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Abstract

We propose a fully incremental and yet globally opti-

mal surface extraction method for updating the 3D sur-

faces when new images, camera poses and 3D points are

additionally registered into the existing 3D model. We ex-

tend the tetrahedra-carving-based surface extraction algo-

rithm to the incremental fashion by efficiently detecting ray-

tetrahedra intersections and formatting the graph to solve

with the dynamic graph cut. The proposed method can re-

sult the surfaces identical to the one running from scratch,

i.e. the global optimality of the extracted surface is guar-

anteed while improving the efficiency with fully incremental

procedures. We compare the proposed method with state-

of-the-art baseline methods and finally demonstrate the sur-

face extraction of fairly large objects.

1. Introduction

After SIFT [23] and Photo Tourism(Bundler) [29], 3D re-

construction from imagery is not an infeasible task accord-

ing to the advancement of SfM [2, 7, 30] followed by dense

reconstruction [9, 8] and surface reconstruction [14, 16, 18,

33]. On top of these advances, static objects and scenes

in the digital photos can be easily transformed to 3D mod-

els using publicly available codes [1, 5, 9, 29, 34] or on-

line services [12, 25]. Some systems are even capable for

large-scale reconstruction [2, 7, 8] thanks to the efficient

image clustering based on similarity computation using im-

age descriptors [15, 28]. These systems achieve accurate

and complete 3D models by batch processing for the static

input data.

If the input data grows with time, incremental 3D model-

ing and their effective visualization are valuable in practical

applications, e.g. visual navigation of vehicle or UAV [11,

27, 36], AR [24], and city change detections [31]. To

achieve this, 3D modeling frameworks suitable for incre-

mental update are essential but no trivial method exists.

In principle, most of the components (algorithms) in

SfM primarily suit for incremental processes, e.g. feature

detection and matching, image pair selection, and camera

pose estimation [30]. The global bundle adjustment is the

only exceptional but the recent works [13] accomplishes by

taking care of updating variables. Typical approaches of

dense reconstruction in the incremental fashion are to lo-

cally compute dense (depth) maps and to merge to a global

map [24, 27]. This way does not guarantee the global con-

sistency of the entire 3D model.

One of the successful approaches providing the accu-

rate, complete, and globally consistent 3D models is: (1)

densify 3D point clouds by guided matching expansion or

plane sweeping [9, 33]; (2) extract surfaces from 3D De-

launay triangulation of the dense 3D points [18]; (3) refine

the surfaces by using geometric and photometric informa-

tion [14, 33]. This approach works even for very general in-

put, e.g. photo collections or sparse image sequences taken

by a single camera, but the extension to the incremental

fashion is not fully studied. This is because the quality of

the resulted models depends on the examination of the con-

sistency of local patches [9] or the computation of surface

patch visibility [18]. Therefore, their extension for incre-

mental processes while preserving quality sounds contra-

dictory.

In this paper, we propose a fully incremental surface ex-

traction as an extension of [18]. We suppose the follow-

ing situations (Figure 1): the camera poses and the point

clouds are obtained by a large-scale SfM and they can be

fixed as the base model, i.e. no further global bundle adjust-

ment is required; the initial 3D surface is generated by [18]

or our proposed method; new cameras and point clouds as-

sociated with them are additionally and locally registered to

the base model, e.g. by [21]. We aim at performing efficient

incremental updates for the existing large-scale 3D surface

model while ensuring the global optimality of the extracted

surfaces, i.e. our method produces the surfaces identical to

the one running from scratch. The contributions of this pa-

per are as follows.

• We propose the first algorithm that can efficiently up-

date the surface model while keeping the optimality

with all cameras and rays taken into account.
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Figure 1. Incremental surface extraction on Rome Colosseum

dataset. (a) Examples of input images. (b) 3D point clouds and

camera poses obtained via SfM. (c) 3D surface extracted by the

proposed method. (d) and (e) show the local part of the entire 3D

models to improve the visibility. (d) The surface of the base model

(N = 500). (e) The surface updated by the proposed method.

