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Abstract

Integral image data structures are very useful in com-
puter vision applications that involve machine learning ap-
proaches based on ensembles of weak learners. The weak
learners often are simply several regional sums of intensi-
ties subtracted from each other. In this work we present
a memory efficient integral volume data structure, that al-
lows reduction of required RAM storage size in such a su-
pervised learning framework using 3D training data. We
evaluate our proposed data structure in terms of the trade-
off between computational effort and storage, and show an
application for 3D object detection of liver CT data.

1. Introduction
The potentially huge size of volumetric 3D data sets

from Computed Tomography (CT) or Magnetic Resonance

Imaging (MRI) often is a source of problems when adapting

sophisticated computer vision algorithms to 3D medical im-

age analysis. Especially machine learning approaches fall

into this category. Supervised detection and segmentation

methods for 3D anatomical structures have been adapted

and extensively investigated. Reasons why machine learn-

ing is favored compared to hand-crafted algorithms are in-

herent difficulties of medical data due to the high variabil-

ity of anatomical structures, low SNR, and the chance of

pathologies. By letting a machine learning method figure

out spatial and intensity-based relationships describing the

structures of interest, one can make sure that available in-

formation from the data is used exhaustively.

Many sophisticated methods like Random Ferns [15] or

Random Forests [6] have been developed with 2D computer

vision applications in mind. While the extension to 3D data

is simple from an algorithmic point of view, the practical

implementation of a 3D random forest detection or segmen-

tation algorithm requires a lot of careful design decisions

in terms of memory consumption and computational effi-

ciency to deal e.g. with large volumetric CT data sets. Of

course one could argue, that the memory- and computation-

intense training phase requires a dedicated compute server

farm with lots of parallel processing and tens to hundreds

GB of RAM. However, not all research groups have easy

access to such a computing server infrastructure, and a re-

duction in memory consumption is certainly useful from a

computational point of view and to be able to work in envi-

ronments with memory and bandwidth restrictions like em-

bedded devices.

The Random Forest framework is often used in a ma-

chine learning work-flow like the following. First a num-

ber of training data sets is collected and the object(s) of in-

terest are annotated by an expert. For automated anatom-

ical structure detection in 3D medical image analysis this

might be a bounding box around the organ of interest, or for

segmentation a manual or semi-automatic voxel-wise delin-

eation of the same organ. Then the training data sets and

respective annotations are used as the input for training the

supervised machine learning approach. Often the training

data, which in case of CT volumes are 12 bit intensity val-

ues in Hounsfield Units, is preprocessed to speed up voxel

region access using an integral image data structure [20].

From this preprocessed data, the Random Forest framework

trains a forest of decision trees, where each node of each

tree tests a set of randomly chosen feature/threshold pairs

(i.e. weak learners) with respect to their ability of discrimi-

nating the given training/annotation set according to a mea-

sure describing the information gain of the data split. The

benefits of the random forest framework are the excellent

generalization behaviour, the simple implementation of the

greedy training scheme compared to other machine learning

approaches [2] like neural networks or support vector ma-

chines, and the ability to train the trees of a forest efficiently

in parallel, since trees are independent of each other.

In this work we propose a memory efficient 3D integral

volume data structure, which helps in keeping low the mem-

ory consumption of machine learning approaches, when us-

ing simple weak learners based on rectangular voxel fea-

tures like Adaptive Boosting [17] or Random Forests [3].

The data structure keeps the most important benefit of the

integral image concept, the computation of regional inten-
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sity features of arbitrary size in constant time. We focus

on the Random Forest framework and describe how it can

be used to perform 3D object detection, very similar to the

recently presented approach of Criminisi et al. [5], but care-

fully optimized for memory efficiency with the help of the

novel integral volume.

2. Related Work
Two relevant areas of related work are described, ma-

chine learning approaches using ensembles of weak learn-

ers, and the state of the art in 2D and 3D integral image data

structures.

