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Abstract

In this paper, we propose to separate diffuse and specu-
lar reflection components for color images in the HSI color
space. Under white illumination, pixels with the same dif-
fuse chromaticity have the same hue. Meanwhile, specular
pixels have lower saturations than the diffuse ones. Based
on these properties, separating reflection components can
be achieved by adjusting saturations of specular pixels to
the values of diffuse-only pixels with the same diffuse chro-
maticity. We employ a region-growing algorithm to locate
adjacent pixels with similar diffuse chromaticities. Then,
the separation of reflection components is achieved by find-
ing the optimal saturation in each connected region. The
experimental results demonstrate that the proposed method
is more effective to separate reflection components than the
state-of-the-art methods.

1. Introduction

Specular reflections on surfaces often give rise to adja-

cent discontinuities in images. These discontinuities are

usually omitted in computer vision tasks, which is not ra-

tional if the specular regions contain important informa-

tion. Therefore, separating the diffuse and specular reflec-

tion components in color images plays an important role

to improve high-level image understanding algorithms by

recovering the hidden information. Meanwhile, explicitly

obtaining the specular components also facilitates many al-

gorithms which are directly based on specular components,

such as shape from specular reflection [7].

Recently, many reflection components separation meth-

ods have been proposed for a single color image. Klinker

et al. [5] introduced a T-shaped space, where one limb of

the T-shaped distribution represents purely diffuse points

while the other one corresponds to the specular compo-

nents. In this space, the diffuse component is estimated

via projecting the highlight limb to the diffuse one. How-
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ever, the algorithm has a high computational complexity be-

cause of pixel-level image segmentation and T-shaped dis-

tribution analysis for each segment. Moreover, it may lose

effectiveness when the T-shaped distribution is sparse. Al-

ternatively, Bajscy et al. [1] proposed a specified three-

dimensional space called S space. The S space is a HSI-

type color space. However, to construct S0 axis of S space,

spectro-photometer is necessary to measure the scene radi-

ance, which is not practical in many cases. Different from

the previous works, Mallick et al. proposed a data-driven

color space called SUV space in [9]. In this space, reflec-

tion components are transfered into S channel and UV chan-

nels, then the highlights are removed by iteratively eroding

the specular channel using a family of non-linear partial dif-

ferential equations (PDEs) [8]. Actually, when the illumi-

nation is known, all the procedures in SUV space can be

transformed into RGB space. In this case, it is similar to

T-Shaped space. Meanwhile, the guidance information for

erosion introduces ambiguities among colors, and thus has

bad effect on its separation results.

Different from the above three-dimensional spaces, the

two-dimensional Maximum Chromaticity-Intensity space

was proposed by Tan et al. [14]. In the space, the diffuse

component is obtained by locally iterative process using the

specular-free (SF) image as guidance, which can be finished

without explicit image segmentation. Unfortunately, this

method suffers from a high computational complexity and

color distortions, especially at edge areas. To reduce com-

putational complexity, Yang et al. [16] exploited a fast bi-

lateral filtering technique. This method estimates the max-

imum diffuse chromaticity by directly applying a low-pass

filter to the maximum fraction of the color components of

the original image. However, the guidance image render

ambiguities to the bilateral filter. Despite reducing the time

cost significantly, this method results in color distortions at

edge regions, as well as regions with uniform colors. In

contrast, Yoon et al. [17] proposed an iterative framework

based on the comparison of local ratios. In their method,

a specular-free two band image was introduced. Local ra-

tios between two pixels were computed in the input image
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and specular-free two band image, respectively. Afterward,

two reflection components were separated by making ra-

tios between two pixels in input image and specular-free

two band image equal to each other. Alternatively, Shen

et al. [12, 11] used a modified specular-free (MSF) image.

In their method, the specular component was estimated by

using a Least Square Estimation (LSE) technique so that

the transition regions between diffuse and specular pixels

are smooth. However, this kind methods cause bad result

due to ambiguity of MSF image in multi-colored specular

regions. More recently, we proposed a novel 2-D space,

namely Ch-CV space in [15]. Based on the Ch-CV space, a

region-growing algorithm was implemented to separate re-

flection components. As we analyzed in [15], the HSI color

space has similar properties to the Ch-CV space, which im-

plies that HSI color space can also be used for the same

task.