• We alternate two algorithms for detecting ray-

tetrahedra intersections depending on the types of rays

and tetrahedra in the updated graph.

• We adopt the dynamic graph cut [17] for the incremen-

tal surface extraction by introducing isolated nodes in

the graph for handling the appearance and disappear-

ance of tetrahedra.

The rest of the paper is organized as follows. Section 1.1

describes related works on multiple view stereo and surface

reconstruction algorithms. In Section 2 we review the sur-

face extraction with tetrahedra carving [33] for clarifying

the differences and contributions of the proposed incremen-

tal algorithms. In Section 3 we describe our method for in-

cremental surface extraction. Finally, we demonstrate and

compare w.r.t. the state-of-the-art baselines in Section 4.

1.1. Related work

Multi view stereo is a well-studied problem. One of the

popular methods is PMVS [9] which generates dense 3D

point clouds by computing local patches in 3D space and

filling the missing area using the neighbors of confident

ones. The 3D surface mesh can be obtained by applying

Poisson surface reconstruction [16] or its variant. PMVS

can be applied for a large scale by segmenting the scenes

(camera poses and spare points) into pieces as neighboring

ones have sufficient overlaps for giving seamless 3D models

after integrating them [8]. Other recent works on multiple

view stereo for large scale problem use some priors such as

geometric primitives (planes or spheres) [19] and two or-

thogonal curves [35]. The use of priors improves the stabil-

ity and understandability while enabling to reduce the data

size according to the simplified description of the scene

As briefly summarized in Section 1, Vu et al. [33] pro-

posed the surface reconstruction method based on 3D De-

launay triangulation and carving the 3D space. The method

is capable for reconstructing the large-scale cluttered scenes

without requiring some knowledge as approximate geome-

try and topology of the scene. Jancosek et al. [14] fur-

ther improved the surface extraction so as to recover weakly

supported surfaces by using the free-space cones based on

visual-hull [20]. Note that since these methods focus on

generating accurate and complete 3D models, the computa-

tional costs and extension to incremental procedures are not

the critical issue.

On the other hand, there are several methods aiming at

3D reconstruction in incremental fashion. DTAM [24] is

known as the real-time camera tracking and 3D reconstruc-

tion where the pixel-wise depth maps of reference cam-

eras are generated. The work by Hoppe et al. [11] is

closely related, which performs the large-scale incremen-

tal reconstruction for providing feedback of surface qual-

ity to manipulators. In [11], the surface is reconstructed

for every keyframe by repeating the surface extraction [18]

running from scratch. Therefore, the computation time

increases as the reconstructed scene expands. Recently,

Hoppe et al. proposed an incremental surface extraction

method [10] which achieves online 3D reconstruction by

integrating with the incremental SfM. For processing the

incremental surface extraction in a limited computational

time, they designed a new cost function which computes

the local visibility of the surface patches whereas the origi-

nal method [18] ensures the global visibility over the whole

scene. Also, the use of dynamic graph cut is presented1.

Our work is also related to incremental free space carving

with reasonable heuristics [22, 26, 36] but we are more in-

terested in reconstructing large outdoor scenes from sparser

input images. Also, note that the advantage of our method

is to ensure the global optimality as the original tetrahedra

carving method [33] while performing the surface extrac-

tion as efficient as the state of the arts.

2. Surface extraction with tetrahedra carving

We review the surface extraction by tetrahedra carving [33]

to reveal the technical contributions of our proposed method

in Section 3. Given the point cloud P = {p}, cameras

C = {c}, and R = {r} where r is the line segment con-

necting a camera center c and a 3D point p (Figure 2), the

surface extraction method [33] first segments the 3D space

by 3D Delaunay triangulation of P . Then, every tetrahe-

1In Section 3.3, we also introduce how to adopt the dynamic graph cut

for this problem. Note that the original submission of this paper was for

ICCV 2013 and this was a parallel work with [10].
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dron is labeled whether it is inside or outside of the objects

in the scene. Finally, we obtain the surface as the border

(set of facets) of tetrahedra separated to inside or outside.

We next describe more details on each component in the

surface extraction algorithm.