Object detection and segmentation have recently seen

an increasing use of machine learning approaches built on

simple features which are used as weak learners. By com-

bining weak learners to ensembles powerful discriminative

classification and regression algorithms became possible. A

seminal example is the AdaBoost based face detector of Vi-

ola and Jones [20], where Haar like rectangular features are

boosted [17] to form a strong classifier. Since these weak

learners are evaluated billions of times over the training

data, an efficient data structure, that allows the lookup of

single intensities, as well as mean intensities over rectan-

gular regions, was proposed in the form of the integral im-

age. Later research has started to focus on random forests in

computer vision [4, 18], where weak learners are organized

in tree structures and a high degree of randomness in choos-

ing weak learners for the nodes of the tree is injected into

the training. Very recently this lead to the popular Hough

Forest approach of Gall et al. [9], who use the Generalized

Hough Transform for voting of object locations in a ran-

dom forest framework. The need for efficient weak learner

evaluation remained relevant for all these approaches.

Medical image analysis duplicated the recent trend to-

wards decision tree- and forest-based algorithms for detec-

tion and segmentation of 3D anatomical structures. Early

work comes from Tu et al. [19] who describe application

of a probabilistic boosting tree for 3D colon segmentation

from CT. Zheng et al. introduced the concept of marginal

space learning for 3D object segmentation [21]. Later Mon-

tillo et al. showed a method for simultaneous segmentation

of multiple structures in highly varying CT scans, based on

entangled decision forests [13]. Very recently Donner et al.

presented an object detection method [8] borrowing ideas

from Random Forests and Hough Forests. It can be used

for localizing 3D anatomical structures from keypoint an-

notations. A very promising approach was shown by Crim-

inisi et al. [5]. It uses a multi-class random regression forest

for localization of multiple objects from a huge database of

CT scans. Their work underlines the need for memory ef-

ficient data structures when training machine learning algo-

rithms from large sets of 3D volumetric data. They state that

training is performed on server farms and they restrict them-

selves to use only down-sampled versions of the input data,

a necessity they share with many of the other mentioned

approaches. None of these works provide a detailed inves-

tigation on the memory consumption of their algorithms.

The integral image representation goes back to the com-

puter graphics literature, with F. Crow describing the use of

a summed-area table (SAT) for providing different resolu-

tion levels of 2D textures [7]. He showed the benefits of this

data structure in efficiently accessing texture elements, and

discussed the increased storage size of the SAT. As an idea

to reduce size he proposed to partition an image into blocks

to save bits. A. Glassner extended the idea of summed-area

tables to multi-dimensional sum tables [10], which intro-

duced 3D ”summed-volume tables”.

Later Viola and Jones used the idea of summed-area ta-

bles (under the name of integral images) for feature compu-

tation in their seminal paper on face detection by Boosting

Haar-like features [20]. In the computer graphics commu-

nity the need for highly efficient SAT generation was re-

cently discussed. Hensley et al. describe fast SAT com-

putation for rendering glossy reflections to simulate depth

of field [12]. They build a summed-area table directly on

the GPU by the technique of recursive doubling. They also

discuss problems with numerical precision of summed-area

table entries when represented as floating point values. One

modification they propose is the centering around image

pixel values, where they show the benefits in terms of preci-

sion. Another GPU based implementation of summed-area

tables is described in [14]. It is based on parallel prefix sums

implemented in the NVidia CUDA 1 environment.

H. Belt described methods to reduce the storage size of

integral images [1]. He identified the large memory foot-

print of 2D integral images as a drawback, especially for

embedded device implementations in mobile phones or in

robotics, where memory is a scarce resource. So on a con-

ceptual level he dealt with similar problems for 2D integral

images like we aim for in this work for 3D integral vol-

umes. His strategies for reducing the word length of integral

image values are the use of complement coded arithmetics

and computing through the overflow, which increases the

effective range of values representable by a few bits, and a

quantization of original pixel values prior to integral image

calculation, which leads to approximative results.

From the large interest in supervised object detec-

tion/segmentation algorithms based on weak learners we

can clearly see the need for highly efficient weak learner

computation. The literature about integral volumes does

not go into much detail about memory efficient implemen-

tations, however, due to the cubic scaling of the values of

the integral volume, this is an important aspect. For 2D in-

tegral images some ideas to reduce memory costs have been

described, especially to deal with embedded device limita-

1http://www.nvidia.org
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tions in memory and bandwidth, but we are not satisfied

with introducing inaccuracies into the data representation

by rounding. Up to our knowledge no concise work on re-

ducing memory consumption of 3D integral volumes has

been presented that significantly reduces storage costs.

