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Abstract

That image colours depend equally on the colour of sur-
faces and the colour of the prevailing light means that raw
RGB pixel values are not correlates of object features and
so, cannot be used directly in applications such as recogni-
tion and tracking. By estimating the colour of the light and
then removing the colour bias due to illumination, image
colours can be made to correlate with object reflectance.
Yet, even the best algorithms can fail badly. The problem
is made even harder in the many typical scenes where there
are multiple lights, e.g. sun (yellow) and shadow (blue).

We demonstrate that the second, harder case actually
provides the basis of a novel solution strategy: an illumina-
tion edge in an image provides a powerful cue to determin-
ing the underlying material surface. This paper makes three
important technical contributions. First, we take an existing
analytic one-surface two-lights estimation algorithm (which
assumes that lights lie on a line in chromaticity space) and
re-engineer it as a voting algorithm which relaxes the prior
assumption about where lights might lie. Second, we model
illumination change using a 3× 3 linear matrix as opposed
to the more approximate diagonal model that is used in the
prior art for this problem. Being able to more accurately
account for illumination change provides a step change in
the performance of our method. Lastly, we re-engineer a
prior art shadow-edge generator to suit this problem.

1. Introduction
The aim of a visual system is to understand a scene given

only the sensory responses to light. Given that the spectrum
of light can vary (i.e. daylight – blue, sunlight – yellow),
the observed colours of surfaces will have an intimate rela-
tionship with the lighting conditions of the scene. Humans
go about their lives unaffected by this relationship and per-
ceive colours in an unchanging way. A white T-shirt appears
white to us whether we are indoors under fluorescent light-
ing, or outdoors under sunlight. This remarkable ability is
known as Colour Constancy.

The automatic mode in all modern digital cameras uses
an algorithm (white balance) to balance the colours in a

photograph to normalise against the colour cast caused by
the illuminant. A typical camera uses tristimulus sensors.
Each pixel is represented by three intensities recorded in
the Red, Green and Blue parts of the spectrum. The effect
of illumination at a pixel is often modelled as a diagonal
matrix (a scaling of the channels)
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where Sk and Ek are the surface reflectance and illuminant
RGBs respectively (k = {r, g, b}). Usually, the process of
white balancing in a camera assumes that the illuminant is
uniform across the whole image. The implication is that
a single Ek can be associated with every pixel in a scene,
and is divided out in the balanced image. This assumption
is used as the foundation for most colour constancy algo-
rithms. However, it is not hard to imagine a scene that con-
tains more than one illuminant. Any outdoors scene con-
taining shadows will contain more than one illuminant. Di-
rect sunlight is yellowish. Cast shadows (with direct sun-
light blocked) will appear blue, causing a change of illumi-
nation at the shadow edge. In this paper, we make no as-
sumptions about known or partially known geometry (as in
[25] ) and in fact need not necessarily focus on images with
shadow boundaries, but instead work with any illumination
change.

Gijsenij et al. [20] proposed dividing an image into seg-
ments, with the assumption that each segment has uniform
illumination. They then used traditional colour constancy
algorithms on the segments. These acted as illuminant
votes. Instead we propose a method that more robustly finds
areas of illumination change in an image, and propose a new
algorithm which actually uses the change in illumination to
get a solid estimate.

Forsyth, in his gamut mapping algorithm [16], examined
the case where many surfaces are lit by a single illuminant.
He was able to derive a set of mappings which could all
feasibly render the image under a canonical illuminant. He
observed that the process of illuminating a scene limits the
colours that can be viewed. If an image contains strongly
chromatic reds, then the scene couldn’t have been illumi-
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nated by a strongly chromatic blue. There have since been
many different variants of this algorithm [8, 19, 2], all as-
suming that a scene is lit by a single illuminant. Images with
many shadows are generally considered hard cases. In this
paper, we not only aim to address this problem, but actually
use the varying illumination directly to derive a solution.

