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Abstract

While deep neural networks show unprecedented perfor-
mance in various tasks, the vulnerability to adversarial ex-
amples hinders their deployment in safety-critical systems.
Many studies have shown that attacks are also possible even
in a black-box setting where an adversary cannot access
the target model’s internal information. Most black-box at-
tacks are based on queries, each of which obtains the target
model’s output for an input, and many recent studies focus
on reducing the number of required queries. In this paper,
we pay attention to an implicit assumption of query-based
black-box adversarial attacks that the target model’s output
exactly corresponds to the query input. If some randomness
is introduced into the model, it can break the assumption,
and thus, query-based attacks may have tremendous diffi-
culty in both gradient estimation and local search, which
are the core of their attack process. From this motivation,
we observe even a small additive input noise can neutralize
most query-based attacks and name this simple yet effec-
tive approach Small Noise Defense (SND). We analyze how
SND can defend against query-based black-box attacks and
demonstrate its effectiveness against eight state-of-the-art
attacks with CIFAR-10 and ImageNet datasets. Even with
strong defense ability, SND almost maintains the original
classification accuracy and computational speed. SND is
readily applicable to pre-trained models by adding only one
line of code at the inference.

1. Introduction

Although deep neural networks perform well in various
areas, it is now well-known that small and malicious input
perturbation can cause them to malfunction [4, 35]. This
vulnerability of AI models to adversarial examples hinders
their deployment, especially in safety-critical areas. In the
white-box setting, where the target model’s parameters can
be accessed, strong adversarial attacks such as Projected
Gradient Descent (PGD) [27] can generate adversarial ex-

amples using the internal information. Recent studies have
shown that adversarial examples can be generated even in
a practical black-box setting where the model’s interior is
hidden to adversaries.

These black-box attacks can be largely divided into
transfer-based attacks and query-based attacks. Transfer-
based attacks train a substitute model that mimics the tar-
get model’s behavior and take advantage of transferability
that adversarial examples generated from a network can de-
ceive other networks [30]. However, due to differences in
training methods and model architectures, the transferabil-
ity of adversarial examples can be significantly weakened,
and thus, transfer-based attacks usually result in lower suc-
cess rates [8]. For this reason, most black-box attacks are
based on queries, each of which obtains the target model’s
output for an input. Query-based attacks create adversar-
ial examples through an iterative process based on either
local search with repetitive small input modifications or op-
timization with estimated gradients of an adversary’s loss
with respect to an input. Here, requesting many queries in
their process takes a lot of time and financial loss. More-
over, many similar query images can be suspicious to sys-
tem administrators. For this reason, researchers have fo-
cused on reducing the number of queries required to make
a successful adversarial example [3].

Compared to the increasing number of studies on ad-
versarial defenses in white-box settings, the number of de-
fenses against query-based black-box attacks is still very
small [3]. However, in a practical situation, black-box at-
tacks are more realistic as attackers cannot know the tar-
get model’s interiors. Since existing defenses developed
for white-box attacks improve their robustness at the high
cost of clean accuracy (accuracy on clean images) [37], it
is necessary to develop a new defense strategy that targets
query-based black-box attacks with minimal accuracy loss.

To defend against query-based black-box attacks, we pay
attention to an implicit but important assumption of these at-
tacks that the target model’s output exactly corresponds to
the query input. If some randomness is introduced into the
model, it can break the assumption, and thus, query-based
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Figure 1: Illustrations of our intuitions. (a) Small noise can effectively disturb gradient estimation of query-based attacks
which use finite difference. (b) Compared to large noise, small noise hardly affects predictions on clean images.

attacks may have tremendous difficulty in both gradient es-
timation and local search, which are the core of their attack
process. This intuition is illustrated in Fig. 1(a).

Among previous studies, Dong et al. [14] empirically
find that randomization-based defenses are more effective in
defending against query-based black-box attacks than other
types of defenses. However, existing randomization-based
defenses introduce significant uncertainty into predictions,
and thus, they also degrade clean accuracy.