The aforementioned works were devoted to explore al-

ternative spaces which can describe the specular and dif-

fuse reflection components in a separable way. However, as

a commonly used color space, the HSI color space itself is

overlooked by the researchers. In this paper, we directly ex-

ploit the HSI color space to separate reflection components

for a single color image. In our method, hue and saturation

components are employed to construct a two-dimensional

space, called H-S space. In the H-S space, there are two

properties: 1) pixels with the same diffuse chromaticity

have the same hue value, and thus assemble to be a line

segment in the H-S space; 2) diffuse and specular pixels

with the same diffuse chromaticity locate at different side

of a line segment. Specifically, diffuse pixels have larger

saturation than specular ones. Based on these properties,

we implement region-growing algorithm used by our previ-

ous work [15] to locate connected regions with similar hues,

and then estimate the reflection components for each pixel

in each connected region.

2. Surface Reflection Model
2.1. Formulation

According to the dichromatic reflection model [10], the

surface reflection can be described as the combination of

specular reflection component and diffuse reflection com-

ponent. Considering the spectral projection of camera sen-

sors, the color intensities of pixels in an image are computed

by the integration over the light spectrum:

Ic(x) = ωd(x)

∫
τc(λ)Sd(λ, x)E(λ)dλ (1)

+ ωs(x)

∫
τc(λ)Ss(λ, x)E(λ)dλ

where ωd(x) and ωs(x) are the geometric scale factors

of diffuse reflection and specular reflection, respectively,

which merely depend on the geometry of a surface point;

τc(λ) is the transmittance function of the camera sensor,

and the subscript c ∈ {r, g, b}, represent red, green and blue

channels; E(λ) is the spectral power distribution of illumi-

nation light; Sd(λ, x) and Ss(λ, x) are the spectral distri-

bution function of diffuse reflection and specular reflection,

respectively.

Based on the assumption of neutral-interface-reflection

(NIR) model [6], the color of specular reflection compo-

nent is identical to illumination color. Therefore, Ss(λ, x)
is irrelevant to the color of surface point, which can be writ-

ten as a constant, and absorbed into ωs(x). Afterward, we

define the diffuse chromaticityΛ = {Λr,Λg,Λb} and spec-

ular chromaticity Γ = {Γr,Γg,Γb} as

Λc(x) =

∫
τc(λ)Sd(λ, x)E(λ)dλ∑

c

∫
τc(λ)Sd(λ, x)E(λ)dλ

(2)

Γc =

∫
τc(λ)E(λ)dλ∑

c

∫
τc(λ)E(λ)dλ

(3)

Then, the color intensity of a pixel in channel c ∈
{r, g, b} becomes

Ic(x) = md(x)Λc(x) +ms(x)Γc (4)

where

md(x) = ωd(x)(
∑
c

∫
τc(λ)Sd(λ, x)E(λ)dλ) (5)

ms(x) = ωs(x)(
∑
c

∫
τc(λ)E(λ)dλ) (6)

Obviously, the sums of both the diffuse chromaticity vec-

tor Λ and the specular chromaticity vector Γ are equal to 1,

i.e.,
∑

c Λc =
∑

c Γc = 1. As a result, the sum of color

intensities for a pixel
∑

c Ic(x) = md(x) +ms(x).