3. Integral Volumes
A precomputed integral volume resembles a representa-

tion of the intensities of an input volume, where for each

location the sum of all the intensities up to the location

are stored. It allows very efficient calculation of voxel re-

gions of any size from a given input volume i of width W ,

height H , and depth D. Elements of i (the voxel inten-

sity values) are stored in a three-dimensional array with in-

dices x ∈ [0,W −1], y ∈ [0, H−1], and z ∈ [0, D− 1].
Only volumes with non-negative elements are regarded, i.e.

i(x, y, z) ≥ 0. Note that CT volumes have a 12 bit inten-

sity resolution, stored in 16 bit integer representations. Also

CT uses Hounsfield Units, which range between−1024 and

3071, and one has to shift this range to a non-negative one

in order to compute the integral volume.

The integral volume ii contains at each location (x, y, z)
the sum of the original intensity values i from the origin

(0, 0, 0) up to and including (x, y, z) according to

ii(x, y, z) =

x∑
x′=0

y∑
y′=0

z∑
z′=0

i(x′, y′, z′).

It can be computed using the recursion

ii(x, y, z)=i(x, y, z)+ii(x−1, y, z)+ii(x, y−1, z)

+ii(x, y, z−1)−ii(x−1, y−1, z)

−ii(x−1, y, z−1)−ii(x, y−1, z−1)

+ii(x−1, y−1, z−1),

with the borders of the volume equal to 0 in order to deal

with index locations x, y, z = −1.

From eight values of the integral volume, the sum of the

original intensities in an arbitrarily sized region can be com-

puted, i.e. a box filter can be calculated in constant time. So

the mean μR of voxel values i in a region R is

μR=
1

N

x1∑
x=x0

y1∑
y=y0

z1∑
z=z0

i(x, y, z)

=
1

N
(ii(x1, y1, z1)−ii(x0−1, y1, z1)−ii(x1, y0−1, z1)

−ii(x1, y1, z0−1)+ii(x0−1, y0−1, z1)

+ii(x0−1, y1, z0−1)+ii(x1, y0−1, z0−1)

−ii(x0−1, y0−1, z0−1)).

3.1. Memory Consumption

Contrary to other works we do not use a floating point

represention for the integral volume. Due to summing up

values, which start from low numbers and monotonically

increase to very large numbers, it can not be prevented, that

a floating point representation loses precision. Instead we

use integers, where a naive implementation of the integral

volume requires a 64 bit word length per voxel, since the

maximal number that needs to be stored is the product of

the maximum extents in the three dimensions and the max-

imum intensity of a voxel. Due to the monotonically in-

creasing structure of the integral volume, such a naive rep-

resentation wastes a lot of memory. As an example consider

a CT volume of size 512×512×512 with a 12 bit intensity

resolution, giving a maximally possible summed value of

549.755.813.888 for the integral volume. One needs 39 bits

to represent this number, in practice this would be stored in

a 64 bit number. To compute a required bit length Lii of an

integral volume we use

Lii = �log2((2Li − 1)WHD + 1)�

with Li the bit length of the input volume and �·� the ceil

operator.

3.2. A Memory Efficient Variant

We propose a memory efficient integral volume (MEIV)

by combining several techniques. We divide the input vol-

ume regularily into 3D blocks (see Fig. 1). One absolute

offset is computed per block and this offset is stored in an

additional data structure of smaller size. Now for each block

we compute the difference to a simple one-parameter pre-

diction model for the integral volume values in this block.

Finally the differences to the model prediction are stored

voxel wise using a bitset with dynamic per block word

length. Of course with this representation we trade-off

memory consumption for computation, since evaluating the

prediction model and bitset access require additional com-

putational effort when compared to the naive variant. How-

ever, evaluating the integral volume for arbitrarily sized re-

gion sums is still performed in constant time, while most

of the additional computational effort goes into the initial

creation of the MEIV. Since integral volume setup is a pre-

processing step that needs to be done only once per input

volume, this is a worthwhile compromise. The full MEIV

construction is given in Algorithm 2.

