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Abstract

A real world scene may contain several objects with dif-
ferent spatial and temporal characteristics. This paper pro-
poses a novel method for the classification of natural scenes
by processing both spatial and temporal information from
the video. For extracting the spatial characteristics, we
build spatial pyramids using the spatial pyramid matching
(SPM) algorithm on SIFT descriptors while for the motion
characteristics, we introduce a five dimensional feature vec-
tor extracted from the optical flow field. We employ SPM
on combined SIFT and motion feature descriptors to per-
form classification. We demonstrate that the proposed ap-
proach shows significant improvement in scene classifica-
tion as compared to the SPM algorithm on SIFT spatial
feature descriptors alone.

1. Introduction
An object present in a natural scene can be classified us-

ing its spatial as well as temporal characteristics. This task

is easier for the human visual system (HVS). But this kind

of semantic category identification of the objects present in

a scene is very challenging and complex for the computer

due to changes in appearance, illumination, view point,

imaging system settings, etc.

A majority of existing scene classification algorithms use

the spatial information for identifying the scene category.

On the other hand, we take into account temporal motion

in the natural scenes such as waves in beach scenes, snow-

fall on a windy night, and rotation of the wheels in a distant

windmill. We extract this useful information from the tem-

poral support in order to enhance the scene classification

task.

There are several algorithms existing in the literature that

use spatial low and high level image representations. The

most famous low level image representation based algo-

rithms use GIST [22] and histogram of oriented gradients

(HOG) [21] for the classification task. The main problem
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Figure 1: (a) and (c) are the video frames from two dif-

ferent elevator scenes, (b) and (d) are the frames from two

different videos of beaches, (e) and (f) show the accuracy

in classification of elevator and beach scenes over 10 trials

respectively.

with descriptors like HOG is that they are not robust enough

for generalized tasks like scene classification and hence are

limited to specific tasks like action recognition. Some of the

high level image representation is useful in scene and object

recognition including action recognition [23] and single im-

age object classification [17]. All these approaches use in-

formation from the spatial domain giving little significance

to temporal support for achieving the classification task.

This paper aims to make use of both spatial as well as

temporal support obtained from the the video frames to

identify the semantic category of the object present in the
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scene. The proposed approach is also different from other

spatio-temporal based scene classification approaches. Dy-

namic scene classification in [6] is done by analysing ori-

entation measurements related to spatial and temporal do-

mains at multiple scales, where as in the proposed approach,

we identify and extract feature vector from the dynamic re-

gions of video scene. The proposed approach shows that

by incorporating the motion information along with spatial

information (SIFT features) for scene classification, there is

a significant improvement in scene classification. Motion

based feature vector of the proposed approach captures mo-

tion information over a finite space time volume and thus is

robust to noise in the given video.

Fig. 1(a,c) show video frames from two different eleva-

tor scenes and Fig. 1(e) shows the accuracy of classification

obtained using the proposed approach for a number of trials

conducted. Another such example is shown in Fig. 1(b,d,f).

It can be observed that the result is consistent and high for

all the trials. The proposed approach successfully performs

the classification task for different scenes even when there

is high variability in their appearances.

The primary contribution of the proposed approach are

stated below.

• We incorporate both spatial and temporal information

in the feature descriptor for efficient scene classifica-

tion,

• The proposed approach is robust to the quality of video

used for developing training model,

• Comparatively, lesser number of training data is re-

quired for the scene classification for obtaining good

accuracy,

• The main object from the image that defines the se-

mantics of a scene and used for scene classification is

assigned the correct class, and

• The proposed approach shows significant improve-

ment in accuracy compared to other methods in scenes

with texture and motion.

In section 2, a brief description about the related research

work done previously is provided. Section 3 contains a

description about the proposed algorithm for classification.

Section 4 summarizes the conducted experiment on the pro-

posed approach. In section 5, results of applying the pro-

posed algorithm on a dynamic scene dataset are described.

Section 6 discusses some of the challenges and directions

for future research. Section 7 provides the conclusion of

the present work.