2.2. Illumination Chromaticity Normalization

In the real world, most illumination colors are not pure

white, and the transmittance functions of camera sensors

are different as well. Before separating the reflection com-

ponents, we utilize the normalization approach introduced

in [13] to obtain a whitened color image. Assuming that the

estimated illumination chromaticity Γe = {Γe
r,Γ

e
g,Γ

e
b} is

exactly equal to the real illumination chromaticity, we can

derive the whitened image by dividing the estimated illumi-

nation chromaticity in both sides of Eq. (4):

Ic
Γe
c

= md
Λc

Γe
c

+ms (7)

Then, we define Λ′c =
Λc

Γe
c
/
∑

c
Λc

Γe
c

, thus,

I ′c =
Ic
Γe
c

= m′dΛ
′
c +

m′s
3

(8)

where m′d = md

∑
c
Λc

Γe
c

and m′s = 3ms. Obviously, the

sum of Λ′ is still equal to 1, and the same to Γ′.
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3. Reflection Representation in H-S Space
In this section, we first elaborate the properties held by

the H-S color space. Then, by comparing the H-S space

with other color spaces specified for separating reflection

components, we speculate that the H-S space is more suit-

able for the task because interference among different colors

is reduced.

3.1. Analysis on H-S Space
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Figure 1. (a) and (c) are synthetic images green ball and blue-green
ball, respectively. (b) and (d) are their corresponding projections

into H-S space.

In this part, we quantitatively analyze the properties of

H-S space. According to [2], hue is formulated as:

H = cos−1
(

1
2 ((I

′
r − I ′g) + (I ′r − I ′b))

((I ′r − I ′g)2 + (I ′r − I ′b)(I ′g − I ′b))
1
2

)
(9)

Note that the hue is 2π − H when I ′g < I ′b. Based on

Eq. (8), Eq. (9) is transformed to be:

H = cos−1
(
3
√
2

2

Λ′r − 1
3√

3
∑

c Λ
′2
c − 1

)
(10)

Eq. (10) indicates that hue is merely determined by dif-

fuse chromaticity Λ′. In other words, pixels with the same

diffuse chromaticity have identical hue. For illustration, we

project two synthesized images into the H-S space shown in

Fig. 1. As we can see, the single-colored green ball is pro-

jected to be a horizontal line, while the pixels in bi-colored

image blue-green ball assemble to be two lines.

In the HSI color space, the saturation is computed by:

S = 1− (
3

I ′r + I ′g + I ′b
)min

c
I ′c (11)

Substituting Eq. (8) into the above equation, we have:

S =
m′d

m′d +m′s
(1− 3min

c
Λ′c) (12)

According to Eq. (12), given a group of pixels with

consistent diffuse chromaticity Λ′, the saturation is max-

imized for the diffuse-only surface points, i.e., m′s = 0,

and its value is exactly equal to (1− 3minc Λ′c). As for the

specular-only or monochromatic pixels, their saturations are

identical to zero. With the increase of specular component,

the saturation decreases gradually. The labeled points in

Fig. 1 show the trend intuitively.

Based on the above analysis, we demonstrate that hue is

merely relative to the diffuse component, and saturation is

a measure of the combination level of diffuse and specular

components.

3.2. Comparisons on Spaces

We compare H-S space with many color spaces specified

for separating reflection components, including T-shaped

space, S space, Maximum Chromaticity-Intensity space,

SUV space and Ch-CV space.

• T-shaped Space [5]: It is totally embedded in the

RGB color space. Based on the dichromatic reflec-

tion model, the colors of all reflections from one object

form a planar cluster in the RGB color space, which is

determined by the object and highlight colors and by

the object shape and illumination. In this space, ob-

jects with different hues assemble in different planar

clusters, and all these planes intersect at the direction

of highlight color in RGB space..

• S Space [1]: S space is a 3-D color space formed with

three orthogonal basis functions. To construct such

space, it requires to measure spectral responses of sen-

sors and determine the basis function for three axes,

which, however, are not necessary for separating sur-

face reflections. A simple HSI color space is enough

to achieve it.

• Maximum Chromaticity-Intensity Space [14]: In

this space, there is a non-linear relationship between

maximum chromaticity and maximum intensity. Ac-

cording to the relationship between maximum chro-

maticity and saturation, this space can be feasibly re-

placed with the one spanned by saturation and intensity

component in the HSI color space. Since the scanty of

color information in this space, pixels with different

diffuse chromaticity cannot be differentiate, it causes

severe interference among different colors.
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• SUV Space [9, 8]: It is a data-driven color space. Sim-

ilar to the T-shaped space, it also rests on the RGB

color space. Alternatively, it introduces a hue-like pa-

rameter θ and a saturate-like parameter φ. Afterward,

a family of PDE filters are used to obtain diffuse con-

tribution for each pixel. Actually, there is no need to

trnasform the original RGB color space to SUV space.

