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Abstract

We study the problem of robust domain adaptation in the
context of unavailable target labels and source data. The
considered robustness is against adversarial perturbations.
This paper aims at answering the question of finding the
right strategy to make the target model robust and accurate
in the setting of unsupervised domain adaptation without
source data. The major findings of this paper are: (i) ro-
bust source models can be transferred robustly to the target;
(ii) robust domain adaptation can greatly benefit from non-
robust pseudo-labels and the pair-wise contrastive loss. The
proposed method of using non-robust pseudo-labels per-
forms surprisingly well on both clean and adversarial sam-
ples, for the task of image classification. We show a con-
sistent performance improvement of over 10% in accuracy
against the tested baselines on four benchmark datasets.
Our source code will be made publicly available.

1. Introduction

Transferring the knowledge learned in one domain to an-
other, in an unsupervised manner, is highly desired for a
wide range of applications for learning-based methods [31,
46, 7, 47, 52]. Many of these applications also require mod-
els to be robust towards data perturbations [32, 33, 18]. In
practice the source data may no longer be accessible during
the knowledge transfer, due to privacy, storage or commu-
nication overhead; An example where such limitations are
clearly manifested is image understanding with datasets1

containing people’s faces. These practical limitations call
for methods that can adapt using only the target data. Fur-
thermore, adaptation without the need of source data can
also offer benefits in terms of computational cost and may
simplify data handling.

This paper addresses a real world compound problem of
(i) unsupervised domain adaptation; (ii) model robustness;
and (iii) the lack of source data during transfer. All three
mentioned issues are jointly considered, leading to a realis-

1Our work focuses on the image classification problem.

Figure 1: Test accuracy averaged over all domain adaptation
tasks for multiple datasets. All our proposed methods show
significant improvement over the baselines.

tic yet a very challenging problem. Up to our knowledge,
this problem is addressed for the first time in this work.

We consider that the source data is available only during
the source model training, which is performed in a super-
vised manner. The model is then adapted to the target do-
main in an unsupervised manner, when the source data is no
longer available. In this process, the robustness of the tar-
get model towards the adversarial perturbations is pursued.
This paper studies several aspects of designing a robust do-
main adaptation method and proposes a simple yet novel
technique to answer the key questions of:

• How to perform robust and unsupervised domain adap-
tation without source data?

• Can robust and standard models be combined to effi-
ciently use information from the source domain?

• How do we perform robust domain adaptation, if only
one model (robust or standard) is available?

• Is the best adaptation approach dataset dependent?

The problem of unsupervised domain adaptation with-
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out source data has recently been studied in [23, 15, 54,
38, 22, 19, 17, 53]. However, the existing work does not
take robustness into consideration. In this work, we first
show that robust domain adaptation performs reasonably
well within the aforementioned setup, when the method
of [23] is directly applied. The method exploits the target’s
pseudo-labels, generated by the source model, for adapta-
tion, which inevitably leads us to use robust pseudo-labels.
We first study the performance of [23] under the adversar-
ial perturbations for robustness, and then improve the per-
formance by over 20% in accuracy consistently across four
benchmark datasets, as shown in Fig. 1. Such improvement
is achieved by exploiting non-robust pseudo-labels and the
target’s pair-wise contrastive learning scheme. The major
finding of our work is that robust domain adaptation can
largely benefit from non-robust pseudo-labels and the pair-
wise contrastive loss. Our finding allows us to improve not
only the robust accuracy, but also the clean accuracy in the
target domains of a single robust model.

We study three different cases of model availability: (i)
given only the standard source model; (ii) given only the
robust source model; (iii) given both models. In the fol-
lowing, we will first present the case when both models are
available. In this case, we wish to adapt the robust source
model to the target while guarding the robustness. During
the adaptation of the robust model, the labels generated by
the standard one are used in three different ways: (i) cross-
entropy loss; (ii) adversarial examples generation; (iii) con-
trastive feature learning. These three aspects of utility have
shown to be complimentary to each other. Exploitation of
non-robust pseudo-labels in this fashion also offer a signifi-
cantly better performance compared to its robust counter-
part. In fact, this observation leads us to suggest a new
source data training and model sharing protocol. In the
source domain, we suggest to train two models; one being
robust and the other not. As shown in Fig. 2, the transfer
process utilizes both models, while the source data is not
required during transfer. However, once the model has been
adapted, only the robust model is required for inference.