2. Related Work
As mentioned in section 1, plenty of spatial scene classi-

fication algorithms are available in the literature [10]. The

earlier ones include gist based scene classification [22]. In

this algorithm, a holistic envelope of an image is used for

scene classification. In [5], it is shown that employing his-

tograms of oriented gradients (HOG) results in improved

object recognition compared to the other gradient and edge

based descriptors such as [21]. In [13], scene classifica-

tion is dealt with computation of gist globally, also the local

textures at various scales. In [26], color descriptor based

approach is used to increase illumination constancy. In

[11], local spatial features similar to visual codewords are

used in constructing models for the scenes. In [16], spatial

pyramid is used for identifying the object class. This ap-

proach splits the image into fine sub-regions and computes

the spatial pyramid by computing histograms for each sub-

region. In [27], local semantic concepts are used for rep-

resenting scenes wherever they are present. Thus, all these

approaches involve extraction of local spatial descriptors for

scene classification task.

In [17], an image is represented as an object bank where

it is expressed as scale invariant response function of ob-

ject detectors. This approach is proved to be better than low

level image representation based scene classification and is

also proved to be effective in higher level visual recognition

tasks. A similar technique is developed for high level repre-

sentation of activity [23]. Recognition of dynamic textures

using histograms of spacetime orientation structure is de-

veloped in [7]. In [9], action recognition is developed from

inspirations in biological systems. A significant improve-

ment in accuracy on several datasets is reported compared

to previous scene classification algorithms.

Some of the spatio-temporal feature based algorithms

are used in specific tasks like action recognition. In [8],

a spatio-temporal motion descriptor is used for recognis-

ing actions. In this algorithm, patterns of motion is rec-

ognized from noisy optical flow output and is processed to

form the motion descriptor. In [4], spatio-temporal pyra-

mid matching (SPTM) is used for querying video shots. In

this method, SPTM is used for improved dynamic object

matching, and better results were obtained, compared to the

previous methods.

Recent papers have attempted to solve the problem of

dynamic natural scene classification. In [6], classification

is based on spatio-temporal filters, while [24] extracts dy-

namic invariants in disordered systems. The other recent

work on video scene classification involves a local descrip-

tor based on Slow Feature Analysis (SFA), that represents

stable and prime motion components of training video.

These local descriptors are then integrated into global cod-

ing architecture for providing a model for each semantic

category [25].

Lucas-Kanade[19] and Horn-Schunck[15] are the stan-

dard optical flow algorithms that act as building blocks to

construct the flow vectors of a dynamic scene. These al-
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(a)

Figure 2: Extraction of 5DMFV from dynamic scene for forming motion descriptor for spatial pyramid matching. Motion

descriptor is extracted by applying Histogram of Oriented Gradients (HOG) on 5DMFV.

(a)

Figure 3: Illustration of the Proposed Approach.

gorithms operate efficiently under the assumption that the

objects undergo small displacements in successive frames.

However even if the above assumption is satisfied, the algo-

rithm may not give good results for scenes which violate

brightness constancy assumption and scenes which have

transparency, high variation in depth, and specular reflec-

tions. Some of these shortcomings have been overcome in

the approach which uses feature descriptor matching [1].

In order to get more efficient results in situations involving

large object displacements, a more recent work on optical

flow uses a hierarchical region based matching [2].

3. Proposed Approach

We attempt to exploit both the spatial and temporal in-

formation in order to address the problem of scene classi-
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(a)

Figure 4: Video categories from UPenn dataset used for classification.

fication. Spatial information is useful in cases where there

is high texture gradient in the scene. Motion information

is useful when the texture gradient is less and the motion

information of the objects in the scene can be estimated.

Thus, the information extracted from these two paradigms

complement each other and lead to sufficient discrimination

between different scene categories.