Once the illumination color is known, image can be

first whitened and then the derivations of θ and φ are

achieved in the RGB color space. Moreover, as a prin-

ciple guidance for erosion, θ = tan−1(IU/IV ) causes

ambiguity when image has pixels with opposite sign of

IU and IV , i.e., {IU , IV } and {−IU ,−IV }.
• Ch-CV Space [15]: We have shown in [15] that the

Ch-CV space and H-S space both can separate pixels

with different colors effectively. However, computing

slopes in the Ch-CV space is of slightly higher compu-

tational complexity than deriving hues for a color im-

age. Moreover, colors in the Ch-CV space distribute

in a non-uniform manner. In this case, the region-

growing algorithm performs relatively worse for im-

ages whose colors are concentrated around red, green

or blue, and higher precision for yellow, cyan or pur-

ple.

Besides above explicitly defined color spaces, there are

some other models based on color transformations. In [17],

Yoon et al. introduced a specular-free two band image Ī and

then computed two ratios rd and rd+s to guide the iteration

process. However, the assumption that pixels in a local re-

gion have identical Λ′ is often invalid for textured images,

which causes interference among different colors. Similar

ambiguity also occurs in the MSF image used in [12] and

[11].

One of the critical problems for separating reflection

components is how to construct a powerful space to identify

the combination of specular components and diffuse com-

ponents. Therefore, a color space proper for reflection sep-

aration needs to satisfy two principles: 1) specular pixels

should be away from diffuse ones as far as possible; 2) pix-

els with different diffuse colors should be projected with the

least interference. At this point, the the H-S space is similar

to the S space, T-shaped space, Ch-CV space, and superior

to the SUV space, Maximum Chromaticity-Intensity space

and other specular-free image based models.

4. Reflection Components Separation
Given a whitened image, to separate reflection compo-

nents means to decompose I ′c into m′dΛ
′
c and m′s/3 for

each color channel c ∈ {r, g, b}. Based on Eq. (12) and

m′d +m′s =
∑

c I
′
c, m′d can be written as:

m′d =
S
∑

c I
′
c

1− 3minc Λ′c
(13)

Eq. (13) indicates that m′d can be derived after obtain-

ing the value of (1− 3minc Λ
′
c) for each pixel. Afterward,

m′d, m′s is obtained from m′s =
∑

c I
′
c − m′d. Once we

obtain m′s for all pixels, their specular components are ex-

actly m′s/3, and their diffuse components are derived from

m′dΛ
′
c = I ′c −m′s/3. Therefore, the key step for separating

reflection components is estimating (1− 3minc Λ′c), which

we call diffuse saturation considering it is the saturation of

diffuse-only pixel.

4.1. Separation for Simple Color Image

For an image with simple colors, we can estimate the

diffuse saturations for its pixels directly. According to

Eq. (12), the diffuse saturation can be easily estimated by

finding the most saturated pixels along a line segment in the

H-S space, which is particularly applicable for simple color

images. For example, pixels A, B, C in Fig. 1(a) have the

sameΛ′, therefore we can estimate their diffuse saturations

to be 0.79 approximately from Fig. 1(b). Similarly, there

are two principle colors in Fig. 1(c), and their diffuse satu-

rations are approximately 0.79 and 0.8, respectively. How-

ever, because of noises and distortions, pixels with the same

hue assemble a line with a irregular tiny width. In this

case, the diffuse saturation cannot be estimated accurately

by finding the most saturated pixels along a line segment.

We can assign all pixels in a hue interval with the same dif-

fuse saturation.

4.2. Region-Growing Algorithm

For images with various colors and textures, there are

still some challenges in the separation process, which are

elaborated in the following cases:

• Case A: In a multi-colored image, there may exist pix-

els with the same hue but different Λ′, which hap-

pens when pixels have identical diffuse hue yet dif-

ferent diffuse saturations. To solve this problem, we

assume that pixels with different diffuse saturation are

spatially separative. In other words, there is no con-

nected region with uniform hue but a smooth satura-

tion. Based on this assumption, the diffuse saturation

can be derived by finding the most saturated pixels in

a connected region with similar hues.

