a short distance, i.e. there is some interven-

ing visible background surface. An alignment shadow is a

synthetic artifact that occurs when the original depth map

as observed in the IR camera is rendered from the view-

point of the RGB camera. Experimental results show that

our proposed shadow detection algorithm can achieve very

accurate shadow detection. To demonstrate the usefulness

of our method, we further incorporate the shadow detec-

tion results into two state-of-the-art algorithms for auto-

matic foreground segmentation. Experimental results show

that the proposed shadow-assisted segmentation methods

can achieve fully automatic foreground cutout with superior

segmentation performance.

The main contributions of this paper are two-fold. First,

we present a robust scheme to automatically detect differ-

ent types of shadows in Kinect depth maps. As far as we

know, there has been little work done on Kinect shadow

detection, the closest being the work of Berdnikov and Va-

tolin [1] which proposes a preliminary occlusion classifica-

tion method for real-time occlusion filling, presented with-

out proof nor quantitative evaluation. Second, we propose

to use the classified shadow information for fully automatic

foreground segmentation, unlike existing RGBD object seg-

mentation methods that require either some user input [11]

or a training dataset for segmenting specific objects [4].

2. Proposed Kinect Shadow Detection

As mentioned earlier, we consider three types of shad-

ows in Kinect depth maps: attached shadows, detached

shadows and alignment shadows. We first focus on detect-

ing shadows in the original depth map captured by the IR

camera, where we only need to consider attached shadows

and detached shadows, since alignment shadows only oc-

cur when the depth map is rendered in the the RGB camera

viewpoint.

As the Kinect has the IR projector positioned to the left

of the IR camera (see Fig. 2(a)), it is clear that the shadows

in the original depth map will always be located to the left of

any occluding foreground objects. This arrangement allows

for the detection of shadows by scanning each horizontal

line in the unaligned depth map. As a result, specific pat-

terns of the shadows can be retrieved, as shown in Fig. 2(b).

(a) Kinect (b) Shadow Patterns

Figure 2. An illustration of (a) Kinect projector and cameras and

(b) shadow patterns retrieved from horizontally scanning the un-

aligned depth map.

2.1. Geometric analysis of attached shadow

For the attached shadow illustrated in Fig. 3(a), let us

imagine there is a virtual camera at IR projector location

with the same image plane as the IR camera. Denote the

IR camera center and the virtual camera center as O1 and

O2 respectively, and denote their orthogonal projections to

the image plane as Oa and Ob respectively. Let X denote

the projection of the foreground edge point F1 to the virtual

camera. By drawing an auxiliary line X ′O1 parallel to the

line XO2, where X ′ is the intersection point with the image

plane, we can easily get
−−−→
X ′Oa =

−−→
XOb. Let disp(p) mea-

sure the disparity between pixel p in the depth map and its

corresponding pixel in the virtual camera. we can have

disp(Sb) = |
−−−→
SbOa −

−−→
XOb| = |

−−−→
SbOa −

−−−→
X ′Oa| = |

−−−→
SbX

′|
(1)

and

disp(Sa) = |
−−−→
SaOa −

−−→
XOb| = |

−−−→
SaOa −

−−−→
X ′Oa| = |

−−−→
SaX

′|
(2)

where Sa and Sb are respectively the left and the right near-

est valid pixels to the shadow. In other words, the shadow

in the depth map is in from Sa to Sb.

We can then estimate the length of an attached shadow

as

w̃as
.
= |SaSb| = |SbX

′| − |SaX
′| = disp(Sb)− disp(Sa),

(3)

where disp(Sa) and disp(Sb) can be easily computed from

the depth values of Sa and Sb according to the triangles of

O1BO2 and O1F1O2. Eq. (3) essentially states that the at-

tached shadow length of a foreground edge point F1 is fully

determined by the depths of F1 and the closest background

point B lying on the 3D ray of O2F1.

Based on the above geometric analysis, we propose to

detect an attached shadow by comparing whether there is a

match between the observed shadow length was and the es-

timated shadow length w̃as defined in (3). Most specifically,

given a horizontal scanline in the depth map, the length of
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(a) Attached Shadow (b) Detached Shadow

(c) Special Case (d) Alignment Shadow

Figure 3. Imaging geometry of Kinect illustrating different types

of shadows.

any contiguous region of missing depth can be measured as

was, with the nearest valid pixels Sa and Sb at both ends

identified. We then calculate the estimated shadow length

w̃as using (3). If w̃as > 0 and w̃as is close to was, we will

classify the region of missing depth as an attached shadow.