Our method is tested on a set of images due to Gehler
[17], taken on the Canon 5D camera, which is commonly
used to benchmark estimation algorithms. As proof of con-
cept, on a manually annotated image set and for the 52 im-
ages where there is indeed an illumination change, remark-
ably, given as little as only a single surface viewed under
two lights (two pixel RGBs), we estimate the illuminant to
a greater accuracy than all existing algorithms benchmarked
on this data set. Then by adjusting to the problem at hand
a prior art photometric-invariant method (that provides pix-
els only weakly dependent on light colour), we engineer an
algorithm that can automatically find illumination edges to
suit the problem. We then obtain almost the same excellent
performance when our automatic illumination edge finder
is used on the original non-annotated images.

2. Background
Image formation at a pixel can be modelled as:

pxk =
∫
ω
Sx(λ)E(λ)Rk(λ)dλ (2)

with k = 1..3 for colour samples pxk at pixel location x. The
function Sx(λ) represents the material reflectance proper-
ties of the surface and E(λ) is the illumination spectrum of
the scene illuminant. This is often assumed to be constant
across the entire scene. Rk(λ) is the sensitivity function of
the kth sensor, with the product integrated across the visible
spectrum ω.

Suppose we were to model our camera sensors as Dirac
Delta functions (yielding the von Kries model [28]). For
such narrowband sensors eq.(2) then simplifies to:

px = ESx (3)

where E is a diagonal matrix with elements Ekk =∫
ω
E(λ)Rk(λ)dλ, and column vector Sx = Sx

k =∫
ω
Sx(λ)Rk(λ)dλ. This model roughly holds for real cam-

eras as well, and the sensors can be ‘sharpened’ – the RGBs
are mapped by a 3× 3 matrix – to maximise the validity of
this model [9]. While spectral sharpening makes the factor
model of image formation (3) work better, modelling light
change using a full 3 × 3 matrix (rather than the diagonal
matrix in the factor model) works still better (a point we
return to later in the paper).

Most colour constancy algorithms do not try to recover
the brightness of the illuminant as this is deemed to be un-
recoverable since light and surface are multiplied. There-
fore authors have often tried to recover the 2-dimensional
chromaticity of the illuminant instead [8], normalising for

brightness. A projective band-ratio chromaticity space
which projects RGBs onto the plane b = 1 is:

chrom
([

pr pg pb
])

=
[ pr

pk

pg

pk

pb

pk

]
(4)

where k ∈ {r, g, b}. Since one of these 3 values will always
equal 1, it is common to only use the remaining 2 dimen-
sions to represent the chromaticity (i.e. [pr/pb, pg/pb]). It
is trivial to show that chrom(x) = chrom(αx) where α
is an arbitrary scalar. A 3 × 3 diagonal matrix, however,
does have a 2 × 2 diagonal matrix equivalent in band-ratio
chromaticity space. This means eq.(3) can be expressed in
exactly the same form in this space.

2.1. Colour Constancy under Varying
Illumination

The range of illumination colours is often linked to the
temperature of blackbody radiators. These are modelled us-
ing Planck’s formula: E = E(λ, T ) where T is the tem-
perature in Kelvin of the blackbody. Calculating tristimu-
lus values for the Planckian spectra yields a curve in chro-
maticity space known as the Planckian locus. Assuming
all real-world illuminants lie near this curve is a powerful
constraint. In fact modern day ‘Colour Rendering Indices’
which effectively score commercial lamps only give a high
score for lights which behave as if they were Planckian. It
is remarkable that the vast majority of artificial lights mimic
nature and have colours on or close to the Planckian locus.
By assuming lights were Planckian, Finlayson and Hord-
ley [12] demonstrated that colour constancy was – to some
extent – theoretically possible at a per-pixel level. Specifi-
cally, that they could find one number (a non-linear function
of the band ratios) that was intrinsic, i.e., it only depended
on the reflectance and was independent of illumination.