• Case B: The most saturated pixels in a connected re-

gion are usually not the exact diffuse-only ones. It is

acceptable if specular components on those pixels are

minor. However, it is occasionally the case that some

pixels are all polluted by intense specularities. For

these pixels, we estimate their specularities directly us-

ing neighboring context, rather than estimating their

diffuse saturations. Concretely, we use the correctly

estimated specular components in their neighbors to

estimate their specularities.
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To address the problem discussed in Case A, we use a

8-connected region-growing algorithm in [4] to obtain the

connected image regions with similar hues in the H-S space.

In this paper, the uniformity parameter is set to be a con-

stant value 10 on condition that hue ranges in [0, 360). As

analyzed in Case B, pixels in some connected regions may

all have intense specularities. We call this kind of regions

as specular connected regions, and the others as specular-

diffuse connected regions. Because specular connected re-

gions are more likely to have small sizes, we regard regions

with sizes less than a threshold Ta as specular connected re-

gions, and the others as specular-diffuse connected regions.

In our algorithm, Ta = 20. Note that we use the highlight

detection method presented in [15] to determine the specu-

lar pixels in an image before conducting the region-growing

algorithm.

For a specular-diffuse region G, the diffuse saturations

for all pixels in it are estimated to be the largest saturation

value ∈ G. The estimation procedure is briefly presented

in Algorithm 1. In the algorithm, Opt(Ri) means to get

the optimal saturation S in the specular connected region

Ri, which is generally equal to maxx∈Ri S(x). However,

to avoid the effects of random noises and make the tran-

sition from diffuse to specular regions smooth, we alter-

natively set the optimal S to be argS π(S) = 0.1, which

means there are 10% pixels lying between the optimal S
and maxx∈Ri

S(x). After obtaining the diffuse saturations

for all pixels in specular-diffuse connected regions, m′d is

then calculated for all pixels using Eq. (13).

Algorithm 1 Estimation of diffuse saturations for specular

pixels in specular-diffuse connected regions.

Input variables: Ri = ith specular-diffuse connected re-

gion; N = number of specular-diffuse connected regions.

Local variables: Sopt = the optimal S for specular-diffuse

connected region;

1: for i← 1 to N do
2: Dopt ← Opt(Ri)
3: (1− 3minc Λ

′
c(x))← Sopt ∀x ∈ Ri

4: end for

As for the pixels in specular connected regions, we esti-

mate their specular reflection components directly after ob-

taining specular components of pixels in all specular-diffuse

connected regions. We determine their specular compo-

nents by using a mean-filter with size of 5× 5 from outside

to inside. Once we obtain m′s for all specular pixels, their

specular components and their diffuse components are de-

rived from m′s/3 and I ′c−m′s/3, respectively. Furthermore,

the diffuse chromaticity Λ′ can be obtained by dividing the

diffuse component by m′d.

5. Experiments

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Diffuse reflection component recovered from lady. (a)

is the input image. The others are diffuse components estimated

based on (b) [14], (c) [17], (d) [12], (e) [11], (f) [16], (g) [15], and

(h) the proposed method.

In our experiments, we compare the results of our

method with six previous methods proposed by Tan et al.

[14], Yoon et al. [17], Shen et al. [12, 11], Q.X. Yang et

al. [16], and our own method [15]. For evaluation, we use

13 test images from previous works and two images with

ground-truth from [3].

In Fig. 2, we first use a real-world image lady to evaluate

the reflection component separation performance. As we

can see, our methods have better performance in terms of

color smoothness and distortion. [14], [17], and [11] have

poor performance because they do not take into account

color discontinuities. In contrast, Algorithms in [12] and

[16] achieve slightly better performance since they cause

less confusions among different colors. However, both the

MSF image used in [12] and guidance image used in [16]

introduce interference among colors with different hues. In

comparison, the methods in [15] and our methods achieve

comparable results and outperform the other methods.

