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Abstract

A novel method is proposed for the calibration of a cam-
era - 3D lidar pair without the use of any special calibration
pattern or point correspondences. The proposed method
has no specific assumption about the data source: plain
depth information is expected from the lidar scan and a
simple perspective camera is used for the 2D images. The
calibration is solved as a 2D-3D registration problem us-
ing a minimum of one (for extrinsic) or two (for intrinsic-
extrinsic) planar regions visible in both cameras. The reg-
istration is then traced back to the solution of a non-linear
system of equations which directly provides the calibra-
tion parameters between the bases of the two sensors. The
method has been tested on a large set of synthetic lidar-
camera image pairs as well as on real data acquired in out-
door environment.

1. Introduction

One of the most challenging issue in robotic perception
applications is the fusion of information from several dif-
ferent sources. Today the majority of the platforms include
range (2D or 3D sonar/lidar) and camera (color/infrared)
sensors that are usually work independently, although the
information from different sources can be used in a com-
plementary way.

In order to fuse the data coming from these indepen-
dent devices, the measured data has to be transformed
into a common coordinate frame. This is achieved by ei-
ther extrinsic or intrinsic-extrinsic calibration, depending on
whether the internal camera parameters are available or not.
In case of the extrinsic parameter estimation for a range-
camera sensor pair the 3D rigid translation between the two
coordinate systems is determined.

The case of extrinsic parameter estimation for 2D/3D li-
dar and perspective camera has been performed especially
for environment mapping applications, however this prob-
lem is far from being trivial. Due to the different ways of
functionality of the lidar and camera, the calibration is of-

ten performed manually, or by considering special assump-
tions like artificial markers on images, or establishing point
matches. These procedures tend to be laborious and time
consuming, especially when calibration has to be done more
than once during data acquisition. In real life applications,
it is often desirable to have a flexible one step calibration for
systems which are not necessarily containing sensors fixed
to a common platform.

1.1. Related work

The need for registration between heterogeneous sen-
sor data is common to multiple research fields including
aerial remote sensing [13, 11], medical images process-
ing [18] or mobile robotic applications [5, 22, 17, 20].
Different approaches are tackling the non-trivial 2D-3D
registration problem: point or line correspondence find-
ing between the two domains [11, 21], intensity image
based correlation [17], use of specific artificial land-mark
[6, 7, 9, 1, 14, 28, 23] or mutual information extraction and
parameter optimization[22, 26, 25].

The extrinsic calibration of 3D lidar and low resolution
color camera was first addressed in [23] which generalized
the algorithm proposed in [30]. This method is based on
manual point feature selection from both domains and it as-
sumes a valid camera intrinsic model for calibration. A sim-
ilar manual point feature correspondence based approach is
proposed in [20].

There are also extensions to the simultaneous intrinsic-
extrinsic calibration presented in the work [12] which used
the intensity information from lidar to find correspondences
between the 2D-3D domains. Other works are based on
the fusion of IMU or GPS information in the process of
2D-3D calibration [15], mainly in initialization phase of the
calibration [22].

Recently there has been an increasing interest in various
calibration problem setups ranging from high-resolution
spatial data registration [11] to low-resolution, high frame
rate depth commercial cameras such as Kinect [7, 29], or
in the online calibration during different measurements in
time such as in case of a traveling mobile robot [17, 10].
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1.2. Contributions

This paper proposes a novel region based calibration
framework for 2D and 3D sensors emerging from differ-
ent sources in a single step automatic manner. The main
contribution is the formulation of the calibration problem
as a general 2D-3D registration problem which works with-
out special targets or established point matches. The reg-
istration is accomplished by solving system of nonlinear
equations based on the idea of [4]. However, the equations
are constructed in a different way here due to the different
dimensionality of the lidar and camera coordinate frames.
This correspondence-less registration framework in the con-
text of the calibration is well suitable for both extrinsic and
intrinsic-extrinsic calibration. The concept was proven to be
viable on a large scale synthetic dataset as well as on real
data. The robustness against segmentation error has also
been demonstrated and comparative tests confirmed the ad-
vantages of the proposed method over state-of-the-art.