3.2.1 Dividing into Blocks

We subdivide the integral volume with an intensity range

between [0, R] and of size W×H×D into blocks of equal

block size B. Thus, we have M=�WB �, N=�HB �, P =�DB �
blocks in the three dimensions, respectively. See Fig. 1 for
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Figure 1. Geometry of memory efficient integral volumes in a 2D illustration. The input volume is split into blocks of size B (red). Block

offsets and model parameters are computed and stored in arrays of a size equal to the number of blocks. Differences of the integral volume

sums per voxel and the model predictions are stored in the list of bitsets of differing per-block word length.

the volume geometry in a two-dimensional illustration. Our

strategy is to loop over all blocks (xb, yb, zb) sequentially,

computing the integral volume values ii(x, y, z) solely for

the block (using previously computed neighbor blocks), and

storing ii into an intermediate 64 bit unsigned integer array

of size B×B×B. Next we treat the first element of the inter-

mediate array (an example is marked by a cross in Fig. 1) as

a block offset which is stored in the blockOffsets data struc-

ture using a 64 bit unsigned integer. All other values of the

block may now be represented relatively to this block offset

bo by subtracting bo(xb, yb, zb) from the value ii(x, y, z).
The block offset is our first mechanism for memory reduc-

tion by decreasing the range of possible values in a block.

Storing the block offset in a lower resolution (M×N× P )

array is a form of hierarchical compression of the integral

volume, however, by itself it is not enough to reduce the

memory consumption sufficiently. This is due to large dif-

ferences that still occur in late blocks of the integral volume,

where still very high numbers of voxels have to be summed

up over rows, columns and planes.

3.2.2 One-parameter Model Predictions

After computing bo we continue investigating the current

block (xb, yb, zb) by calculating a model estimate predict-

ing ii for the voxels in the block. Since each element of

the integral volume is a sum over a given number of in-

put voxels, a very simple one-parameter model is to assume

that ii(x, y, z) is approximately m(x, y, z)= (x+1) ∗ (y+
1) ∗ (z+1) ∗ μ, where μ is a mean value estimate over the

summed voxels. With such a one-parameter model, we can

expect that the difference between m and ii is low. To find

an optimal μ for a block, we perform an optimization over

the possible values of μ, namely the integers in the range

[0, R]. The optimization performs a binary search (see Al-

gorithm 1) in the range [0, R], with an algorithm that - start-

ing from the full range - divides the range recursively, look-

ing for the mean estimate that minimizes the bit length to

store the differences of m and ii. Note that this cost func-

tion is V-shaped and contains a single local minimum in

the range [0, R]. The binary search gives us the optimal μ′

which is stored in the modelParams array as 16 bit unsigned

integer (corresponding to the intensity range of the input

volume). We finally combine the block offset bo from the

previous step and the mean estimate μ′ into a single model

computation according to

m(x, y, z)=bo(x, y, z)+μ′ ∗ ((x+1)(y+1)(z+1)−
(xb+1)(yb+1)(zb+1)).

This gives us a model estimate for the integral volume

at (x, y, z) that counts the number of additionally required

voxels relative to the (0, 0, 0) location of the block and mul-

tiplies it with the mean estimate. The value that we finally

store in our dynamic word length storage is the difference

between the model estimate and the integral volume value

s(x, y, z)=m(x, y, z)−ii(x, y, z).

3.2.3 Dynamic Word Length Storage

Our last step to reduce memory consumption is to store the

differences s = m−ii from the previous step with differing

word lengths per block. This is intuitive, since early blocks

in the computation require smaller bit lengths due to much

lower sums than blocks near the end of the integral volume.

From the smallest stored value range svr (see Algorithm 1)

we can compute this bit length, LB , and compactly store

the values of a block in a bitset of size B3LB . In our C++

implementation we use the Boost 2 dynamic bitset for this

purpose. Its low memory overhead and efficient bit access

2http://www.boost.org
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Algorithm 1 Binary Search Model Estimates

Require: intermediateBlock

Ensure: μ′ is optimal model parameter

push μ range [0, R] onto queue Q

while Q not empty do
μ range [l, h] = Q.pop()

compute min & max values for m(l)− s in block

stored value range svrL := max−min
compute min & max values for m(h)− s in block

stored value range svrH := max−min
if svrL < svrH then

μnxt := l+�
(
0.5+ svrL

svrL+svrH
(h−l)

)
�

else
μnxt := l+�

(
0.5+

(
1− svrH

svrL+svrH

)
(h−l)

)
�

compute stored value range svrN of μnxt

compute stored value range svrN−1 of μnxt−1
compute stored value range svrN+1 of μnxt+1
if svrN ≤ svrN−1 and svrN ≤ svrN+1 then

converged μ′ := μnxt

else
if svrN−1 > svrN and svrN > svrN+1 then

push μ range [μnxt, h] onto Q

if svrN−1 < svrN and svrN < svrN+1 then
push μ range [l, μnxt] onto Q

has been shown in [16] in comparison with other bitset li-

braries, therefore it is very well suited for our purpose.