Our main contributions are threefold:

• We study a new problem of unsupervised robust do-
main adaptation in the setting of missing source data.

• A simple yet a very effective method is proposed,
which exploits the non-robust pseudo-labels for ro-
bustness, to address the problem at hand.

• The proposed method is extensively tested on four
benchmark datasets, consistently demonstrating the
excellent improvements of over 10% in accuracy.

2. Related Works
Unsupervised Domain Adaptation (UDA). Unsupervised
domain adaptation is a topic of broad interest [37, 31, 46,

Figure 2: The training in the source domain uses the source
data xs, labels ys, and adversarial examples xadv

s . The train-
ing in the target domain uses the target data xt and the ad-
versarial examples xadv

t generated using the pseudo labels.

9, 50, 35]. UDA aims at transferring supervised source do-
main models to an unlabeled target domain. The traditional
UDA works [25, 7, 26, 47, 54] typically focus on solving the
adaptation problem using source data, while being oblivious
to the adversarial attacks. Despite of being very insightful,
the traditional UDA methods are restricted in many practi-
cal settings due to the considered assumptions.
UDA without Source Data. The UDA without source data
can be broadly divided into three categories: (i) generative
approach [22, 19, 17]; (ii) pseudo-label approach [15, 23];
and (iii) others [38, 53]. The generative approach is of-
ten difficult to scale up, as learning to generate the im-
ages/features is known to be difficult. On the other hand,
pseudo-label based method are easy to handle and have re-
cently provided very promising results [23]. The third cate-
gory of the methods are either designed under very simplis-
tic settings ([38] is dedicated to the pixel level corruptions)
or demand sophisticated mechanism without offering sig-
nificant gain over the pseudo-label based methods. There-
fore, we also leverage the pseudo-labels as in [15, 23].
Robust Training. A flurry of attack mechanisms [4, 5, 3,
30, 33, 2, 27] has been proposed since the vulnerability was
shown first by Goodfellow et al. [10]. This has also lead
strategies that can defend against such attacks, called de-
fense mechanisms [13, 24, 33, 40, 1, 41, 29]. Among them,
adversarial training [10, 18] has stood out as the most reli-
able way to train robust models. We follow the adversarial
training method proposed by Madry et al. [28] because of
being effective, fast, and easy to implement.
Robust Transfer. Our work is also inspired from the recent
works on robust transfer learning [42, 39, 48] in supervised
settings. A notable work of Shafahi et al. [42] shows that a
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Figure 3: First, a standard (top-left) and a robust model (bottom-left) are trained on source. Then, a target encoder (top-
right) is trained by combining four losses with pseudo-labels that are obtained via k-means. Finally, a robust target encoder
(bottom-right) is trained similarly to standard target with two modifications. One, the pseudo-labels are obtained from the
pre-trained standard target model. Two, adversarial images are generated to facilitate adversarial training.

robust source feature extractor can be effective in preserving
robustness, while maintaining sufficiently high accuracy on
the clean samples. On the other hand, [39, 48] show that the
robust pre-trained models not only perform well on targets
without adversarial training, but also improve the accuracy
on clean samples. These results strengthen the hypothesis
that robust models also transfer better. However, the exist-
ing methods are neither developed or tested in the settings
of unsupervised domain adaptation.