2. Region-based calibration framework

Consider a lidar camera with a 3D coordinate system
having its origin O in the center of laser sensor rotation,
x and y axes pointing to the right and down, respectively,
while z is pointing away from the sensor. Setting the world
coordinate system to the lidar’s coordinate system, we can
always express a 3D lidar point X with its homogeneous
world coordinates X = (X1, X2, X3, 1)

T . The perspec-
tive camera sees the same world point X as a homogeneous
point x = (x1, x2, 1)

T in the image plain obtained by a
perspective projection P:

x = PX (1)

where P is the 3× 4 camera matrix, which can be factored
into the well known P = KR[I|t] form, where I is the
identity matrix, K is the 3 × 3 upper triangular calibration
matrix containing the camera intrinsic parameters:

K =

⎛
⎝ fx ox

fy oy
1

⎞
⎠ , (2)

while R and t are the rotation and translation, respec-
tively, aligning the camera frame with the world coordinate
frame. Therefore we have 4 intrinsic and 6 extrinsic pa-
rameters. Note that in K we implicitly assume rectangular
pixels (i.e. no skew), fx and fy denotes the number of pix-
els per world coordinate units along the x (resp. y) axes,
and o = (ox, oy)

T is the principal point of the camera on
the image plane.

A classical solution of the calibration problem is to es-
tablish a set of 2D-3D point matches using a special calibra-
tion target [23, 14, 1, 7, 12], and then solve for P via a sys-
tem of equation based on (1) or the minimization of some

error function. When a calibration target is not available,
then solutions typically assume that the lidar points contain
also the laser reflectivity value (interpreted as a gray-value),
which can be used for intensity-based matching or registra-
tion [17, 20, 11, 14].

However, in many practical applications (e.g. infield mo-
bile robot), it is not possible to use a calibration target and
most lidar sensors will only record depth information. Fur-
thermore, lidar and camera images might be taken at dif-
ferent times and they need to be fused later based solely on
the image content. Therefore the question naturally arises:
what can be done when neither a special target nor point cor-
respondences are available? Herein, we propose a solution
for such challenging situations. In particular, we will show
that by identifying a single planar region both in the lidar
and camera image, the extrinsic calibration can be solved.
When two such non-coplanar regions are available then the
full calibration can be solved. Of course, these are just the
necessary minimal configurations. The more such regions
are available, a more stable calibration is obtained.

Our solution is based on the 2D shape registration ap-
proach of Domokos et al. [4], where the alignment of non-
linear shape deformations are recovered via the solution of
a special system of equations. Here, however, the calibra-
tion problem yields a 2D-3D registration problem, which re-
quires a different technique to construct the system of equa-
tions: Since correspondences are not available, (1) cannot
be used directly. However, individual point matches can be
integrated out yielding the following integral equation:∫

D
xdx =

∫
PF

zdz, (3)

where D corresponds to the region visible in the camera
image and PF is the image of the lidar region projected
by the camera matrix P. The above equation corresponds
to a system of 2 equations only, which is clearly not suf-
ficient to solve for all parameters of the camera matrix P.
Therefor we adopt the general mechanism proposed in [4]
to construct new equations. Indeed, (1) remains valid when
a function ω : R2 → R is acting on both sides of the equa-
tion

ω(x) = ω(PX), (4)

and the integral equation of (3) becomes∫
D
ω(x)dx =

∫
PF

ω(z)dz. (5)

Adopting a set of nonlinear functions {ωi}�i=1, each ωi gen-
erates a new equation yielding a system of � independent
equations. Hence we are able to generate sufficiently many
equations. The parameters of the camera matrix P are then
simply obtained as the solution of the nonlinear system of
equations (5). In practice, an overdetermined system is con-
structed, which is then solved by minimizing the algebraic
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error in the least squares sense via a standard Levenberg-
Marquardt algorithm.