The Planckian locus has a well known characteristic
curved shape when plotted in chromaticity space. Impor-
tantly, Finlayson et al. [11] observed that when the factor
model of image formation is adopted Planckian illuminants
lie very close to a line in inverse chromaticity space: when
we plot b/r against b/g (assuming we use k = b).

Further, suppose that a white light has an RGB of [1,1,1];
then clearly its spectral band ratio maps to [1,1]. The map-
ping taking the reference white light (assuming the factor
model in spectral band ratio chromaticity space) to another
light with coordinates (a,b) is a diagonal matrix with these
terms along its diagonal. When we invert this map then it
becomes the mapping required to take some light back to
the reference white light conditions. That is, we can think
of the inverse chromaticity space as the set of mappings that
take spectral band ratios from one light back to the refer-
ence. This approximate linearity is shown in Fig. 1.

inv chrom
([

pr pg pb
])

=
[

pb

pr

pb

pg

]
(5)

We introduce the caret ˆ to symbolise spectral band-ratio
chromaticities, such that p̂ = chrom(p). We also introduce
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Figure 1. Illuminant chromaticities from the Granada, Spain
dataset [21] and the Planckian Locus plotted in inverse chromatic-
ity space. The chromaticities were rendered using the measured
sensitivities of the Sony DXC-930 camera [1].

the additional superscript ε into eq.(3) to denote different
illuminants. So px shall hence be written as p{x,e}.

Let us denote the set of mappings back to the reference
light (the line shown in the Fig.1) as Φ. Given a chromatic-

ity under a first unknown light p̂{x,1} we denote the set of
possible corresponding chromaticities under the reference

light as p̂{x,1}Φ: i.e., we apply all possible mappings. Also,

p̂{x,1}Φ must define a line a chromaticity space. It follows
that, given two chromaticities of the same surface under two
unknown lights, each induces a line of possible correspond-
ing matches under the reference and their intersection can
be used to estimate the actual true chromaticity:

Ŝ
x
= p̂{x,1}Φ

⋂
p̂{x,2}Φ (6)

This method works well when all the model assumptions
hold. However, for real world data the method is not very
stable. Indeed, the lines of chromaticities (under the refer-
ence lights) generated for two similar unknown lights are
very close to one another. Extremely small perturbations
from perfect model conditions results in the intersection of
these lines changing markedly and this leads to an incor-
rect estimation of surface colour. Indeed, for the method to
work well the two unknown lights need to be quite different
in colour.

Kawakami and Ikeuchi [22] argued that real world illu-
minants are constrained in chromaticity space so they are
not well represented by an infinite line, and proposed rep-
resenting the set as a finite line segment. The line seg-
ment was chosen to span the colour temperatures of day-
light. However, this formulation posed the problem of the
line segments not intersecting in many cases. To enforce an
intersection they translate one of the line segments and this
generally forces an intersection. However, by the nature of

how they remedy the non-intersection problem the intersec-
tion point always contains the endpoints of at least one of
the segments.

Finlayson and Lynch [7] extended the Kawakami and
Ikeuchi work and proposed a solution which solved for the
point simultaneously closest to both lines. The least squares
optimal solution was shown to produce better performance.

While progress has been made the degree of constancy
the ‘line intersection’ approach provides is limited and does
not seem easy to extend to multiple surfaces. Further, at
the heart of the method is the assumption that we can find
illumination change in an image. Kawakami et al. [23] also
examine this problem using shadows, as well as imaging
the same scene over time. They do not, however, include an
explicit shadow edge detection algorithm. The problem of
finding illumination change in a single image is interesting
and yet has not been integrated with illuminant estimation
algorithms.