Fig. 2 depicts the process of construction of temporal

feature descriptor and Fig. 3 summarizes the construction

of spatio-temporal pyramid that is used by the proposed ap-

proach for constructing training models for scene classifi-

cation. First, a set of frames are extracted at fixed intervals

from input video. Flow vectors are estimated between con-

secutive pair of extracted frames. The motion based fea-

ture vector is constructed by computing divergence, gradi-

ent and mean of flow vectors across the frames used, and is

used to extract the dynamic regions. Finally, histogram of

oriented gradients is computed to construct descriptor for

motion around the detected keypoints, as depicted in Fig. 2.

The computed feature descriptor is used to construct motion

pyramid, which is then concatenated with spatial pyramid

obtained using SPM algorithm, to form training models for

each dataset (Fig. 3). Here, the number of levels in spatial

and motion pyramid are denoted by L1, and L respectively.

We begin with the description of SPM and then describe

about the spatial and temporal feature descriptors that are

used in SPM. We introduce here a novel temporal descriptor

for classifying video corresponding to a natural scene.

3.1. Spatial Pyramid Matching

In high level computer vision problems, an image can be

described by local features extracted from the patch around

a pixel location and edge point local descriptors describe

the shape in the image. There are local feature descrip-

tors such as GIST[22] and SIFT[18] descriptors which are

subsequently used for the object matching and recognition.

These feature descriptors are expressed as a set of vectors

in d-dimensional feature space.

X = (x1, x2, x3, ..., xd) (1)

Pyramid matching operates in the feature space comput-

ing the weighted sum of the number of matches that occur

at each scale[12]. At each scale, we have a sequence of

coarser grids over the feature space and matching is con-

firmed if the points are in the same cell of the grid. Though

this approach allows the matching of features in a higher

dimensional space, it discards the spatial information.

SPM uses a multi resolution histogram pyramid in the

feature space to perform a matching between a set of d-

dimensional feature vectors. The clustering technique for

pyramid matching can be performed in 2D image space and

then extended to motion feature space[25]. We extract the

local feature vectors in the corresponding feature spaces and

quantize them into M types each of which is a code word in

the codebook. SPM works in L levels of resolution. In each

level l, the image is partitioned into (2l)2 grids of the same

size. For each level of resolution and each channel, SPM

counts the intersection of codewords which have fallen into

806806



the same grid in the image space to compute the grid sim-

ilarity of the two images. Finally, we weigh each spatial

histogram as[14].

K(I1, I2) =
L∑

l=1

G(l)∑

i=1

1

2L−l+1
Kl,i(I1, I2) (2)

Kl,i(I1, I2) =
M∑

m=1

min(Hm
l (I1), H

m
l (I2)) (3)

Here, L is the total number of levels and G(l) is the total

number of grids in level l. Hl,i(I1) is the number of code

word m appearing in the ith grid of the lth level in image

I1. We have chosen L = 2 or L = 3 while the dictionary

size is set to be 200.

3.2. Feature Extraction

This section briefly explains the type of features used for

SPM. We use both the spatial and temporal cues from the

video frames in order to extract the desired feature descrip-

tor. For spatial information, we use high dimensional strong

features which are SIFT descriptors of 16×16 pixel patches

computed over a grid with a spacing of 8 pixels. This fea-

ture is very similar to the approach of [16]. K-means clus-

tering of a random subset of patches from the training set is

performed to construct a visual vocabulary.

For the incorporation of temporal information, a 5-

dimensional motion flow vector (5DMFV) from Lucas-

Kanade optical flow field [19], its divergence and its gra-

dients are calculated on a set of video frames.

Pi(x , y) = (p1 , p2 , p3 , p4 , p5 ) (4)

Q = (q1, q2, q3, q4, q5), (5)

where Qj = log(σ2(Pji)), j = 1, 2, 3, 4, 5.

In equation (4), (p1, p2) = (�vx, �vy) are the optical flow

vectors obtained from Lucas-Kanade algorithm. p3 corre-

sponds to the divergence (�̇�v) while (p4, p5) are the gradi-

ents of the magnitude of the vector field �v in x and y direc-

tions.