Algorithm 2 MEIV Computation

Require: input volume i(x, y, z)
Ensure: ii(x, y, z) is the integral volume of i

for all blocks (xb, yb, zb) of i do
compute intermediate block iiB(xb, yb, zb) of size B3

store bo := iiB(0, 0, 0) in blockOffsets
determine best model mean estimate μ′ (Algo. 1)

for each voxel xx, yy, zz in iiB do
s(xx, yy, zz) :=m(xx, yy, zz;μ′)−ii(xx, yy, zz)
store s in dynamic bitset for current block

The total memory requirement of the MEIV is

O(MNP∗B3∗LB), thus it is highly dependent on the block

size B. We can see that MEIV access for region evalua-

tions is still possible in constant time, with a slight overhead

for reading block offset and model parameter, accessing the

stored value from the bitset, computing the model, and fi-

nally subtracting the stored value from the model computa-

tion result.

4. Random Forest Object Detection
We apply the MEIV data structure of Section 3.2 for

Random Forest based 3D object detection, suited to locate

anatomical structures from medical volumetric data. The

Random Forest is very similar to the work in Criminisi et

al. [5], that proposes a regression model on the distance of

voxels to the annotated bounding box of an object of inter-

est. We reproduce the main steps of their algorithm for self-

containedness. Also we stress some design decisions of our

implementation, that lead to a low memory consumption.

4.1. Forest Training

The forest training starts with loading all input volumes

and computing the MEIV. A forest consists of T decision

trees. For each t ∈ T we apply the tree training, which is

a depth-first procedure over the nodes of the decision tree.

Tree training commences at the root node by randomly cre-

ating a pool of ρ features, specified as one rectangular re-

gion sum or the subtraction of two region sums of random

size(s) and located at random offset(s). The decision if one

or two regions are used depends on a coin flip. For each fea-

ture a set of thresholds is created, again in a random fash-

ion. Each combination of a feature with one of its thresh-

olds will be denoted as F . Now we compute the features

on the whole training data set, i.e. all voxels of the training

set, which have reached the current tree node (for the root

node these are all available voxels). Feature computation

makes heavy use of the MEIV representation for comput-

ing the region sums, a procedure that is repeated billions

of time during training. Rather than storing the feature re-

sponse for one computed feature for all voxels, we store the

comparison of the feature response with all possible thresh-

olds in a bitset, which has the same size as the number of

training voxels. For each tested threshold we need a dif-

ferent bitset, but for small numbers of thresholds this is a

lot more memory efficient than having to store each feature

response, and significantly faster than recomputing the fea-

ture response several over and over again. Next we go over

the set of thresholds and create the two subsets of the train-

ing voxels for left and right child nodes (the potential split).

The two subsets are used to compute the information gain

of the regression model on the distances to the six faces of

the annotated object from the training data set. The thresh-

old that gives the largest information gain over the current

node’s entropy is kept for the currently regarded feature.

The feature-threshold pair that maximizes the information

gain over the feature pool is kept as the final result of the

regarded node. The subsets corresponding to this feature-

threshold pair are used to split the current node and provide

the input for the recursive node training procedure. Recur-

sion stops as soon as a maximum tree depth TD has been

reached, the size of a subset of training voxels for a node

goes below 25 voxels, or the information gain of a split is

zero. Nodes where the recursion has stopped are treated dif-

ferently from split nodes. In split nodes we store the feature-

threshold pair F , while the leaf nodes store the mean and the

726726



variance of the location of the six faces of the bounding box

the node is voting for. Note that in our implementation we

use a queue to implement the recursion. This way we have

better control of the memory consumption during training.

4.2. Forest Evaluation

After integral volume computation for the test volume

it, the forest evaluation loops over all voxels of it and eval-

uates each tree independently. The nodes are followed by

applying the computation of the feature stored in the node,

comparing with the stored threshold and continuing with

left or right child node depending on the comparison. Fea-

ture computation again makes use of the MEIV to evaluate

the features in constant time. For each tree the nodes are

followed until a leaf node is reached. The mean distance

and its variance to each of the six faces of a bounding box

are used to create a vote for the object bounding box. Votes

are averaged over the different trees, thus generating a vote

for a final object location.