2.2. Detecting Illumination Change in Images

Finlayson et al. [13] proposed a method for removing
shadows in images which crucially involves finding those
edges in the image due to an illumination change. Key to
their method was the adoption of Wien’s approximation of
Planck’s formula as a theoretical guide to model the pos-
sible illuminants in a scene (with the algorithm developed
working for real lights notwithstanding). Using Wien’s ap-
proximation, pixel response for a light of colour tempera-
ture T , p{x,T} is written as:

E(λ, T ) ≈ c1λ
−5e

c2
Tλ → p

{x,T}
k = c1λ

−5e
c2

Tλk Sx(λk)
(7)

where we assume the sensors are Dirac Delta functions –
or via Spectral-Sharpening [9] behave like Delta functions
– centred at wavelengths λk. The logarithm of the spectral
band ratio chromaticities can be written as:

log p̂
{x,T}
k = log(sk/sb) + (ek − ep)/T (8)

where sk ≡ c1λ
−5
k S(λk) and ek ≡ −c2/λk. As temper-

ature changes, log p̂{x,T} traverses a straight line. Those
authors showed that projecting all chromaticities onto the
perpendicular to this line normalises against illumination
change: the resulting chromaticity image has no shadows.
In [14] the edges found in the ‘illumination independent’
image is compared with the edges found in the colour orig-
inal. The edges in the latter but not the former are illumina-
tion edges. We extend this approach later in the paper.

Finlayson et al. [10] also showed that taking two images
of the same scene with the second exposure taken through a
coloured filter made illumination change an easier problem
to solve. However, here we attempt to develop a solution
for conventional cameras. Indeed, our method is tested on a
ground truth data set which is not of our creation.
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3. Estimating the illuminant at illumination
edges

Broadly, this paper makes two important contributions:
First we re-engineer the Kawakami and Ikeuchi and Fin-
layson and Lynch algorithms to work in a voting frame-
work. We shall see two benefits of this approach. First,
our method is more robust to imperfect input data. And,
second it extends naturally to the situation where we have
more than one surface colour observed under the different
lights illuminating a scene. Second, we develop a method
for automatically finding illumination edges in an image.

3.1. The Voting Algorithm

The 3×3 matrix Mi takes all RGBs measured under the
ith light to a reference light (typically white light). That a
linear mapping suffices for this task is well understood [6]
and furthermore is in practice easy to measure (we relate the
RGBs for known surface colours recorded under a reference
and another light). For a large range of typical lights we
pre-calculate a set of mappings.

In analogy to the line intersecting approach we wish to
map two RGBs (for the same surface under two unknown
lights) to a single reference colour. At the same time we
would also like to introduce more accuracy into the map-
ping model. We currently use the diagonal model. Ide-
ally we would like to use 3 × 3 maps having 9 degrees of
freedom. The problem with this previously is that a full
3× 3 matrix does not have a 2× 2 equivalent in chromatic-
ity space. Therefore the line approach would not translate
directly. However, suppose we have a 3 × 3 matrix M1

which maps RGBs under illuminant 1 to a canonical illumi-
nant. Similarly suppose we also have a matrix M2 which
maps RGBs under illuminant 2 to a canonical illuminant.
We would expect chrom(M1p{x,1}) = chrom(M2p{x,2}).
Let’s assume that we have some representative set of real-
world illuminant RGBs. We then calculate a mapping ma-
trix M for each illuminant. Given pixels of a set of m sur-
faces x under two unknown lights p{x,1} and p{x,2} then we
can calculate the following distance measure

θxi,j = ang
{
Mip{x,1},Mjp{x,2}

}
(9)

where i and j index the angle being solved for a pair of
lights. The angle between the two vectors is used because
it is a uniform measure of difference that is intensity invari-
ant. If we test all the pairs of n illuminants for a single sur-
face then we would calculate n2 angles. We could now just
pick the illuminant pair with the smallest angle. However,
this does not make use of this extra surface information so
we propose to frame this in a voting scheme. We want to
convert the n2 angles into meaningful votes for each light.
First, we map our angular measure to the interval [0,1]:

v(θ, σ) = exp(−θ2/(2σ2)) (10)

The smaller the σ the more bias the voting schema will have
towards smaller angles (small angle = big vote). As we
combinatorially evaluate pairs of candidate lights, we main-
tain two voting polls for each of the n illuminants. A vote is
cast by adding v(θxi,j , σ) to each illuminant’s total in a pair.
The outcome of this process is graphically represented in
Fig.2. Introducing additional surfaces means we have more
votes for each illuminant. Since all surfaces should vote for
the same illuminant pair, then the process becomes more
robust.