2.2. Geometric analysis of detached shadows

The formation of a detached shadow is due to the com-

paratively narrower width of the foreground object, as illus-

trated in Fig. 3(b). Let Fa and Fb denote respectively the

projections of the left and the right edge points of the fore-

ground object in the IR camera. Using the same procedure

for deriving (3), we obtain

w̃sb
.
= |SaFa| = disp(Fa)− disp(Sa), (4)

w̃bf
.
= |SbFb| = disp(Fb)− disp(Sb), (5)

where w̃sb is the estimated length of the shadow plus the

portion of intervening background (sandwiched between

the shadow and the foreground) in the depth map, while

w̃bf is the estimated length of the foreground plus the same

portion of background, as illustrated in Fig. 2(b).

Based on the above geometric analysis, we propose to

detect detached shadows by using their distinctive features

as expressed in (4) and (5). More specifically, given a hor-

izontal scanline of the depth map with some contiguous re-

gion of missing depth, if it is determined to not be an at-

tached shadow, we will then test to see if it is a detached

shadow. We identify the two nearest shadow-bounding pix-

els as Sa and Sb, and also attempt to find the width of the

foreground occluder. This is done by seeking for a sequen-

tial pair of large negative and positive depth deltas to the

right of the shadow, located at Fa and Fb respectively, as

illustrated in Fig. 2(b). With these four identified pixels, we

are able to determine the length of shadow ws, the length of

the intervening background portion wb and the length of the

foreground wf in the horizontal scanline. We then calculate

w̃sb and w̃bf using (4) and (5). Finally, if w̃sb is close to

(ws + wb) and w̃bf is close to (wb + wf ), we classify the

depth-missing region as a detached shadow.

2.3. Discussion

From Fig. 3 (a)&(b), it can be seen that a long foreground

length leads to an attached shadow while a short foreground

length results in a detached shadow. We are interested to

find out the particular foreground length that separates the

two types of shadows. That is the special case where the

3D line O1F1 intersects the 3D line O2F2 at the point B, as

illustrated in Fig. 3(c). Let Fa and Fb denote respectively

the projections of the left and the right edge points of the

foreground object on its closest image plane of the IR cam-

era. And Gb denotes the projection of the right edge point

of the foreground object on its closest image plane of the

virtual camera. Since
−−−→
FaFb is parallel to

−−−→
O1O2, we have

|O1O2|
|FaGb|

= zb
zb−zf

, where |O1O2| is the baseline between the

IR projector and the IR camera. Considering the Kinec-

t baseline is a constant value of 7.5 cm and it has a valid

working range of 0.8m < zf < zb < 4m, we obtain

|FaFb| < |FaGb| = 7.5(1−
zf

zb
) cm, (6)

where 0.2 <
zf
zb

< 1. Thus if the foreground and back-

ground objects have constant depth, a foreground length (

the length projected on its closest image plane respect to IR

camera, which is FaFb ) less than 7.5(1−
zf
zb
)cm will result

in a detached shadow in the depth map. Taking into account

0.2 <
zf
zb

< 1, we get |FaFb| < |FaGb| < 6 cm, which

means any foreground length larger than 6 cm will generate

an attached shadow in the depth map.

2.4. Imaging geometry of alignment shadows

Fig.3(d) illustrates the imaging geometry of alignmen-

t shadows, which occur when the original depth map from

the IR camera is rendered from the viewpoint of the RGB

camera, which we call the aligned depth map. Considering

that the RGB camera is positioned between the IR projec-

tor and the IR camera, it is possible that parts of a shadow

visible in the IR camera, such as B1B2 in Fig.3(d), will dis-

appear behind the foreground object from the viewpoint of

the RGB camera. Conversely, parts of the background such

as B3B4 will be deoccluded and become visible in the RG-

B camera, resulting in additional holes to the right of the

foreground objects in the aligned depth map. We call these
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additional regions of missing depth as alignment shadows.