5. Experiments & Results
We perform two kinds of experiments, firstly the novel

integral volume is investigated in terms of memory con-

sumption and computational effort. Secondly the MEIV is

used in a random forest object detection framework on a

data set of liver CT volumes. All our experiments are per-

formed on a work-station with 4 hyper-threaded Intel Core

I7 930 (2.8 GHz) and 12 GB of RAM. The operating sys-

tem is Linux, implementations are done in C++ using the

gcc compiler and -O3 optimizations.

5.1. Integral Volume Performance

To demonstrate the performance of the proposed MEIV

data structure, we perform experiments on a 3D volume of

size 512×512×512 with uniformly distributed random val-

ues from the range [0, 1023] (smallRandomVolume), a real-

world CT image of the thorax of size 512×512×476, where

the intensity range was rescaled to [0, 1023] (realCTVol-
ume), and a 3D volume of size 1024×1024×1024, with

random values in the range [0, 512] (largeRandomVolume).

The last data set serves as an upper limit for current prac-

tically used volumetric data. Our experiments compare the

naive integral volume implementation with MEIV by com-

puting both representations (in case of the random valued

data, integral volume setup is repeated ten times and mea-

surements are averaged), and afterwards computing 10000
randomly drawn region evaluations, that may range from a

size of one voxel to the full size of the volume. Further, we

vary the block size B of the MEIV in the range [2, 12] to

determine a good compromise between setup time, mem-

ory consumption and region evaluation time. The results

of the setup time and memory consumption for smallRan-
domVolume and realCTVolume can be found in Fig. 2. For a

block size B=8 the smallRandomVolume requires 319 MB,

which is 31% of the naive implementation. This is consis-

tent with the theoretical memory storage of the MEIV, given

by O(MNP ∗B3∗LB), with LB =19.5 in this case. Note

that in addition to the size of the bitset per block B3LB ,

we need to store bo, μ′ and some index variables per block

as well, these are not visible in the big-O-notation result.

The same evaluation for largeRandomVolume can be found

in Table 1, the naive integral volume implementation for

largeRandomVolume requires 8192 MB RAM in this case.

For comparison the baseline setup time of the naive inte-

gral volume implementation is 9.2 seconds for largeRan-
domVolume and around 1.1 seconds for the two smaller data

sets, respectively. After testing the integral volume access,

it could be seen that the mean of the region evaluation times

is nearly constant over varying block sizes, these results are

shown in Table 2.

Access Time smallRndm CTVolume largeRndm
naive [ms] 0.0017 0.0012 0.0017

MEIV [ms] 0.0057 0.0055 0.0068

no IV [ms] 2.1 2 15.7

Table 2. Mean region evaluation times in milliseconds from 10000

randomly drawn regions per volume.

5.2. CT Liver Detection

We use the MEIV with a block size B = 8 to train a

random forest for object detection using a database of 30

abdominal CT volumes from the MICCAI Liver Segmenta-

tion Grand Challenge data set [11]. We use manually an-

notated axis aligned bounding boxes around the liver, and

train a Random Forest according to Section 4. The 30 vol-

umes have an in-plane resolution of 512×512 voxel, and the

number of slices ranges between 64 and 502, with a mean

of 214 slices. Physical resolution is around 0.6 mm in-plane

and ranges between 0.7 and 5 mm slice thickness. The

mean memory consumption of the 30 volumes represented

as 8 byte integral volumes is 428 MB, leading to a total of

12840 MB for holding the full training data set in mem-

ory using a naive integral volume implementation. Note

that even without the overhead of the Random Forest train-

ing, this does not fit into the RAM of our work-station,and

constantly loading the integral volumes from a file system

would be a bottleneck significantly slowing down training.