We then have to choose two illuminants from the voting
polls. We could simply take the illuminants that had the
highest number of votes. However, suppose several of our
test illuminants circle the correct answer, which isn’t in our
set: then they will yield an equally high vote. Taking the
average of these will produce a better result than just pick-
ing one. We threshold illuminants that are highly voted for
and use their vote as a weight to output a weighted average.
This has shown to perform better than choosing the pair of
illuminants with the smallest angle. We have found that
weighting the lights that account for the top 20% of votes
yielded good performance.

V
ot

es

V
ot

es

Illuminants sorted by vote Illuminants sorted by vote

Figure 2. The votes for each illuminant on both sides of the shadow
edge. The illuminants are sorted in ascending order by the number
of votes.

Notice that this algorithm easily incorporates multiple
surfaces into its formulation. In contrast, it is not clear how
the other two-illuminant algorithms could introduce addi-
tional surface information to stabilise the answer.

3.2. Estimating the Illuminants on Both Sides of an
Illumination Edge

Here we wish to find pixel pairs where illumination
changes but material properties are the same. We make the
general assumption that there are two illuminations in the
image, in-shadow and out-of-shadow. The algorithm in the
previous section works because there is an underlying pre-
dictability regarding illumination colours in the world. This
property has been previously exploited to create illumina-
tion invariant images. In section 2.2, illumination changes
are absent, or at least greatly attenuated. Then comparing
the gradient fields in the original image with those in the
invariant image, we should be able to find edges that appear
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in the original but are not evident in the invariant.

The objective, however, is not to diminish these edges in
the original, zeroing them out or inpainting across them as
in [14], with a view to re-integrating the modified gradient
field into a shadowless RGB image.

Instead, we simply wish to identify illumination-change
boundaries with the aim of establishing chromaticities on
either side of the edge, for our illumination-voting scheme.
We make use of a Mean-Shift (MS) segmentation [3] of the
image for establishing relevant edges. This has the advan-
tage that shadow-edges can be quite blurry, in that what we
are after is colour on either side: and the MS segments can
very simply supply an estimate of RGB triples on either side
without need for accuracy since each segment draws upon
many pixels to colour its region. This represents an advance
over the necessity for sharp illumination edges in [14].

3.3. Detecting Shadow Edges

Suppose we have used the invariant-image formulation
in [14] to generate a greyscale, illumination-free image. In
fact, we need not remove colour completely, and can gen-
erate a more well-behaved invariant L1 chromaticity image
as in [5]. Denote this image by χ , a 3-band image where
each pixel sums to unity. The shadow removal technique in
[14] requires a calibration step. This step ties well with that
of the voting algorithm, since they both require collecting
a set of surfaces under many different illuminants. From
the collected data we can calculate the direction of illumi-
nation change in chromaticity log space, and also pull out a
representative set of lights and mappings.

Now form the MS segmentation of the input image; let
us call this RGB segmentation image R M . Here, colour
helps us segment the input image. It is straightforward to
generate a binary edge map for R M using the Canny edge-
finder; however here we use the Canny mechanism but in-
stead generate a gradient pair Rx, Ry instead of a binary
output, making use of a grayscale version ρ of R M formed
by adding the colour-channels of R M .

Now we form the MS segmentation of the invariant χ .
Call this 3-band image χ M . To make a simple gradient
field out of this chromaticity image, we would once again
like to form a grey image X as the sum of colour bands.
However, chromaticities add to unity; therefore instead we

use a grey formed in the L2 norm, as X = (
∑3

k=1 χ
2
k)

1/2.
Denote the gradient pair thus formed out of the invariant-
chromaticity image by χx, χy .