3D Delaunay triangulation. A 3D Delaunay triangula-

tion (tetrahedralization) of a point cloud P generates tetra-

hedra where all vertices correspond to the points in P and

the circumsphere of each tetrahedron does not include any

other point of P . The unique triangulation is ensured un-

der the assumption that there exists only four points on the

same circumsphere. Even if more than five points lie on

the same circumsphere, the Delaunay triangulation gener-

ates the unique tetrahedra by using a symbolic perturbation

scheme [6]. Regarding to the problem on merging dupli-

cated 3D points, we assume that it is already trimmed in the

SfM stage.

Formulation as a binary labeling problem. On top of

the Delaunay triangulation, we build a finite directed graph

G = (T , E) where nodes T = {t} correspond to tetrahe-

dra and edges E = {E = (tp, tq)} correspond to facets

F = {f} shared by adjacent tetrahedra. Note that every

facet is shared by a pair of tetrahedra except for the ones

on the convex hull boundary of P . The surface is extracted

by classifying whether each tetrahedron t belongs inside or

outside of objects. This is formulated as a binary labeling

problem which is solved by minimizing the following cost

function:

E(L) =
∑
t∈T

{Ut(lt) +
∑
v∈Vt

Bt,v(lt, lv)}, (1)

where lt ∈ L is the label of tetrahedron t ∈ T which

indicates whether it exists inside (lt = IN) or outside

(lt = OUT) of objects. The unary term Ut is the penalty for

inconsistent evidences with the label lt of the tetrahedron t

Ut(lt) =

{
Nin(t) if lt �= IN

Nout(t) if lt �= OUT
(2)

Nin(t) is the number of intersections of the extended rays

of r and the tetrahedron t. More specifically, the ray r com-

posed from p and c first reaches p and the extended ray of r
skewers the tetrahedron t (Figure 2). Nout(t) is the number

of intersections of the rays r and the tetrahedron t which

includes the cameras inside.

The binary term Bt,u penalizes if two neighboring tetra-

hedra are labeled differently,

Bt,v(lt, lv) =

{
Nintrsct(t, v) if lt = OUT ∩ lv = IN

0 otherwise
(3)

c

p

t

r
f

fb

Figure 2. Intersection detection of ray and facet. The solid line

with an arrow is the ray r (line segment) composed from the cam-

era c and the point p. The dashed line is the extended ray of r. f

is the facet of the tetrahedron t. fb is the facet on the convex full

boundary of P .

Nintrsct(t, v) is the number of intersections of f(t, v) and

the rays rt→v where f(t, v) is the facet shared by the tetra-

hedron t and its adjacent tetrahedron v ∈ Vt and rt→v is

the directed ray coming from t to v. See also [33] for more

details.

Ray-facet intersection detection with ray-wise tracing.

The fundamental task for composing the two terms Ut and

Bt,v is to detect the intersections of the rays and the facets

of tetrahedra, i.e. we detect tetrahedra skewered by a ray

(line segment) composed from a point p and a camera cen-

ter c (Figure 2). This is efficiently performed by tracing

from the tetrahedron having p as a vertex to the tetrahedron

including c inside. Note that if the camera is sitting outside

the convex hull of P , the tracing stops at fb on the convex

hull boundary. Also, the ray-wise tracing can naturally de-

tect whether a ray passes a facet from front to back or vice

versa. This is important for constructing Nintrsct in the bi-

nary term of the cost function. We refer this procedure to

“ray-wise tracing” in order to discriminate the other method

described in Section 3.2.

Optimization by graph cut. In the optimization step, a

standard Max-flow/Min-cut algorithm [3] is used for finding

the global optimum by s-t graph cut. For surface extraction,

the graph consists of nodes corresponding to tetrahedra T .