Note that computing the integral on the right hand side
of (5) involves the actual execution of the camera projec-
tion P on F , which might be computationally unfavorable.
However, choosing power functions for ωi:

ωi(x) = xni
1 xmi

2 , ni ≤ 3 and mi ≤ 3 (6)

and using a triangular mesh representation F� of the lidar
region F , we can adopt an efficient computational scheme.
First, let us note that this particular choice of ωi yields the
2D geometric moments of the projected lidar region PF .
Furthermore, due to the triangular mesh representation of
F , we can rewrite the integral adopting ωi from (6) as

∫
D
xni
1 xmi

2 dx =

∫
PF

zni
1 zmi

2 dz ≈
∑

∀�∈F�

∫
�
zni
1 zmi

2 dz. (7)

The latter approximation is due to the approximation of F
by the discrete mesh F�. The integrals over the triangles
are various geometric moments which can be computed us-
ing e.g. the following formula for xpyq [2]:

2

p∑
k=0

q∑
l=0

(−1)k+l
(
p
k

)(
q
l

)
νkl

k + l + 2
xp−k
0 yq−l

0 (8)

where

νkl =

k∑
i=0

l∑
j=0

(
k
i

)(
l
j

)
k − i+ l − j + 1

(x0 − x1)
i
(x1 − x2)

k−i
(y0 − y1)

j
(y1 − y2)

l−j (9)

with the notation xi and yi, i = 0 . . . 2 for the vertices of
the triangles.

The summary of the numerical implementation of the
proposed method is presented in Algorithm 1. Note that
normalization is critical to ensure a numerically stable so-
lution (see [4] for details). For extrinsic calibration, K is
known a priori, while for intrinsic-extrinsic calibration, it is
initialized with fx = fy = 800 (corresponding to a nor-
mal 65 degree field of view) and o is set to the center of the
image.

3. Evaluation on synthetic data

For the quantitative evaluation of the proposed method,
we generated a benchmark set containing 29 different
shapes and their transformed versions, a total number of
2D-3D data pairs exceeding 2500 samples divided into dif-
ferent test setups. The 3D-2D image pairs were generated in

Algorithm 1 The proposed calibration algorithm
Input: 3D point cloud and 2D binary image representing

the same region, and the calibration matrix K
Output: Parameters of the camera matrix P

1: Normalize 3D points into the unit cube and 2D point
into the unit square centered in the origin.

2: Triangulate the region represented by the 3D point
cloud.

3: Construct the system of equations of (7) with the poly-
nomial ωi functions of (6).

4: Initialize the camera matrix as P = K[I|0].
5: Solve the nonlinear system of equation in (7) using the

Levenberg-Marquardt algorithm
6: Unnormalize the solution.

Figure 1. Synthetic contour noise examples (left to right): original
shape, 5%, and 10% contour noise

the following way: The 3D image were generated by plac-
ing 2D planes in the 3D Euclidean space and the shapes
were placed on these planes, whose size was normalized
into a 1m3 cube, with a random initial rotation in the range
of − π

16 , . . . ,
π
16 and a depth of 10m. For images with 2 and

3 planes, a similar procedure was applied and the placement
of planes relative to each other was initially perpendicular
followed by a random translation of 5 − 15m and rotation
of− π

16 , . . . ,
π
16 . The initial placement of the 3D planes was

considered by taking into account common urban structural
properties, in which environment the real data experiments
were performed.

The synthetic 2D images of the 3D data were generated
with a camera being rotated in range of −π

4 , . . . ,
π
4 and the

random displacement of 2 − 10m. The camera calibration
matrix K used for projection had a random focal length
fx, fy in the range of 400− 1600 with a 5% difference be-
tween fx and fy , and the principal point o was set to the
center of the 1024×768 image plane with an added 5% ran-
dom variation. Thus random 2D projections were obtained
with the so defined random camera matrix P = KR[I|t].