3. Robust Adaptation
In the following we elaborate our methodology for un-

supervised robust domain adaptation for multi-class classi-
fication problem without access to the source data. Given a
dataset {(x1

s, y
1
s), (x

2
s, y

2
s), . . . , (x

n
s , y

n
s )} where (xi

s, y
i
s) ∼

Ds comes from the source domain, our goal is to train a
model that can predict target labels yt for the corresponding
target images xt where (xt, yt) ∼ Dt and is robust to adver-
sarial examples at the same time. We can broadly separate
the process into two phases. In the initial phase, we train
a model on the source domain in a supervised fashion, and
in the final phase, we adapt the model to the target domain.
Formally, we need to learn a function fs : Xs → Ys on
the source domain and use that information along with the
target data to learn another function ft : Xt → Yt. To this
end, we train two models in each domain (source and tar-
get), one of them following the standard protocol and one
being robust to adversarial examples. We propose to train
four models in total: source model, robust source model,
target model, and robust target model, as shown in Figure
2. For the sake of brevity, we will refer to pseudo-labels
obtained from standard and robust models as non-robust
pseudo-labels and robust pseudo-labels, respectively.

3.1. Source Training

A deep neural network is trained on the source domain
by minimizing the standard cross-entropy loss given by,

Ls(fs;Xs, Ys) = E(xs,ys)∼Ds
LCE(fs(xs), ys). (1)

Besides a standard source model, we also train a robust
source model. Here, the objective is to learn a function
on the source domain that is robust to adversarial images.
We generate adversarial perturbations η under the l∞ threat
model. This leads to minimizing the worst case cross-
entropy loss, within the l∞ ball of fixed radius, as follows,

Lr
s(fs;Xs, Ys) = E(xs,ys)∼Ds max

x′∈S(xs)
LCE(fs(x

′), ys), (2)

where S(x) = {x′ | ||x− x′||∞ < ϵ} and ϵ is the perturba-
tion threshold. Note that finding a sample within S(x) that
maximizes the cross-entropy is computationally challeng-
ing due to infinitely many samples in S(x) and no closed-
form solution. Thus, we empirically generate adversarial
examples using Projected Gradient Descent (PGD) and per-
form adversarial training [28].

Both standard and robust source models described in
Figure 3 have two components, namely, an encoder and a
classifier. We will use Φs : Xs → Rd and Φr

s : Xs → Rd

to denote the standard and robust source encoders, respec-
tively. Similarly, the corresponding classifiers are denoted
as, δ : Rd → RC and δr : Rd → RC , for feature dimen-
sion d and C classes. We will make use of only two clas-
sifiers for both source and target domains. Both classifiers
are trained on the source data, and will remain unchanged
for the target, similar to [23].
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3.2. Target Training

Our target training stage assumes that only the source
trained models are available. Furthermore, the target data
are provided without class labels. Our method for target
only training is inspired from the source hypothesis trans-
fer [23], which has shown impressive performance on the
standard unsupervised domain adaptation. In this work, we
extend [23] to the case of robust model adaptation. Similar
to the source domain, our approach relies on two separate
models in the target domain, namely, the standard and ro-
bust target models. We initialize the weights of each model
with the corresponding source models. During the adapta-
tion process, the encoders are optimized while keeping the
classifier fixed. In the target domain, standard and robust
models are trained differently. In the following, we will first
present our approach for training standard model followed
by the same for the robust model. The key aspects of our
method is summarized in Algorithm 1.

3.2.1 Standard Model

The idea of standard training is to learn a standard target
encoder Φt : Xt → Rd that generates features which align
closely with the corresponding source feature distribution,
making it possible to re-use the source classifier δ(.). No
access to source data restricts us to perform direct align-
ment between the two features as in [47]. To address this
problem, our approach involves (i) entropy and divergence
of the predicted labels, (ii) pseudo-label based supervision,
and (iii) contrastive target features. The first two aspects are
borrowed from [23] and other prior works [51, 43]. The as-
pect of using contrastive feature learning is proposed in this
work, for the first time to address the problem at hand.
Entropy and Divergence: Entropy minimization is a
widely used technique for unsupervised domain adapta-
tion [51]. The Shannon entropy [43] for a prediction proba-
bility p̂i of class i is defined as,