Equation (5) represents 5DMFV where σ2 is the vari-

ance of the features on a finite time support. This 5DMFV

helps in the segmentation of video frames into static and

dynamic regions. We use variances of flow vector statistics

for the construction of feature vector so that these are con-

sistently zero in static regions, regardless of the amount of

noise present in the input video. The intuition behind us-

ing the logarithm is to capture subtle motions present in the

scene, so that we are successfully able to detect and extract

important dynamic object using the feature vector. These

intuitions are further validated in the results section.

As the static region provides no useful information of the

motion characteristics of the scene, we are interested only

in the temporal properties of the dynamic regions. For this

purpose, we use the 5DMFV to separate static and dynamic

regions and then extract 5DMFV for the separated dynamic

region using a bounding box. For each 5DMFV derived

from the set of video frames, we derive feature descriptor

on 16 × 16 patches over a grid with spacing of 1 pixel on

the motion vector space. In each of the patches, we take

the gradients on the resultant of q1 and q2 (�v), q4 and q5
(��v), and q3 on 5DMFV as (q1, q2) and (q4, q5) are x and

y components: Gradient directions and magnitude is taken

around each keypoint which is the centre of the patch. In

this histogram, 360 degrees of orientation are broken into

8 bins. A histogram is created with 8 bins with each stor-

ing an amount proportional to the magnitude of gradient at

that point. This feature descriptor looks similar to the SIFT

descriptor except for the fact that we use 5DMFV space

instead of the 2D image space and we avoid difference of

Gaussian on 5DMFV as it is less suitable in this space.

The size of the pyramid depends on the dictionary size

and the number of pyramid levels. Let us assume that there

are l levels. For the ith level of pyramid, number of blocks

is given by:

N(i) = (2i)2 (6)

If a dictionary level of size D is used for each level,

then total size of pyramid, L is given by:

L = D ×
l∑

i=0

(2i)2 (7)

Thus, if we have number of levels, l =3, and a dictio-

nary of size 200, size of pyramid is given by:

L = 200× (16 + 4 + 1) = 4200. (8)

For a patch size of 16, distance between grid centres

of 1, image size of 256 × 256 and number of visual words

of 200, 4200- dimensional feature descriptor is obtained for

each vector in 5DMFV. Finally, we have feature descriptor

of one 4200- dimensional from spatial and three 4200-

dimensional vectors for each vector. In a simple way,

we can either concatenate spatial and temporal domain

feature descriptor to make a 13800 dimensional vector or a

4200× 4 matrix.

4. Experiment
We used the UPenn dataset1 with 14 different categories

of video scenes having 30 videos in each of these categories.

Each video has about 150 frames running for 5 seconds de-

picting a unique natural scene. Fig. 4 shows a set of three

1http://www.cse.yorku.ca/vision/research/dynamic-scenes.shtml
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Method Average Accuracy Highest Accuracy

Resultant of flow vector 69.81± 6 79.76

Divergence 66.21± 3.03 73.81

Resultant of gradient 59.045± 4.5 66.67

5DMFV 76.44± 4.43 84.52

SIFT 80.18± 3.18 88.1

SIFT+5DMFV 84.27± 2.94 90.48

Table 1: Column-2 provides average accuracy along with

standard deviation obtained in multi class classification,

column-3 gives maximum accuracy in each category.

representative images from all of the datasets that are used

for testing the proposed approach and are part of the UPenn

dynamic scenes dataset [25]. We extract a frame from each

video for applying spatial pyramid matching on the SIFT

descriptor. In the case of temporal space, we derive the

5DMFV from a set of frames for each video. Feature de-

scriptor of 4 × 4200 matrix is computed as mentioned in

the proposed approach. Having obtained feature descrip-

tor for every video in all categories, multi class classifica-

tion is done using Support Vector Machine (SVM)[3]. We

have noted that the average of per class recognition along

with standard deviation of the results from the individual

runs. We represent this classification in confusion matrix as

shown in Fig. 5 where the diagonal element values depict

the accuracy of classification of a particular category in the

testing set of videos.