The edges connecting adjacent tetrahedra via facets have the

directed weights determined by Bt,v . Also, the edges con-

necting every tetrahedron to the source and sink have the di-

rected weights determined by Ut. In detail, if facets of t are

on the convex hull boundary of P , the directed weights on

edges between the source to the nodes are sum of Nout(t)
and Nintrsct(t, v). Note that if all the weights associated to

t are zero, the label of t is undetermined. In this case, we

label t as inside because we prefer not carving t when no

rays intersect with t at all. The surface is finally extracted

according to the optimal labeling of T , i.e. the global mini-

mum of E.
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Point p Facet fRay rCamera c

New point p̂ New facet f̂New ray r̂New camera ĉ

Figure 3. Points, cameras, rays, and facets composing the graph

weights of G′. See text for details.

3. Incremental tetrahedra carving

In this section, we extend the surface extraction algorithm

to the incremental fashion while the optimality of the ex-

tracted surface is guaranteed, i.e. the proposed incremental

algorithm should provide the identical surface computed by

the method [33] running from scratch. We describe three

important steps to be extended as follows. Hereafter, ĉ ∈ Ĉ
and p̂ ∈ P̂ denote the new camera and the 3D points newly

reconstructed by incremental SfM by adding a new image

I ′ (Figure 3).

3.1. Incremental Delaunay triangulation

The Delaunay triangulation step is rather trivial compar-

ing to the others. When a new point p̂ ∈ P̂ is added to P ,

we perform three processes to augment the tetrahedra seg-

mentation.

i ADDITION: If p̂ exists outside of the convex full ofP ,

Delaunay triangulation is accomplished to the point p̂
and the points on the convex full of P . And then the

convex hull is expanded to P ∪ p̂.

ii DIVISION: If p̂ exists inside the convex full of P , the

tetrahedron including p̂ is divided into four tetrahedra.

iii FLIP: If the ADDITION or DIVISION process gen-

erates some invalid tetrahedra which violate the sec-

ond Delaunay rule. The re-divided tetrahedra are com-

posed from the five (four + one) vertices by flipping

the facets.

We denote the tetrahedra newly appeared by incremental

Delaunay triangulation as T̂ = T ′\T where T ′ is the De-

launay triangulation of P ∪ P̂ . Regardless the order of

adding new points, the Delaunay triangulation always gen-

erates the unique set of tetrahedra.

3.2. Efficient detection of new intersections

Due to addition of cameras and 3D points by incremen-

tal SfM, the graph G have to be updated to G′. Fully re-

computing the weights of the graph G′ becomes a bottle

neck in the tetrahedra carving as the number of points and

cameras increase. The necessary and sufficient condition

rb
c

c̃

ra

r

f̂

Figure 4. Facet-wise detection. Using the visibility of f̂ on each

camera, we can immediately detect the rays emanated from the

camera c̃ as not intersecting. Then, using the visual cone com-

posed from c and f̂ , ra is quickly detected as not intersecting.

Finally, we examine the rays r and rb if they actually pass through

the f̂ .

for ensuring the optimality is to detect the intersections of

rays and facets related with the changes in G′ and to update

the weights associated with them only.

To achieve this, we consider two types of rays, R and

R̂. r ∈ R is the ray composed from a cameras c ∈ C
and a 3D point p ∈ P . r̂ ∈ R̂ is the newly appeared ray

either composed from a new cameras ĉ ∈ Ĉ and a point in

P ∪P̂ , or a camera c ∈ C and a new point p̂ ∈ P̂ (Figure 3).

Similarly, there are two types of facets, F and F̂ . F are the

facets still existing as the Delaunay triangulation of P after

updating the Delaunay triangulation with new points P̂ . F̂
are the facets of new tetrahedra T̂ (Figure 3). Obviously,

we should avoid re-computing the intersections ofR and F
which have no change due to the addition of new camera

and points.

For all the new rays R̂, we use the ray-wise tracing be-

cause it is necessary to detect the intersections with all the

facets associated with them in F ∪ F̂ . To ensure the com-

pleteness of updating the graph weights, it is also required

to examine the intersections of the rays R and the new

facets F̂ . This case is a bit tricky because the ray-wise trac-

ing proceeds regardless the types of facets. Therefore, if we

also apply the ray-wise tracing for the rays R to ensure the

same result, the computational cost with this ends up with

the same as running from scratch.