Lent = −Σ
i
p̂i log p̂i. (3)

Unfortunately, entropy minimization can produce degener-
ate labels with loss converging to zero. Therefore, we take
the information maximization (IM) [8] approach as adopted
by [23]. IM adds an additional diversity term that pushes
the predicted labels to be uniformly distributed avoiding the
trivial outcome of the same one-hot vector for all inputs. Let
qi be the average probability of a prediction for the class i,
then the diversity loss is defined as,

Ldiv = Σ
i
qi log qi. (4)

Non-robust Pseudo-labels: While IM can make the model
confident while ensuring diverse prediction, it may still
push the output towards incorrect prediction in certain

cases. In order to overcome such undesired behaviour, [23]
proposed to use pseudo-labels [20] in addition to IM for bet-
ter supervision. We use two-step weighted k-means cluster-
ing on the feature space to obtain pseudo-labels as described
in [23]. Let ŷ be the pseudo-label obtained for the image x.
Then, the pseudo loss is defined using the cross-entropy as,

Lpseudo = LCE(δ(Φt(x)), ŷ). (5)

Constrastive Feature Learning: We use the obtained
pseudo-labels also to learn the discriminative features in
the target. The proposed use of the contrastive loss is in-
spired by [44, 14], which were originally used in different
contexts. The contrastive loss minimizes the intra-class dis-
tance, while maximizing inter-class distance between the
encoder features. For two input images x1, x2 with pseudo-
labels y1, y2, the pair-wise contrastive loss is given by,

Lcon =
1

2
[y ·D2 + (1− y) ·max(0,m−D)2], (6)

where y = I{y1=y2}, D = ||Φt(x1)−Φt(x2)||2 and m > 0
is the margin between features of different classes.

To optimize the target standard model, we minimize the
weighted combination of the loss terms described above. In
this context, the minimized loss is given by,

Lt(ft;Xt, Yt) = Lent +αLdiv + βLpseudo + γLcon, (7)

where α, β, and γ are the weights corresponding to the re-
spective loss functions.

3.2.2 Robust Model

The idea of robustness transfer is inspired by some of the
recent works [42, 48, 39] in this direction. Some existing
works perform the knowledge transfer using a robust source
model. Such transfer is shown to preserve the robustness
also for the new tasks. In our work, we show that the ro-
bust source model also transfers robustly to the target, up to
some extent. To improve the robustness further, we propose
adversarial training also in the target. Unfortunately, the
adversarial robust training often requires labeled examples.
One may consider using the pseudo-labels from the robust
model. However, due to the trade-off between clean and ro-
bust accuracy [55], this process will result into less accurate
pseudo-labels. Instead, we propose to obtain the required
pseudo-labels using the standard model. Note that the clean
accuracy of the standard models is higher than that of the
robust ones. More importantly, the pseudo-labels obtained
using a standard model, for clean samples, are sufficient to
generate the required adversarial examples.

At this point, we wish to transfer the source robustness
using a robust source model. On the other hand, we re-
quire better pseudo-labels to generate adversarial examples.
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Therefore, we use both robust and standard source mod-
els and transfer them to the target domain. In this process,
the robustness of the robust model is reinforced by using
the pseudo-labels from the standard model. Additionally,
we believe that the used pseudo-labels offer better domain
alignment by means of minimizing the cross-entropy and
pair-wise contrastive losses of (5) and (6), respectively.
Adversial Target Examples: We generate adversarial ex-
amples using PGD method [28]. These generated images
are used to compute the IM loss of (3) and (4). We train two
models independently on the target domain. The standard
model is trained first, followed by the robust one. The final
loss use for the robust training is given by,

Lr
t (f

r
t ;Xt, Yt) = Lr

ent+αLr
div +βLr

pseudo+γLr
con. (8)

Algorithm 1 Target adaptation using two models.