Two real-world images with multicolored and textured

surfaces are used to compare the performance. In Fig. 3, the

first two rows shows the recovered diffuse components of a

real-world image fish, and the bottom two rows shows the

projections of the diffuse components in the region labeled

with red boundary. As we can see, the method in [14] results

in a severely over-saturated diffuse component. Because its

neighbor-based iteration algorithm cannot distinguish pix-

els with different colors, severe color distortions occur at

edges which further spread inside to all pixels. Similarly,

in [17], the iteration algorithm assumes that neighbor pix-

els have identical diffuse chromaticity, and thus results in

many color distortions at edges and inside color regions as

well. [12] detects the highlight regions first, and then con-

ducts a local LSE algorithm for pixels with similar values
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Figure 3. Diffuse components of image fish recovered by different methods. The display arrangement is same to that of Fig. 2. In the

bottom two rows, we project the diffuse components inside the red rectangle into the H-S space. Four points are labeled for comparison.

in the MSF image. It has better performance than the previ-

ous two methods. However, it assigns all pixels which have

similar MSF value with the same diffuse component, which

makes the subjective effects bad. Alternatively, [11] imple-

ments the LSE algorithm for each specular region, rather

than region with similar values in MSF image. This method

is faster than [12], however, at the cost of separation per-

formance. Though the method in [16] accelerates the sep-

aration process significantly, its result also has severe satu-

ration distortions, because bilateral filtering is confused by

the guidance image. In comparison, by introducing the re-

flectance separation model base on the HSI color, we ob-

tain more accurate diffuse chromaticity for specular regions

by ruling out interference among pixels with different hues.

The specular pixels are successfully drawn back to the dif-

fuse ones with less saturation distortions. A similar result

is obtained by [15]. The comparison on another real world

image toys presented in Fig. 4 also offers support to our

claim.

To evaluate the methods quantitatively, we compute the

peak signal-to-noise ratio (PSNR) between the recovered

diffuse components and the ground-truth in non-zero re-

gions for two test images: apple and pear-mit. As we can

see, the proposed method achieves the highest PSNR, and

the results from [12], [16] and [15] are competitive because

all of them take the color differences into account. Among

these three methods, the performance of [15] is most re-

markable. However, because of the densely distributed col-

ors in the Ch-CV space for the two test images, the precision

of region-growing algorithm degrades.

In Fig. 7, we compare the logarithmic runtime of all

methods. As we can see, since the proposed method needs

no iterative process for each pixel, its computational com-

plexity is lower than the methods in [14] and [17], higher

than the methods in [11] and [16], and analogous to [12]

and [15].
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Figure 4. Diffuse components of image toys. The display arrangement is same to that of Fig. 2.

(a) (b) (c)(26.8)

(d)(38.1) (e)(27.8) (f)(28.5)

(g)(41.1) (h)(44.3) (i)(44.8)
Figure 5. Quantitative comparison on image apple. Form top left

to bottom right, the images are: (a) input images, (b) ground truth,

diffuse components from (c) [14], (d) [17], (e) [12], (f) [11], (g)

[16], (h) [15], and (i) the proposed method. The corresponding

PSNR (dB) values are reported below each image.

(a) (b) (c)(27.5)

(d)(37.7) (e)(38.1) (f)(32.7)

(g)(39.4) (h)(40.1) (i)(42.1)
Figure 6. Quantitative comparison on image pear-mit. The order

is same to Fig. 5.
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6. Conclusion

In this paper, we have proposed a novel reflection com-

ponents separation model based on H-S color space. Com-

pared with other color spaces specified to the separation

task, in the H-S space, the interference among pixels with

different colors is minimal. Separating reflection compo-

nents in the H-S space is finding the most saturated pixels in

a specular region with similar hues, which can be achieved

based on region-growing algorithm. We conducted experi-

ments on both synthesized and real-world images to com-

pare the performance with previous works. The results

proved the superiority of the H-S space, and the efficiency

of proposed separation algorithm as well.
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