To overcome this problem, we introduce facet-wise de-

tection. This method detects ray-facet intersections via the

projection of a facet to all cameras and verifying with the

cameras actually viewing it. If we apply the facet-wise de-

tection for every new facet f̂ , all the intersections of F̂ and

R can be efficiently detected because it disregards the only

rays not contributing the ray-facet intersections at all.

In detail, the facet-wise detection is accomplished by the

four steps (Figure 4). We first select the cameras in C which

have the rays potentially intersecting with a new facet f̂ .

This is efficiently implemented using the view field of cam-

eras. Next, in the rays associated to the selected camera c,
we select the candidate rays which are inside the visual cone

composed from the camera c and the facet f̂ . Then, we ver-

ify if the candidate rays actually intersect with the facet f̂ .

Note that there are some rays not reaching f̂ since we con-
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Figure 5. The isolation of a node t for adapting to the graph

changes from G to Ĝ.

sider the rays as the line segments as described in Section 2.

Finally, for the facet f̂ , we distinguish the direction of the

intersection, i.e. whether the ray passes from front to back

or vice versa for constructing the binary term.

In summary, applying the ray-wise tracing to new rays R̂
and the facet-wise detection to new facets F̂ can accomplish

all the required computation of the intersections compre-

hensively, without carrying out the duplicative intersections

ofR and F which are unnecessary to be recomputed.

3.3. Dynamic Binary Labeling

After the incremental Delaunay triangulation and compu-

tation of weights of the updated graph, the s-t graph cut

should be performed as efficient as possible. Since the

changes of our graph can be considered as a dynamic graph,

there exists an efficient and beautiful algorithm to find the

global optimum. Kohli, et al. [17] proposed the dynamic

graph cut algorithm which detects the changes in the graph

and compute the flow associated to them for achieving the

global minimum cut without re-computing all the flows.

This algorithm is particularly beneficial when the changes

occur only locally in the entire graph.

In our problem, the graph G is updated to G′ by adding a

new image I ′ with producing two types of changes. If new

tetrahedra T̂ are generated according to the addition of new

points P̂ , the new nodes T̂ appear in G′. If the tetrahedra

in T are deleted while the FLIP or DIVISION process, the

corresponding nodes in G disappear in G′. Note that tetrahe-

dra can be deleted due to the changes of Delaunay structure

even though we assume the disappearance of 3D points does

not occur via SfM.

In order to adapt the changes from G to G′ and to ap-

ply the dynamic graph cut algorithm [17] for finding the

global minimum cut of the updated graph G′, we use iso-

lated nodes:

• In the graph G (before the changes), we regard the new

node t as an isolated node by setting zeros for every

edge. When updating the graph to G′, we assign the

number of ray-facet intersections, which is computed

in Section 3.2 to the edge weights of the isolated node

in G (Figure 5).

• Conversely, for deleting nodes in G′, we set zero to the

edge weights of node t in order to isolate it.

This algorithm is particularly efficient when the graph keeps

growing but the changes in the graph is only limited, which

is the typical situation in our incremental surface extraction.

4. Experiments

In this section we describe the experimental validation of

our approach. First, we give the implementation details.

Then we examine the performance of the proposed method

with the baseline methods which repeats the surface ex-

traction [33] from scratch as new inputs come. Finally,

we demonstrate the surface extraction on the large scale

datasets.

4.1. Implementation details

We implemented the algorithms in C++ on Linux 64bit OS

on Intel Core i7, CPU 3.20GHz, and RAM 64GB Desktop

PC. We used several libraries: OpenCV [4], CGAL [32],

and Dynamic graph cut library [17]. In our implementation,

the detections of ray-tetrahedra intersection for both ray-

wise tracing and facet-wise detection can be multi-threaded

per camera.

The two additional processes are performed in order to

refine the extracted surface. One is that the large triangle

patches are deleted based on the percentile of the longest

edge of each patch. The other is that for smoothing the sur-

face, every point on the surface is updated iteratively as fol-

low: pi+1 = pi + λ
∑

qi∈Vp
wpiqi(qi − pi), where Vp is the

set of points which are neighboring p on the surface and λ is

a parameter of smoothing. wp,q is the weight based on dis-

tance between two points: wp,q = φ(p, q)/
∑

k∈Vp
φ(p, k),

where φ(p, q) is the inverse distance of two points. These

two simple refinements are not yet optimized for incremen-

tal surface extraction, we exclude from the evaluation but

use for visualizing the surface model.