1: Initialize weights of Φt(.) with Φs(.)
2: for epoch < MaxEpochs do
3: Obtain pseudo-labels ŷ via k-means
4: for each mini-batch do
5: Update weights of Φt(.) using Eq (7)
6: end for
7: if epoch% update = 0 then
8: Update the pseudo-labels
9: end if

10: end for
11: Initialize the weights Φr

t (.) with Φr
s(.)

12: Obtain pseudo-labels ŷ via δ(Φt(x))
13: for epoch < MaxEpochs do
14: for each mini-batch do
15: Obtain xadv

t for xt using ŷ and δ(Φr
t (x))

16: Update weights of Φr
t (.) using Eq (8)

17: end for
18: end for

3.3. Adaptation with a Single Source Model

The method previously presented suggests a model hand
over protocol, where the user with the access to the source
data provides two models. In some practical scenarios how-
ever, both models may not be available. Under such cir-
cumstances, we suggest to still use pseudo-labels with the
proposed method for the best outcome of robust adaptation,
irrespective of the model being robust or standard. This sug-
gestion is supported by our extensive experiments. We will
present these results as, (i) Robust source: uses only the
robust source model, (ii) Standard source: uses only the
standard source model, (iii) Both: uses both models. In
the source robust case, the robust pseudo-labels are used for
adaptation. In the other two cases, non-robust pseudo-labels
are used. Needless to say, the source standard case adapts
the standard model robustly to the target domain.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on four benchmark
datasets, including one small, two medium and one large-
scale dataset. The datasets vary in their number of classes
from 7 to 65 and contain between two and four different do-
mains. Office-31 [37] consists of total 4,652 images from
three domains - Amazon (A), DLSR (D) and Webcam (W) -
each having 31 classes. Office-home [50] is collected in
four different domains - Art (Ar), Clipart (Cl), Product (Pr)
and Real-world (Rw) - each with 65 classes a total of 15588
images in the dataset. PACS [21] contain 9991 images from
four domains - Art (A), Clipart (C), Photo (P) and Sketch
(S) - where each image belongs to one of 7 classes. The
largest considered dataset, VisDA-C [36] has only two do-
mains - Synthetic (S) and Real (R) - with 152k and 55k
images respectively. Therefore, each of the 12 different
classes has a significantly larger number of samples than
in the other datasets. For all datasets and all the adaptation
tasks, we randomly split both the source and the target do-
main samples into train/val/test (0.7/0.1/0.2).
Network Architecture. We use ResNet50 [11] as the back-
bone feature encoder for all our experiments. Moreover, we
initialize it on the source with weights pre-trained on Ima-
geNet [6]. For robust source training, we use weights ob-
tained after adversarial training2 on ImageNet. We maintain
non-overlapping training, validation and test splits created
randomly and evaluate the performance of all methods and
tasks on the test split while using the validation split for
model selection. For the VisDA-C dataset, we follow the
established standard protocol [36] by training our source
models on synthetic images and adapting the models on the
real images. All the experiments were conducted using the
PyTorch framework [34].
Implementation Details. We keep the batch size fixed to
64 for all the datasets, tasks and methods. The learning rate
is set to 10−3 for the classifier and the feature bottleneck
layers while the backbone is trained at a slower rate of 10−5

using the Adam [16] optimizer. We use early stopping in all
training-runs with a stop patience of 5. For generating ad-
versarial examples we set the number of PGD [28] steps to
20, attacking under the l∞ norm (ϵ = 4/255) with a relative
step size equal to 0.1/0.03. Given the large size of Vis-DA,
the source model reaches high-accuracy in just 2 epochs and
the adaptation process is performed for 5 epochs. For all
other datasets, we train the source model for 20 epochs and
run adaptation for 10 epochs. The loss components weights
α = 1.0, β = 0.3, are borrowed from [23] and γ = 0.2.
Three Cases of Our Method. Recall that we also account
for the case where only a single source model is available,
as described in Section 3.3. When only the standard source