We then compare the image MS segmentation with the
invariant MS image using a similar edge-comparison pro-
cedure as in [14]: perform non-maximum suppression as
in Canny edge detection, using 4 quadrants of directions,
and as well remove non-shadow edges by removing edges
occurring in the original image with the same orientations
as edges occurring in the same location in the invariant im-
age. Finally, noting that isolated dots and lines in the orig-
inal image segmentation appear weakened in the invariant-

chromaticity image, these pixels are removed from the gen-
erated shadow-edge map. The result is a set of 1-pixel-wide
shadow boundaries, bordering on input-image MS edges.

3.4. Culling Edge Pixels
For this application it is not required to be completely

successful in identifying all shadow-edge pixels – see, e.g.,
Fig. 3, showing candidate edges identified. As well, we do
not need every instance of the same across-edge RGB pairs
from the MS image of the input RGB (even a single pixel
pair would do, in theory).

Figure 3. Candidate illumination-edge pixels automatically identi-
fied.

We next find across-edge pairs by finding, for each pixel
on a MS image edge, the closest pixel in a different segment
than that pixel’s own segment. This always works, to find
across-edge colour pairs (and is fast). We then have one
RGB triple and a second RGB triple for each illumination-
edge pixel. We put these in luminance order by asking
which triple is darker (has smaller R+G+B), and then re-
move all but the unique 6-vector (3 plus 3) RGB pairs,
RGB1 and RGB2.

At this point we can remove further edge pixels by ask-
ing, amongst all the pixel-pairs, which ones are well de-
scribed by a single representative 3× 3 transform M from
RGB1 to RGB2. To do so, we make use of the Least Me-
dian of Squares (LMS) regression [26], which automatically
identifies outliers. The LMS procedure also delivers a ro-
bust version of the Coefficient of Determination, R2, which
must be sufficiently high in order to endorse having indeed
found illumination boundaries, in the current input image.

At this point, we have a much reduced set of RGB-triple
pairs, for which we can apply our illuminant-voting algo-
rithm.

4. Experiments
Gehler et al.’s “ColorChecker” dataset is one of the most

widely tested image sets to evaluate illuminant estimation;
therefore, for the subset of images therein where there are
clearly two lights, we will evaluate both our algorithms for
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finding illumination change and our voting algorithm. The
ColorChecker dataset also the includes the same 24 patches
in every image. Thus, we have many pairs of surfaces under
many lights, which is ideal to evaluate how well our voting
approach works (independent of the illumination edge find-
ing algorithm). We also evaluate our algorithm on a smaller
set of 30 images we captured ourselves where there was a
clear change in illumination (the kind of scenes where con-
ventional illuminant estimation algorithms fail).

4.1. A linear ColorChecker Dataset

Because light change is linear (a 3×3 matrix maps RGBs
across illumination) only for linear data, we decided to use
the linearised ColorChecker images helpfully supplied by
Funt and Shi [27]. However, we found that the linearised
versions available did not in fact correct for the dark-level
values. We note that they have recently provided an accom-
panying Matlab script which does precisely this.1

However a great deal of work has been processed using
the uncorrected version (e.g. in [18]). One manifestation of
this error is that these images (because they have a black
point that is higher than they should) can look flat when
rendered for display.

Using DCRAW we rerendered our own images2, ac-
counting for the black point. DCRAW automatically colour
corrected the images to a D65 white point. The colour cor-
rection is simply a diagonal matrix with diagonal elements
[2.7, 1.15, 1.41]. The correct whitepoint is chosen to be the
mean of the non-clipped grey-patches on the Macbeth Col-
orChecker. Note that if the illuminant is redder or bluer than
D65, achromatic surfaces in these images will be respec-
tively redder or bluer than they should be: i.e. by applying
this correction there is still a need for illuminant estimation.
In Fig.4 we show two images linearised by Shi and Funt
[27], the same images with the black level corrected, and
our D65 set (gamma is applied for display). The original
568-image Gehler data set comprises images for two differ-
ent cameras. Some of our experiments use the same surface
under different illuminants across different images; for this
approach to be valid it is important that the camera space is
constant over the images. We therefore experiment only on
the 482 images taken on the Canon 5D camera.