Alignment shadow can be further classified into attached-

alignment shadow and detached-alignment shadow. Using

the similar discussions as Section2.3, we get that for any

object with foreground length larger than 2cm will generate

an attached-alignment shadow as Fig.3(d). Our detection al-

gorithm for the alignment shadow is capable to detect both

kinds of alignment shadows.

To detect the shadows in the aligned depth map, the shad-

ows to the left of foreground objects can be directly identi-

fied by analyzing the original depth map. The shadows to

the right of foreground objects are detected by computing

if a split would occur in the aligned depth map for fore-

ground and background pixels that would have been adja-

cent to each other in the original depth map. Note that the

camera parameters for both RGB and IR cameras are cali-

brated using a method similar to that in [6].

3. Experiments for Kinect Shadow Detection

3.1. Accuracy of estimated feature lengths

We first compare the three computed feature lengths,

w̃as, w̃sb and w̃bf using (3), (4) and (5) respectively, with

the corresponding measured lengths was, wsb and wbf to

quantitatively evaluate the accuracy. In particular, we shot

different scenes with foregrounds and backgrounds located

at different distances using three different Kinects. To focus

on the accuracy evaluation, we use simple setup to generate

only one type of shadows in one scene.

Fig. 4 shows the average errors between the estimated

lengths and the corresponding measured lengths over the to-

tal number of corresponding shadows captured by the three

Kinects. It can be seen that our length estimations are

quite accurate since the average errors are always around

1 ∼ 2 pixels for all foreground and background distances.

For attached shadows, there is a constant overestimation of

around two pixels on the shadow length was, regardless of

foreground and background distances. For detached shad-

ows, we observe there is an overestimation of around one

pixel for wsb and about 0.5 pixel for wbf . The constan-

t overestimation is possibly due to the window operation

used to convert IR image to depth map and the accumulated

error from the inaccurate calibration for focal length.

3.2. Shadow detection performance

To evaluate the performance of the proposed shadow de-

tection, we constructed a dataset consisting of 20 RGBD

images with manually labeled ground truth for shadows.

As far as we know, there is no existing dataset providing

unaligned Kinect depth maps with intrinsic camera param-

eters in conjunction with ground truths for shadows. The

20 captured RGBD images can be classified into two cate-

gories: simple scenes and complex scenes. A scene in the

(a) Attached Shadow

(b) Detached Shadow

Figure 4. Results of the average error between the estimated fea-

ture lengths and the corresponding measured lengths under differ-

ent foreground and background distances.

former category contains only one object, while the images

in the latter category contain multiple objects.

Precision (P ) and recall (R) measures are used as evalu-

ation metrics. Let Sx be the detection result and Sgt be its

ground truth. P is computed by
Sx

⋂
Sgt

Sx
, which measures

the fraction of detected shadow pixels that were correct de-

tections. R is computed by
Sx

⋂
Sgt

Sgt
, which measures the

fraction of ground truth shadow pixels found. F-measure

defined as 2PR
R+P

is given as the overall score of each detec-

tion.

Fig. 5 shows a few examples for visually comparing the

ground truth shadows and the detected shadows. We can

see that the detected shadows match the ground truth quite

well. More visual results of shadow detection can be found

in Fig. 6(b). The precision and recall values are listed in

Table 1. It can be seen that our proposed shadow detection

achieves almost perfect precision scores for both simple and

complex scenes, which means almost every shadow detect-

ed is a true shadow. Although there is a decline in the recall

scores when going from simple to complex scenes, the re-

call performance is still acceptable. This decline is mainly

due to situations when the shadows themselves are partial-

ly occluded by other objects and their full extent cannot be

measured.
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(a) RGB (b)Unaligned depth (c) GT (d) Result

Figure 5. Examples of shadow detection results. (c) Ground truth

of the shadows. (d) The detection results. All ground truth and

detected shadows are labeled in red color.

Table 1. Performance of the proposed shadow detection.

Precision Recall F-measure

Simple 1.0000 0.9307 0.9641

Complex 0.9991 0.8369 0.9109

Overall 0.9996 0.8838 0.9381

3.3. An Application on Automatic Foreground
Segmentation

In this section, we demonstrate the usefulness of the de-

tected and classified shadow information by simply apply-

ing it for automatic foreground segmentation. Here, the

foreground is considered to be one or more salient objects

that are located closer to the Kinect, and that (more impor-

tantly) cast local shadows. To the best of our knowledge,

there is no work that uses shadow for automatic general

RGBD foreground segmentation.