2https://github.com/MadryLab/robustness
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Method Office-31 [37] Office-home [50] PACS [21] VisDA-C [36]
Adv acc Clean acc Adv acc Clean acc Adv acc Clean acc Adv acc Clean acc

ADDA [47] 0.4 75.0 0.9 50.2 0.8 64.6 0.9 70.1
SHOT [23] 0.0 87.6 0.3 65.8 0.0 57.0 0.3 79.0

ADDA robust 49.6 57.6 30.1 37.7 41.6 59.8 34.0 46.3
SHOT robust 67.6 73.1 46.1 53.1 50.5 57.3 25.0 34.3

Ours (Robust source) 72.8 76.4 52.4 59.2 66.5 72.7 51.4 63.6
Ours (Standard source) 81.2 85.7 55.4 62.7 84.6 89.4 66.7 75.8

Ours (Both) 83.5 87.0 58.0 65.1 76.9 83.6 65.0 74.9

Table 1: Accuracy on adversarial and clean images on the test data averaged over all domain adaptation. All our methods
have higher adversarial accuracy compared to the baselines. The performance of our methods on clean samples is comparable
and mostly higher than the other methods. The best accuracy is presented in bold and the second best is underlined.

Method A → C A → P A → S C → A C → P C → S P → A P → C P → S S → A S → C S → P Avg.
w/o Contrastive 73.8 93.4 41.1 68.0 83.8 42.9 71.0 60.1 29.4 6.6 22.0 17.1 50.8

w/o Cross-entropy 92.3 93.4 48.3 78.5 91.9 65.4 82.4 50.3 37.2 2.4 8.7 2.7 54.5
w/o Entropy 88.7 94.3 43.5 77.8 88.0 52.5 82.2 67.4 40.6 14.4 55.0 41.6 62.2

w/o Adv. Images 87.0 93.7 24.9 76.3 92.8 21.5 74.6 88.3 17.3 76.1 91.5 54.2 66.5
w/o Diversity loss 96.2 99.7 90.2 88.8 99.1 89.6 93.9 81.0 33.0 22.2 59.1 30.8 73.6

Ours (both) 92.1 92.8 94.9 77.3 91.6 95.2 78.8 94.2 71.0 30.7 84.2 20.4 76.9

Table 2: Ablation study of our (both) target model on PACS datatset. The contrastive loss term, entropy term and diversity
loss term were removed from both (standard and robust) the target models while Cross-entropy term was only removed from
the target robust model since removing from both will make it very hard to adapt.

model is available, we initialize the encoder with weights
obtained after adversarial training on ImageNet, while the
classifier is initialized randomly. This is done due to ab-
sence of a corresponding robust model in the source for ini-
tialization. To distinguish among the three scenarios, we
refer to our method as Ours (robust source), Ours (standard
source) or Ours (both) when only robust, only standard or
both the models are available in the source domain.

4.2. Baselines

Since,to the best of our knowledge, there is no previous
work on robust domain adaptation, we construct two base-
lines. The baselines use state-of-the-art domain adaptation
approaches [47, 23] that we adapt to use adversarial training
in the source domain.

The first adapted approach is Adversarial Discriminative
Domain Adaptation (ADDA) by [47] which, in addition to
the data our approach requires, also uses source data in the
adaptation phase. We perform adversarial training [28] in
the source domain and follow the target adaptation protocol
as described in [47].

The second method we use for comparison is Source Hy-
pothesis Transfer (SHOT) [23]. This approach is, similar
to our approach, a source-free method, and thus, does not
require access to source data during adaptation. We again
modify this approach to use adversarial training [28] in the

source domain and subsequently follow the adaptation strat-
egy as described in [23].

Most of the source-free UDA methods require im-
age/feature generation [22, 19, 17] which are difficult
to scale while ensuring robustness on large datasets like
VisDA-C [36]. Other recently introduced approaches [38,
45, 51] that are designed for pixel level corruptions [12] do
not extend well to more complex domain adaptation tasks
we present in this paper.