4.2. Evaluation of the proposed method

To purely evaluate the performance of the proposed surface

extraction method, we use the pre-computed camera mo-

tions C and point clouds P for all the images in the datasets.

Then, we sequentially input a camera pose and 3D points

associated with it to the surface extraction algorithm.

We use Brick Warehouse dataset which consists of

978 images captured while walking around the building.

2296 × 1528 pixels images are taken by a single camera

with a fixed local length. All the camera poses and 3D

point clouds are computed by our implementation of incre-

mental SfM. In the Brick Warehouse dataset (Figure 6(a)),

the proposed method shows almost constant computational

time compared to the baseline method which takes more

time as the number of images increases. The computational
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Figure 6. Comparison on the Brick Warehouse dataset. The graph shows the computational time of extracting surface at each frame. (a)

The proposed surface extraction (black) and the baseline method (red). (b) The proposed method (black), the ray-wise tracing only (blue)

and the ray-wise tracing applied to the subset of rays [36] (green). (c) The proposed method (black) and the method with a standard graph

cut (orange).

time accumulated for the 977 updates is 127.67 (Proposed)

and 1385.23 (Baseline) [sec]. We evaluated from the num-

ber of patches that the final surface of the proposed method

is completely identical to the baseline method.

Impact of facet-wise detection. To evaluate the impor-

tance of the facet-wise detection, we compare the three dif-

ferent methods of the ray-facet intersection detection while

keeping the other steps consistent. Figures 6(b) shows the

computational time of each method. The method with ray-

wise tracing only (blue) increases the computational time

as the reconstructing scene grows. The ray-wise tracing ap-

plied to the subset of rays seeing from several latest cam-

eras determined by a threshold [36] (green) is partly faster

than the proposed (black), however, the resulted surface

with thresholding is different to the baseline method with

the errors 47%. Thanks to the facet-wise detection, the pro-

posed method takes almost constant time compared to the

ray-wise only method.

Impact of applying dynamic graph cut. Figures 6(c)

shows the effect of applying dynamic graph cut [17]. Black

and orange curves show the computational time at each

frame by the proposed method with applying dynamic

graph cut (Proposed) and with applying a standard graph

cut [3] by computing the flows from scratch (Standard graph

cut). Comparing to the other processes, the improvement by

applying dynamic graph cut is rather small. Note that, how-

ever, the mean of fraction of improvement at every frame is

30 % which is significant towards real time applications.

Limitation for integrating with incremental SfM. The

proposed surface extraction can be potentially integrated

with the incremental SfM. However, there is a difficulty due

to the distortion and perturbation yielded by global bundle

adjustment while adding more and more images. In prac-

tice, the baseline method can be applied only after the global

Table 1. Number of points and patches on Brick Warehouse

dataset.
Proposed [14] (SfM) [14] [9]

#points 124,216 196,994 1,797,387 5,141,170

#patches 276,367 227,355 2,503,592 -

bundle adjustment triggered while the proposed incremental

method is used for all the other timings.

Also, we assume that the SfM does not remove or merge

3D points and cameras once they are generated. This as-

sumption is required to ensure that the already detected in-

tersections for the existing cameras C, raysR, and facets F
have no change. In practice, this assumption can be hold by

proceeding SfM conservatively.

Qualitative evaluation w.r.t. the state of the arts. We

qualitatively compare our 3D surface models to the state-

of-the-art methods of 3D reconstruction. We use publicly

available softwares, PMVS [9] and CMPMVS without and

with plane sweeping [14] 2. Figure 7 shows the 3D mod-

els of the four methods and Table 1 shows the numbers of

the resulted points and patches. We show the colored point

clouds as the result of PMVS since the simple point clouds

can be sufficiently informative for a large cluttered scene.