5. Results

(a)

Figure 5: Confusion matrix for the UPenn dataset obtained

with average accuracy with 89.29

Table 1 shows the results of classification experiments

using 23 videos for training and 6 videos for testing in

each class. Number of levels, L = 2 and dictionary size,

Scenes HOG GIST Chaos SOE SFA Our

[20, 6] [17, 6] [24] [6] [25] Model

Beach 37 90 27 87 96 98.3

Elevator 83 50 40 67 86 89.8

F.Fire 93 53 50 83 90 80

Fountain 67 50 7 47 63 60.1

Highway 30 40 17 77 70 88.1

L.Storm 33 47 37 90 80 66.6

Ocean 47 57 43 100 96 89.8

Railway 60 93 3 87 83 86.5

R.River 83 50 3 93 83 95

S.Clouds 37 63 33 90 100 91.5

Snow 83 90 17 33 73 89.9

Street 57 20 17 83 90 96.6

W.Fall 60 33 10 43 86 74.9

W.Mill 53 47 17 57 90 91.5

Average 59 56 20 74 85 85.61

Table 2: Classification results in average accuracy for the

UPenn dataset

M = 200. We use L = 2, as single level performance drops

as we go from L = 2 to L = 3 in the usage of strong fea-

tures, adding to the disadvantage of excess time complexity

and memory. Visual vocabulary size, M = 200 is assigned

for the above experiment as M = 400 yields little improve-

ment in the performance. We have listed the performance of

different feature descriptors such as feature descriptor from

flow vector, its divergence, its gradients, concatenated flow

vectors with its divergence and gradients, SIFT on image

space. We can see the significant improvement in the ac-

curacies as we introduce both spatial and temporal data.

Confusion matrix for the UPenn dataset is shown in Fig.

5. From the confusion matrix, we observe that except for

a scene like lightning, where there is a large variation in

brightness level, the classification accuracy is high for all

the scenes.

Table 2 reports the comparison of our model with

the state-of-the-art results: HOG[20, 6], GIST[17, 6],

Chaos[24], SOE[6], and Slow Feature Analysis(SFA)[25].

Though there are variations in accuracies in individual cat-

egories, our model’s average final accuracy appears similar

to [25] model. Experiment is repeated ten times randomly

choosing the training set for computing the average accu-

racy for each category. Our model yield an overall average

accuracy of 85.61.

We observe from the graph Fig. 6(a) that we ob-

tain the maximum average accuracy for scene classifica-

tion for dictionary size, M=200 and accuracy deteriorates

for increase or decrease in M. Thus, we can conclude that

coarse-grained spatio-temporal cues have more discrimina-

tive powers than enlarged vocabulary. Graph in Fig. 6(b)

shows that the average accuracy results from the experiment
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(a)

(b)

Figure 6: (a) Graph depicts the variation of average accu-

racy in multi class classification for the variation of dictio-

nary size (M = 100, 200, 250), (b) Here we observe the

consistency in the experiment for different dictionary sizes.

remains consistent for fifteen trails, for a fixed dictionary

size. Though we consider random training sets from each

video category for each trial, results were found to be con-

sistent.

6. Challenges

Motion feature descriptor is derived from optical flow

vector which shows less accurate results in changing illu-

mination in the scene . The proposed approach is not op-

timized for the value of dictionary size that yields maxi-

mum accuracy. Also, computation of temporal feature vec-

tor is time consuming. Future work could be investigating

the 5DMFV for the high variation in sampling in video for

frame extraction, and the elimination of the current limita-

tions of the approach.

7. Conclusion

The combined feature descriptor from spatial and tempo-

ral domain for spatial pyramid matching yields a good multi

class SVM classification. SIFT feature descriptor is used

for spatial domain while 5DMFV is extracted for dynamic

motion information. Even in cases where lighting condition

changes significantly, the proposed approach is able to pro-

duce result. Thus, the approach shows comparable results

with the state-of-the-art methods for the scene classification

from videos. The proposed approach for scene classifica-

tion from natural videos has a variety of applications such

as video retrieval, video tagging, and action recognition. We

hope to improve the accuracy of the proposed approach in

the future and employ it to solve other related applications

in computer vision.
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