In practice, the planar regions used for calibration are
segmented out from the lidar and camera images. In ei-
ther case, we cannot produce perfect shapes, therefore ro-
bustness against segmentation errors was also evaluated on
simulated data (see samples in Fig. 1): we randomly added
or removed squares uniformly around the boundary of the
shapes, both in 3D and 2D, yielding an error around the

670670



contour of 5% and 10% of the original shape. Using these
corrupted images, we tested the robustness with respect to
3D errors using the 3D contour noise corrupted images and
corresponding noise-less 2D projections as well as robust-
ness with respect to 2D image errors using 2D contour noise
corrupted images and their noise-less 3D images.

The algorithm was implemented in Matlab and all test
cases were run on a standard quad-core PC. Calibration er-
rors were characterized in terms of the percentage of non-
overlapping area of the reference and registered images (de-
noted by δ), the Frobenius norm of the difference between
the found and the true camera matrices, as well as differ-
ences in the external parameters.

3.1. Extrinsic parameter estimation

In this test case the results for extrinsic parameter esti-
mation using a virtual camera with known K is presented.
The plots contain information about the test cases with 1, 2,
and 3 planes used for calibration, as well as the robustness
test results with corrupted 3D and 2D regions.

In Fig. 2 the result for translation error between the cam-
era and lidar coordinate frames is presented. The transla-
tion error is not the same on the different axes: the largest
is on the Y axis, as in this direction the resolution of the
camera was lower than along the X axis. The best results
were achieved with the 3 plane set as this is the most con-
strained setup for the camera-lidar position. For the ma-

jority of the cases the error was less than 3cm for a range
of 10m. Segmentation errors increase these errors, but it is
robust enough up to 10% error level.

In Fig. 3 the result for rotation error between the cam-
era and lidar coordinate frames is presented. The results are
not the same for the different axes. The most robustness
is manifested along the Z axis rotation: this is not surpris-
ing as this axis is perpendicular to the observation plane,
hence rotation causes only a minimal distortion on the im-
age. Other axes are more affected by error, but for more
than 70% of the cases the error was lower than 0.5 degrees
on each axis, wich is quite good for a 45 degrees rotation
range.

The registration error δ and the runtime together with the
Frobenius norm of the projection matrix is shown in Fig. 4.
The contour noise on the 3D template, which can be inter-
preted as depth noise, causes a larger error than segmenta-
tion errors in the 2D camera image. This is visible in the δ
error plot as well as in the Frobenius norm. The runtime for
the majority of the cases is less than 2min.

3.2. Intrinsic-extrinsic parameter estimation

In this section the results for intrinsic-extrinsic parame-
ter estimation are summarized. Since we need at least two
non-coplanar regions for calibration, hence we only used
the 2 and 3 plane datasets. Since the translation and rota-
tion evaluation for the individual axes gave similar results
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Figure 2. Extrinsic calibration results (from left-to-right) the translation errors along X, Y and Z axis.
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Figure 3. Extrinsic calibration results, including (from left-to-right) the rotation errors around X, Y and Z axis.
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Figure 4. Synthetic data calibration results for extrinsic parameter estimation, including the δ error, the Frobenius norm and the runtime
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Figure 5. Intrinsic-extrinsic calibration results (from left-to-right) the δ error, the Frobenius norm and the runtime.

as in the case of the extrinsic parameter estimation, only the
overall error metrics are highlighted.

The δ registration error in this test unit was the lowest for
the templates containing 3 non-coplanar planes as shown in
Fig. 5. The intrinsic-extrinsic registration for contour noise
corrupted images seemed to be more robust than the case
with only extrinsic registration. This can be explained by
considering the higher degrees of freedom for the optimizer
during the parameter estimation. This is also visible on the
Frobenius norm plot compared to the case with the extrinsic
parameter estimation.

3.3. Comparison with other methods using syn-
thetic data

The comparison with other calibration methods could be
performed only in a limited manner due to the basic differ-
ences of the proposed method with the existing ones in this
field of research. The already existing methods differ either
by the idea of using artificial landmarks as in the case of
[6, 7, 9, 1, 14, 23] or by the use of multiple image-depth
pairs like in [17, 10].