4.2. Macbeth ColorChecker Experiments

Since every image in the dataset contains a Macbeth Col-
orChecker chart, we have 24 surfaces under many illumi-
nants. We can use these as input for our algorithm since
edges per se are not required. To run the algorithm we
choose two thirds of the images at random. The illuminant
set is chosen such that they best represent the span of all of
the illuminants captured. We do this by evenly sampling the
gamut of illuminants and choosing ones that lie closest to

1File http://www.cs.sfu.ca/∼colour/data/process 568.m, create date:
9/16/2013 - modify date: 9/16/2013.

2Data at http://colour.cmp.uea.ac.uk/datasets/reprocessed-gehler.html

Figure 4. Top: The Shi and Funt reprocessing of the Gehler
Dataset. Middle: Corrected Black Level. Bottom: Our Process-
ing with Black Level Correction and D65 Colour Correction.

our samples. We can calculate the associated 3×3 mapping
matrix for each illuminant by solving a least squares opti-
misation between each illuminant and the chosen canonical
illuminant in the set (we choose one that is closest to white).

Our algorithm is then run on the remaining third of the
images. We randomly select a single surface from two im-
ages then calculate the illuminants and repeat this experi-
ment 1000 times. This protocol is repeated assuming we
have 9 surfaces under two lights (we can do this because
the checker has many surface colours). The whole experi-
ment is cross validated 3 times.

In common with almost all illuminant estimation algo-
rithms we compare our recovered illuminants to the actual
lights and calculate the angular error. The mean and median
angular error performance of 1- and 9-surface two light vot-
ing illuminant estimation are shown in the last two rows of
Table 1.

Of course, it is important to benchmark our algorithm
against conventional algorithms. This not as immediately
easy as it first sounds. Indeed, while there is a plethora of
statistics for the ColorChecker dataset the algorithms are
tested (naturally enough) on the whole images. Further, the
community is focussing on the Shi and Funt data set which
we found to be lacking black-point correction.

However, based on a large number of algorithm evalua-
tions, simple pixel gamut mapping [16] is a leading algo-
rithm. Gamut mapping works by trying to find the illumi-
nant correction that takes RGBs observed under a single un-
known light mapped back inside a known gamut of colours
for the reference light. We build the gamut for the Macbeth
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patches under the reference light. We adopt the same ran-
domised protocol as for evaluating our voting algorithm but
now for each light in the pair we randomly select 5 patches
and run gamut mapping. We remark that 5 patches con-
stitutes 20% of the colours in the checker which is a large
range of colour diversity. Indeed, it is large enough that
gamut mapping should work well.

The results of gamut mapping and three other algorithms
are presented in Table 1. For the one-surface voting al-
gorithm we observe about the same performance as gamut
mapping. This is extremely encouraging. It appears a single
surface viewed under two lights provides a powerful cue to
determining what those lights are. Performance gets better
when we can have more surfaces available.

Our Rendering
Algorithm Mean Median

Grey World 7.3 6.3

Max RGB 6.5 5.4

Shades of Grey [15] 6.6 5.3

Gamut Mapping [16] 4.3 2.3

Voting Algorithm 1 Surface 4.2 2.1

Voting Algorithm 9 Surfaces 3.0 1.6
Table 1. Using known ColorChecker patches

4.3. Shadow Edge Detection Experiments
Here we incorporate the automatic finding of illumina-

tion edges with our voting algorithm. We have chosen a
subset of 52 images that actually contain two illuminants
(shadow edges). For each image the illumination-edge de-
tection system outputs pairs of pixels which represent the
same surface under two lights. We can directly feed this
into the voting algorithm to get an estimate for the illu-
minant colour on either side of the shadow edge. How-
ever, since the images in fact contain only a single Col-
orChecker, we can only measure our performance for one
of the white point outputs (the one in the same illumination
as the checker).