4.3. Results

We evaluate all our methods along with the introduced
baselines on all four datasets, Office-31, Office-home,
PACS and VisDA-C. We report the averages over all classes
and adaptation tasks for all datasets. An exception is the
VisDA-C dataset, where we follow the standard protocol
and report the per-class average for Synthetic (S) to Real
(R). The accuracies on adversarial attacks are visualized
in Fig. 1 which shows that all our methods outperform the
baselines. More detailed results on all the datasets are pre-
sented in Table 1.

All introduced methods perform consistently better than
the baselines on adversarial images on all datasets. Besides
having a good performance in the case of adversarial at-
tacks, our models also perform competitively on clean sam-
ples. On the PACS dataset, our (standard source) method
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outperforms all others, both in clean and adversarial accu-
racy. On Office-31 and Office-home, our method (both) im-
proves robust accuracy by 15.9% and 11.9% respectively
while only loosing 0.6% and 0.7% clean accuracy compared
to the best non-robust model. Overall, our two best ap-
proaches (standard source and both) significantly improve
adversarial accuracy while only reducing clean accuracy
slightly (max -4.1% on VisDA-C). Fig. 6 shows randomly
selected adversarial images from the target domain (Art)
which are classified correctly and incorrectly by the five
different robust models adapted from the Real-world (Rw)
domain in Office-home.

It is important to note that the clean accuracy for both
ADDA and SHOT drops considerably if they are directly
trained robustly. This is in line with the general observation
that robust models tend to hurt the performance on clean
samples [55].

In two of the datasets (Office-31 and Office-home) our
method which utilizes both standard and robust source mod-
els performs best. This is switched in the other two datasets,
where our method which only requires the standard source
model is better. To further analyze this behavior, we create
two subsets of the data by only keeping all the images that
belong to the first3 10 and 32 classes respectively, both in
the source and the target domain. This is done to ensure
that the number of samples per class remain the same in all
the three cases.

Results for these adaptation tasks are illustrated in Fig. 4
where we compare the method using only the standard
model against the method using both source models. Fig. 4
indicates that in the case of few classes having only stan-
dard source model suffices for robust adaptation. However,
if a larger set of classes needs to be handled, it is better to
make use of both the standard and robust source model and
follow the procedure as described in Section 3.

4.4. Ablation Study

We study the impact of each of the components in our
model on the PACS dataset in Table 2. Removing the con-
trastive loss from both target model and the target robust
model reduces the average performance. Similarly, the tar-
get accuracy decreases without the entropy minimization
term or the diversity loss. The absence of cross-entropy loss
calculated with help of pseudo-labels also makes it hard for
the model to adapt well. Furthermore, we find that generat-
ing adversarial images using pseudo-labels also plays a sig-
nificant role in improving the robust accuracy of the model.

Recall that we require pseudo-labels to calculate the
cross-entropy and contrastive loss and generate adversar-
ial images in the target domain. To analyze the impact of
pseudo-labels, we visualize the features of the adversarial

3In alphabetical order of the class labels, which is not related to the
class complexity.

Figure 4: Performance of our method that use both source
models relative to our method using only standard source
model. The plot on the left shows the comparison on all
the four dataset while on the right compares performance
on Office-home by varying the number of classes.

images for the adaptation from Art (A) to Cartoon (C) on
PACS under four different scenarios. We make use of PCA
followed t-SNE [49] for dimensionality reduction. Fig. 5a
shows the target features of the robust source model. Next,
we perform domain adaptation without using any pseudo-
labels and plot the encoder features as shown in Fig. 5b.
In the next setting, we use pseudo-labels generated from a
robust target model instead. Fig. 5c shows that adversar-
ial test images in this scenario form better clusters in the
feature space. Finally, we compare it with our protocol,
where we generate pseudo-labels from the standard target
model to train the robust target encoder in Fig. 5d. Fig. 5
clearly demonstrates that the learned features become more
and more discriminative, forming better clusters as we in-
troduce pseudo-labels and obtain them from the standard
target model instead of the robust target model.