The approaches which are based on high resolution air-
bone lidar-camera information registration are often used
for a very narrow transformation range between the two
sensors [11] in contrast to the proposed algorithm which
can be used for almost arbitrary transformations with the
restriction mentioned before.

The low-resolution depth camera such as the projected
pattern infrared cameras (like the Kinect) calibrations usu-
ally deal also with the internal model estimation for the
depth camera, which are part of the global multi-phase op-
timization [7].

The class of algorithms which are built on reflectivity
values such as the ones presented in [17, 26] are not an op-
tion for lidar without reflectivity information such as the
tilted LMS200 based Sick Laser scanner used in our real
data sets.

Methods using some special target, like a checkerboard
calibration pattern [23] or other fiducial markers [1] were
tested on an appropriate dataset for extrinsic calibration us-
ing the code provided by the authors. For both cases more
than 2 different 2D-3D data pairs are required for the exter-
nal calibration, hence the test was performed on 3 and 6 re-
gions. Each of the methods was implemented in Matlab and
the tested on Linux 32-bit machine, with 2D images having
640×480 resolution and the depth in the range of 1−10m.
The results of the tests are presented in the Table 1.

The method proposed by Alismail et al. [1] is quite sen-
sitive to the size of the fiducial marker, which was a circle
placed in the Euclidean space. While the method is compu-
tationally efficient, already a 2% error in the radius of the
3D point cloud caused noticeable error. Since this method
requires at least six different planes and a specific marker
for the calibration, real data test were not available.
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Method δ error (%) Runtime (s)

HSA2012 - 6 regions [1] 7.4 8.1
RU2005 - 3 regions [23] 8.3 15.9
RU2005 - 6 regions [23] 1.6 32.7
Proposed - 3 regions 0.9 54.2
Proposed - 6 regions 0.8 49.6

Table 1. Comparative results with [1] and [23] for 3 and 6 regions.

The work of Unnikrishnan and Hebert [23] proved to be
scalable in terms of the number of planes. It is suggested
by the authors that at least 10 image-depth pairs should be
considered for calibration, although it gives reasonable re-
sults for fewer planes. The performance of this method was
comparable to the proposed one for 6 planes, but it is suit-
able only for extrinsic calibration with specific markers.

4. Real data experiments

Next, we present some calibration results on real data.
The planar regions are simple rectangular regions seg-
mented in the 2D and 3D domains. The lidar and camera
images are taken from different viewpoints.

4.1. Experiment setup

In our experimental setups a custom lidar mounted on a
mobile robot provided the 3D data and different perspective
cameras took either an IR or color image of the same scene.
The scanning of the environment with the P3 type mobile
robot was performed using custom laser tilted range finder
configuration. This custom lidar data has a 0.5 deg angular
resolution and a 1cm depth resolution in a 80m depth range.

Color images were taken by a standard camera of 1024×
768 resolution with prior calibration and radial distortion
removal. The IR image is taken by an industrial Flir camera
of 240× 240 resolution with unknown intrinsic parameters.
The images were captured at night time in order to reduce
the effect of solar heat on the building facades.

It is important to highlight that the conventional internal
calibration for such a camera is not trivial, calibration of IR
and depth data is rather cumbersome, often special setups
are needed both for intrinsic and extrinsic calibration [3].
Thus we applied the intrinsic-extrinsic calibration for the
IR experiment.

4.2. Region segmentation

In order to make the calibration user friendly the region
selection both in 2D and 3D was automated with efficient
segmentation algorithms. Considering the correspondence
establishment between the segmented 2D and 3D regions as
minimal one-click user intervention, this aspect represents
the only human interaction in the calibration process.