The Random Forest is trained sequentially using T = 10
trees with a maximum depth of D = 7, and a feature pool of

ρ = 40 random features per node that are compared against

three thresholds. With this setup we require eight additional

data structures in the form of bitsets to store node splits and

feature-threshold comparisons. Each of these bitsets has a

size equal to the full number of training data voxels result-

ing in 200 MB per bitset, and 1600 MB in total for train-
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Figure 2. MEIV evaluation over different block sizes. (a) Setup time is slightly higher for real CT data, for block sizes larger than 8 the time

is below 100 seconds. (b) Memory consumption is smallest for a block size of 8, around 35% of the naive integral volume implementation’s

consumption. Again real CT data requires slightly more memory due to the non-Gaussian distribution of intensities.

block size 3 4 5 6 7 8 9 10 11 12

setup time [s] 1273 1022 888 797 743 699 667 642 629 608

memory [MB] 3042 2694 2599 2570 2574 2544 2561 2597 2636 2631

Table 1. largeRandomVolume results over varying block sizes. The naive integral volume implementation requires 8192 MB of RAM and

has a setup time of 9.2 seconds. For a block size of eight, a 31% reduction in storage size can be achieved.

ing. We want to stress here, that we do not require a down-

sampling of the training data sets. In practice it is necessary

to perform the feature computation and threshold evaluation

on a subset of the training data to reduce computation time,

resembling an internal bagging step with a node depending

subset size, i.e. smaller subsets near the root node. How-

ever, after the best feature for a node has been identified

on the subset the feature calculation is repeated for the full

training data reaching the node to create the node split.

We have performed a leave-one-out experiment using

our training data set, where we have performed five rounds

of training from 25 randomly drawn CT volumes from the

training set, and have tested on the remaining five volumes

for the overlap of the six faces of the liver bounding box an-

notations. The result of this experiment was a mean bound-

ing box localization error of 24 mm with a standard devia-

tion of 19 mm. Forest training using the described setup still

takes a long time. Our sequential implementation requires

around nine days to train a forest from 25 data sets using the

full input volumes. This resembles a mean per-node com-

putation time of one minute for the MEIV. The three times

higher access time to evaluate the MEIV compared to the

naive implementation (see Table 2) did not translate to a

three times higher per node computation effort, in practice

the difference was a factor of 1.2.

6. Discussion

From our experiments we can clearly see the benefits of

our proposed MEIV data structure in terms of memory con-

sumption. The main problem of the naive integral volume

implementation, the cubic dependency of the computed

sums on the volume size, is reduced, leaving the MEIV

with less than a third of the required memory with the right

choice of block size. This behaviour is consistent with the

theoretical storage requirements given our implementation.

We see in Fig. 2 that a block size B = 8 leads to a reason-

able compromise between setup time (which is not very rel-

evant, since this computation has to be performed only once

in typical applications) and memory consumption. With the

MEIV it is thus possible to increase the number of full reso-

lution training data sets in a random forest object detection

application by a factor of three given a certain computa-

tional setup with a limited amount of RAM. This property

scales to larger volumetric data sets, and is also applicable

for computing servers with much larger amounts of main

memory. We again want to stress that we find it relevant to

prevent down-sampling of input data, so that a weak learner

based algorithm is able to use all of the available informa-

tion in the training set.

The liver object detection results are worse than in Cri-

minisi et al. [5], however, they have used a different, much

larger database of CT volumes, so a direct comparison is

hard. They had to use a compute server and have down-

sampled their input volumes for training. It would be very

interesting to test our framework on their data to investigate

further the benefits of being able to train on the originally

sized input volumes. We want to note here, that the focus of

our proposed work is not on improving on existing object

detection accuracy, but to provide a way to prevent down-
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sampling in forest training using our memory efficient inte-

gral volume, to be able to use all available information from

a training set.

7. Conclusion and Outlook
In this work we have proposed MEIV, a memory efficient

integral volume implementation that allows a storage size

reduction to less than a third of the naive variant. We have

given a first glimpse on how this technique may be used in

a weak learner ensemble based machine learning approach

for 3D object detection, using 3D training sets that lead to a

huge memory consumption. The use of MEIV is of course

not restricted to Random Forest based object detection, but

more generally applicable. Also it is trivial to implement

the technique for 2D integral images, this would help in ap-

plications for embedded devices where memory is scarce,

and therefore storage of the integral data structure of the test

image has to be optimized in terms of size and bandwidth.

Future work will investigate the 3D object detection

framework more deeply on a more comprehensive data set.

Further, the application to a segmentation framework is

even more interesting, although more demanding. Finally

we will investigate how to speed up parts of the forest train-

ing using CUDA for highly parallelized feature computa-

tion on the GPU.
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