To build our set of illuminant maps we used the 430
(482 − 52) images that were not in the 52 test images. In
Table 2 we again compare this against Gamut Mapping[18].

Our Rendering
Algorithm Mean Median

Grey World 5.5 4.3

Max RGB 5.3 4.4

Shades of Grey [15] 4.6 3.4

Grey Edge [4] 4.5 2.6

Gamut Mapping [16] 5.6 3.2

Voting Algorithm with Shadows 4.0 1.3
Table 2. Using automatically-detected shadow edges, in 52 images
that have shadows; compared to prior art run on these images.

Results are reported in Table 2. The voting algorithm’s
median error is really very good though the higher mean

(still the best compared with the other algorithms) indicates
some poorer performance on some images. Of course it
is not entirely surprising that gamut mapping doesn’t per-
form as well here as does our algorithm: gamut mapping
is expecting surfaces rendered under the same illuminant as
input.

4.4. Custom Dataset Experiments
To further evaluate our method we captured a new set

of 30 raw images using a Nikon D60 SLR camera. Images
were taken at different locations in the UK and the USA.
Immediately after each photograph was taken, two separate
images were taken of a Macbeth ColorChecker, inside and
outside of shadow. We can use the white patches of the
ColorChecker as an estimate for the two illuminant colours.
Importantly, these images always have two illuminants. As
such they are not suitable for estimation using a conven-
tional algorithms.

Now, from the initial images, with no colour charts in
them, we again attempt to automatically detect shadow
edges and hence form an estimate of the two illuminant
colours. We show an example image from our set in Fig.5.
Results are shown in Table 3. For comparison we also im-
plemented and ran a version of the Finlayson and Lynch [7]
algorithm, which assumes all illuminant mappings lie on a
line segment. This was conceived as a single-surface two-
light algorithm.

Figure 5. Top Left: Original Image with shadow edge candidates.
Top Right: MS Image Bottom Left: Shadow Free Greyscale Im-
age Bottom Right: Shadow Free Chromaticity Image

The first 2 rows of Table 3 show performance of the
line segment intersection approach. The first entry is us-
ing paired surfaces from the ColorCheckers. The second
row shows performance calculated for an actual illumina-
tion change in the image. Row 3 reports our 1 surface voting
algorithm again for the checker patches. There is a signif-
icant gain in performance delivered by voting. We again
randomly select 9 surfaces and see a modest performance
improvement. This result (and those in Table 1) indicate
most of the power in two-light illuminant estimation is for
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the first pair of surfaces. Lastly, in row 5 we report the re-
sults for our automated approach where we automatically
find and exploit – what we think are – illuminant edges.
Again performance is significantly better than the prior art.

Our Rendering
Algorithm Mean Median

Line Segments [7] on ColorChecker 5.2 3.2

Line Segments [7] on Shadows 5.1 4.4

Voting Algorithm 1 Surface 2.2 1.6

Voting Algorithm 9 Surfaces 2.0 1.5

Voting Algorithm with Shadows 3.2 2.2
Table 3. New Nikon dataset, automatic shadow-edge plus voting

5. Conclusions
We have proposed an algorithm which detects pixels on

both sides of shadow edges in an image, and then uses this
information to estimate the two illuminant colours. Further,
we developed a voting strategy for illuminant estimation
which we show provides a significant improvement over the
prior art.

The results we present here are important for three rea-
sons. First, images with two lights are notoriously hard (im-
possible) to solve for the majority of algorithms which as-
sume there is a single illuminant present. Second, we show
that we can find illumination change in images using quite
a simple algorithm. Third, even when there is just a single
surface under two different lights, we get a very strong cue
to what the illuminant colour actually is.

This work captures the zeitgeist of current illuminant
estimation research in that we are not proposing to solve
the whole problem but, rather, have identified a particular
case which we can solve (and for which traditional algo-
rithms fail). This leads us to believe that general algorithms
for illuminant estimation should be engineered from more
specialised components that are designed to solve particu-
lar classes of images (e.g. those with faces or those with
shadow edges)
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