There are several automated or semi-automated 2D seg-
mentation algorithms in the literature including clustering,
histogram thresholding, energy based or region growing
variants [24]. In this work we used the region growing al-
gorithm which gave the closest segmentation to the regions
which were also segmented in the 3D space [19] extended
with a contour extraction assisted registration [27].

A number of sparse 3D point cloud segmentation meth-
ods have been developed recently including robust segmen-
tation [16], difference of normals based segmentation [8].
The region growing proved to give stable results in urban
environment which could be segmented in 2D domain too.

Figure 6. Calibration example with real outdoor data (left-right): 3D data with the segmented region (yellow); color 2D images with
corresponding regions (green); color information overlaid on 3D data using intrinsic - extrinsic parameter estimation for two images.

Figure 7. Calibration example with real outdoor data (left-right): 3D data with the segmented region (yellow); infrared 2D data with the
segmented region (brighter); infrared information overlaid on 3D data using intrinsic - extrinsic parameter estimation for infrared camera
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Figure 8. Calibration example with real data of an outdoor environment (left-right): 3D data with the selected region (yellow); color 2D
data with the corresponding region (green); color information overlaid on 3D data using the extrinsic parameter estimates

4.3. Algorithm evaluation on custom data

For the laser scan in Fig. 6 with ranges up to 30m, the
point density was rather low at larger distances. As it is also
mentioned in [17], in an outdoor environment the accuracy
is highly depending on the distances of the regions used for
calibration: a larger distance yields less accurate calibra-
tion. In order to emphasize the general applicability of the
proposed method, we used two color images from very dif-
ferent point of views for the same lidar scan. The result of
the projected color data on the 3D data is shown in Fig. 6.

The most interesting calibration experiment was per-
formed with an IR camera which has a rather limited res-
olution and a narrow field of view. In spite of the large
displacement (approximately 10m away and with a 20 de-
grees rotation) and unknown internal parameters, good re-
sult was achieved (see Fig. 7) by our method. Lacking pre-
cise ground truth and artificial landmarks, the reprojected
data can be examined at the higher intensity parts from the
flags on the image which match their 3D point pairs.

4.4. Comparison using public datasets

For the performance evaluation of the proposed
method a calibration on the public KITTI dataset
(http://www.cvlibs.net/datasets/kitti/)
was considered, which contained also the ground truth for
the camera-lidar devices. In Fig. 8, the extrinsic calibration
of a color camera with known K matrix and sparse 3D lidar
data from the drive nr = 5 is shown.

In order to evaluate the accuracy of the registration,
the transformation parameters were compared against the
ground truth values. Also the calibration test was performed
using the mutual information extraction described in [22]
for 3D data with intensity and normal information. The
calibration results are summarized in the Table 2. The re-
sults of the proposed method (Prop.) proved to be sensitive
to the segmentation accuracy, nevertheless the registration
both visually and numerically was accurate in the range of
few millimeters translation and around 1 degree rotation.
The mutual information based method with lidar intensity
(Int.) data gave smaller absolute errors but this method us-
ing only depth data (Norm.) became quite sensitive to local
minimals and the final calibration error was larger. Also

Tf. tx ty tz roll pitch yaw

Prop. 0.011 0.029 0.38 1.4 1.9 1.5
Norm. [22] 0.014 0.036 0.41 1.5 2.3 1.6

Int. [22] 0.007 0.026 0.18 0.8 1.2 0.9

Table 2. Comparative results with the proposed method (Prop),
normal based MI(Norm)[22] and intensity based MI (Int)[22].

the runtime GPU implementation of the mutual information
method is with an order of magnitude slower than the CPU
implementation of the proposed algorithm.

5. Conclusions

A nonlinear explicit correspondence-less calibration
method was proposed in this work. The calibration is based
on the 3D-2D registration of a common lidar-camera region.
The proposed method uses minimal information (only depth
data and shape of regions) and is general enough to be used
in a great variety of applications. It has been tested on a
large synthetic dataset. The algorithm was also validated in
real life experiments with different cameras and with both
extrinsic and intrinsic-extrinsic calibration experiments.
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