5. Discussion
Based on our experimental evaluations, we attempt to

answer some key questions. We believe that our answers to
these questions help to better understand the outcome of our
study as well as the problem addressed in this paper.
Do robust models transfer robustly?–Yes. Beside the pro-
posed method, our baselines also allow us conclude that the
robust models indeed transfer robustly. In particular, two
baselines, SHOT robust and ADDA robust do not even use
the adversarial examples in the target domain. The perfor-
mance of these methods on the adversarial examples are
noteworthy. This observation is in accordance to the ex-
isting works [42, 48, 39], although in different settings. In
the setting of this paper, the robust source models are found
to be very useful for datasets with many classes.
Which pseudo-labels to use?–Non-robust. Our experi-
ments demonstrate the clear benefit of using non-robust
pseudo labels for robustness in the target domain. Please,
refer to Sec. 3.2.2 and 3.3 for more details. It goes without
saying, non-robust pseudo-labels are preferred when non-
robust source models are available.
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(a) Before Adaptation (b) No pseudo-labels (c) Ours (robust source) (d) Ours (standard source)

Figure 5: Impact of pseudo-labels on PACS with Art painting as the source and Cartoon as the target domain. The subplots
clearly show that the features learned become more and more discriminative, forming better clusters as we introduce pseudo-
labels and obtain them from the standard target model instead of the robust target model.

Figure 6: Sample adversarial images in the target (Art) domain of Office-home. The figure shows the correctly classified and
misclassified images by the target model for each of the method. The source model was trained on Real-world (Rw) images.

Which model to transfer?–Robust. Provided a good trans-
fer of non-robust models to the target, it has been observed
that the robustness can be achieved by generating the ad-
versarial examples in the target. Such robustness however
fully relies on the pseudo-labels alone. We observed that for
datasets with few class such transfer is often is not a prob-
lem. However, as the number of classes increases, the trans-
fer of non-robust models followed by the robust training is
not a good idea. Please, refer to Fig. 4 for robust and non-
robust models transfer for increasing number of classes.
Such behaviour can be attributed to the following: as the
number of classes increases, the chanced of pseudo-labels
being incorrect in the target becomes higher. As the trans-
fer of robust source model does not fully rely only on the
pseudo-labels, we suggest to adapt the roust source model.
This suggestion is however, meant to be followed for the
two models case. Otherwise, we recommend to transfer the
non-robust source model followed by robust target training
(using the method proposed in this paper).
What makes any given model better?–Contrastive loss.
The use of contrastive loss for the addressed problem is
found to be very helpful in all three cases of the model avail-
ability presented in Sec. 3.3. This can be observed in Tab. 2
and 1. Note that the baseline SHOT robust differs from
our method with robust source in terms of the contrastive
feature learning. Please, refer Sec. 3.2.1 for the details.
How do I design the transfer protocol?–Transfer two
models. When the availability of source models is not a

problem, we suggest to use two models as presented in
Fig. 2 and Algo. 1. This may be particularly important,
when designing the model transfer protocol is possible.

Do I need to keep two models after transfer?–No. Only
using the transferred robust model will offer the adversarial
and clean accuracy of Tab. 1. The non-robust model is only
used to generate more reliable pseudo-labels, for adversarial
examples during robust training in the target domain.

6. Conclusion

We study three different cases of model availability for
the unsupervised robust domain adaptation without source
data. These cases were chosen to model practical scenarios.
In all the three cases, we obtained very promising results,
thanks to the proposed method. Our extensive study shows
that the transfer of both robust and standard model is of-
ten the best choice for the robustness in the target domain.
Overall, the non-robust pseudo-labels and contrastive fea-
ture learning strategies are found to be very effective, when
combined with the existing model transfer methods. In fu-
ture, we will explore single source models that perform both
robust and non-robust predictions, in a multi-tasking fash-
ion. This will avoid sharing two models trained on the the
source data.
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