The quality of 3D model of the proposed method is not in-

ferior to that of the other state-of-the-art methods.

4.3. Incremental surface extraction on large-scale
datasets

We consider the situation that the base 3D model is given

by a large-scale reconstruction, and we incrementally up-

date the 3D surface model by adding several images newly

acquired. We conducted the experiments on two publicly

available datasets provided by [21]. Rome Colosseum

2The version of CMPMVS without plane sweeping is provided by the

courtesy of the authors of [14]
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(a) (b)

(c) (d)

Figure 7. Qualitative evaluation with the state-of-the-art baselines on Brick Warehouse dataset. (a) The proposed method. (b) PMVS [9]

(colored dense point clouds). (c) CMPMVS without plane sweeping, i.e. the same input as the proposed. (d) CMPMVS [14].

(a)

(b) (c)
Figure 8. Results of the surface extraction on Dubrovnik dataset.

(a) Examples of input images. (b) 3D point cloud obtained via

SfM (only a local part is shown for visibility). (c) The surface

extracted by the proposed method.

dataset consists of 2,043 images collected on the Flickr,

all the camera poses and 3D point clouds computed by

SfM [29]. Dubrovnik dataset in [21] is a larger dataset

consisted of 6,844 images captured over the whole town.

We define the base 3D model by selecting N images,

their camera poses and associated 3D points, and by run-

ning the surface extraction to obtain the initial 3D surface.

Then, we randomly select k images from the rest, add their

camera poses and 3D points, and use them as the input for

the incremental surface extraction. We update the 3D sur-

face models for t times until N + t × k reaches the total

number of images of the dataset.

Table 2 shows the results for evaluating the computa-

tional efficiency of the proposed method. The “baseline

time” is the computation time of extracting the surface from

all the images in the dataset. Note that this computation

time is almost equal to that of running the baseline method

from scratch at every update. Since our method is capa-

ble for adding k images at once, we tested different k as

k = {1, 5, 10} shown in the “#images added at once” in Ta-

ble 2. The “#points added at once” is the average number of

points added at each update. The “computation time” shows

the average of t = 10 updates using the proposed method.

Table 2. Experimental results for large scale datasets
Dubrovnik Colosseum

#images 6,844 2,043

#points 2,020,921 600,274

baseline time

[sec]

91.9 18.85

#images added

at once

1 5 10 1 5 10

#points added

at once

142 1,010 3,060 246 2,057 3,826

computation

time [sec]

3.8 10.7 26.9 1.95 8.68 15.35

Overall, the proposed method is more efficient than the

baseline while producing the identical results. Especially,

when adding one image for each update in the Dubrovnik

dataset, the baseline method takes 91.9 seconds for ev-

ery update whereas the proposed method takes 3.8 seconds

which is 24.2 times faster. On the other hand, on the Rome

Colosseum dataset, when 10 images are added at once, the

improvement by the proposed method is not very signifi-

cant. One of the reasons is that the current implementation

of the facet-wise detection uses the view field of cameras

and the bounding box of newly appeared facets for efficient

computation. This is not very effective if the new images

capture all the objects in the scene since the newly appeared

facets appear all the cameras in the scene.

Figure 1 (e) shows the final surface extracted by the pro-

posed method starting from the base model (d) (N = 500)

on the Rome Colosseum dataset. Since the points increase

by adding more and more images, the mesh of the updated

surface is finer than the initial base model. Also, Figure 8

(e) shows the 3D surface extracted by the proposed method.

5. Conclusions

We have proposed a fully incremental surface extraction

based on tetrahedra carving while ensuring the global op-

timality. We have introduced the two key ideas: the inter-

section detection adaptive to the types of rays and facets;

the application of the dynamic graph cut for the growing

data composed by cameras and 3D points. Although the
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isolation of nodes is briefly mentioned in [17], its practical

application is not described. We believe the real applica-

tion and implementation of it have sufficient contribution.

Further, the detailed experimental evaluations showed the

improvement for each step of our method and the surface

extraction was demonstrated on fairly large datasets. We

left the system integration with SfM which should be ac-

complished near future.
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