Given an aligned depth map with classified shadow

information, we can generate initial seeds based on the

local patterns of each type of shadows. We select the

seeds by moving a fixed distance in the direction given

by shadow type from the likely edge pixels towards the

foreground(background) side for foreground (background)

seeds. We then perform K-means clustering on initial seeds

to find the correct seeds on the salient object. Subsequently,

two state-of-art segmentation algorithms, GrabCut (GC) [9]

and Convex Active Contours (CAC) [7] are modified to seg-

ment RGBD image by introducing depth value as the 4th

channel in the data term.

To evaluate the segmentation performance on Kinec-

t RGBD images, we constructed a dataset of 50 RGB im-

ages with their depth maps and ground truths. Note that

the existing Kinect RGBD datasets, such as [10], are either

not designed for foreground segmentation or do not provide

the original unaligned depth maps that are needed for our

shadow detection.

Since we are not aware of any existing work that can

achieve fully automatic foreground segmentation on a sin-

gle Kinect RGBD images, we compare our segmentation

with an intuitive threshold-based automatic image segmen-

tation method. Specifically, for the threshold-based method,

the seeds are generated based on two thresholds Tf and Tb,

where pixels with depth values smaller than Tf are clas-

sified as foreground seeds while pixels with depth values

larger than Tb are considered as background seeds. The

threshold-based method uses the same segmentation algo-

rithms as ours. Fig. 6 shows the visual comparisons of the

foreground segmentation results of different methods. It can

be seen that the threshold-based methods can achieve high-

quality segmentation for some cases when the thresholds

happen to lead to accurate seeds, while there is no fixed set

of thresholds (see Fig. 6(c)&(d)) that works for most of the

images. In contrast, with the assistance of the shadow de-

tection results illustrated in Fig. 6(b), our methods are able

to smartly extract highly accurate seeds, which lead to very

good segmentation results for almost all the images in the

dataset. This clearly demonstrates the usefulness of the ex-

tracted shadow information for segmentation.

3.4. Limitations

Although our proposed shadow detection achieves very

accurate detection results and the proposed shadow assist-

ed segmentation achieves very good segmentation perfor-

mance, there are still some limitations. The last row of

Fig. 6 shows a partially successful case, in which quite a

few shadows were not detected and the segmentation re-

sults contained considerable errors. The failure to detec-

t shadows is mainly a result of the shadows either over-

lapping with another region of missing depth or partially

blocked by other foreground objects. The noise in the shad-

ow edges may also cause problems in the proposed shadow

detection. For the shadow-assisted segmentation, problem-

s can arise when there is erroneous depth, or when non-

shadow Kinect holes are co-located with regions with little

color contrast between foreground and background. In such

circumstances, our shadow assisted segmentation methods

cannot achieve a clean foreground cutout.

4. Conclusions

In this paper, we presented a robust Kinect shadow detec-

tion scheme which can detect three types of shadows accu-

rately, which are attached shadows, detached shadows and

alignment shadows. We also demonstrated the usefulness

of the extracted shadow information by applying it to au-

tomatic foreground segmentation, where the shadow detec-

tion results are used to generate accurate foreground and

background seeds. We believe the extract shadow informa-

tion can be used in many other applications such as depth re-
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(a) RGB (b) C-Depth (c) GC-threshold1 (d) GC-threshold2 (e) GC-shadow (f) CAC-threshold2 (g) CAC-shadow

Figure 6. Visual comparisons of foreground segmentation results of different automatic approaches. (a) Color image. (b) Aligned depth

map with classified shadows in red, blue and green colors for attached, detached and alignment shadows respectively. (c) Threshold-based

GrabCut with Tf = 0.3 m and Tb = 0.5 m. (d) Threshold-based GrabCut with Tf = 0.5 m and Tb = 0.6 m. (e) Shadow assisted GrabCut.

(f) Threshold-based CAC with Tf = 0.5 m and Tb = 0.6 m. (g) Shadow assisted CAC.

covery and scene understanding since it conveys high-level

structure information.
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