In this paper, however, we highlight that simply adding
small Gaussian noise into an input image is enough to
defeat various query-based attacks by breaking the above
core assumption while almost maintaining clean accuracy.
One may think that additive Gaussian noise cannot defend
against most adversarial attacks unless we introduce large
randomness. This idea is valid for white-box attacks [15],
but we will show that small noise is surprisingly effective
against query-based black-box attacks.

Our second intuition is that sufficiently small Gaussian
noise hardly affect predictions on clean images, as shown
in Fig. 1(b). Dodge et al. [14] empirically find that clas-
sification accuracy decreases in proportion to the variance
of Gaussian noise, but the accuracy drop is negligible for a
sufficiently small variance.

We think an adversarial defense techniques should have
the following goals: (1) preventing malfunction of a model
against various attacks, (2) minimizing the computational
overhead, (3) maintaining the accuracy on clean images,
and (4) easily applicable to existing models. The proposed
defense against query-based attacks meets all of the above
objectives, and we name this simple yet effective defense
technique Small Noise Defense (SND).

Our contributions can be listed as follows:

• We highlight the effectiveness of adding a small
additive noise to input for defending against
query-based black-box attacks. The proposed
SND method can be readily applied to pre-trained

models by adding only one line of code in the
PyTorch framework [31] at the inference stage
(x = x + sigma * torch.randn_like(x))
and almost maintains the performance of the model.

• We analyze how SND can efficiently interfere with gra-
dient estimation and local search, which are the core of
query-based attacks.

• We devise an adaptive attack method against SND and
explain its limitations and the difficulty of evading SND.

• We have empirically shown that the proposed method
can effectively defend against eight state-of-the-art
query-based black-box attacks with the CIFAR-10 and
ImageNet datasets. Specifically, four decision-based
and four score-based attacks are used to show strong
defense ability against various attacks, including local
search-based and optimization-based methods.

2. Background

2.1. Adversarial Setting

Since we deal with adversarial attacks on the image clas-
sification task throughout the paper, we briefly explain ad-
versarial attacks on the image classification task in this sec-
tion.

Suppose that a neural network f(x) classifies an image x
among total N classes and returns a class-wise probability
vector y = [y1, ..., yN ] for x. For notational convenience,
we also denote the probability of ith class (i.e., yi) as f(x)i
and the top-1 class index as h(x) = argmaxi∈C yi, where
C = {1, ..., N}.

In a black-box threat model, an adversary has a clean
image x0 whose class index is c0 and wants to generate an
adversarial example x̂ = x0 + δ to fool a target model f .
In the following, we denote the adversarial example at tth

step in an iterative attack algorithm as x̂t = x0 + δt. The
adversary should generate an adversarial example within a
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perturbation norm budget ϵ and query budget Q. If we let q
be the number of queries used to make δt, then we can write
the adversary’s objective as follows:

min
δt

ℓ(x0 + δt), subject to ||δt||p ≤ ϵ and q ≤ Q, (1)

where ℓ(x) = f(x)c0 − maxc ̸=c0 f(x)c for untargeted at-
tacks and ℓ(x) = maxc̸=ĉ f(x)c − f(x)ĉ for targeted at-
tacks with target class index ĉ. Since decision-based attacks
cannot obtain ℓ(x), they have a different objective for un-
targeted attacks as follows:

min
δt

||δt||p, subject to h(x0) ̸= h(x0 + δt) and q ≤ Q.

(2)
Unless otherwise noted, in this paper, we use p = 2 and
focus on untargeted attacks because it is more challenging
for defenders. Besides, we assume that each pixel value is
normalized into [0, 1].

2.2. Taxonomy of query-based black-box attacks

Query-based attacks can be largely divided into score-
based and decision-based attacks according to the available
type of output of the target model (class-wise probabili-
ties for score-based attacks and the top-1 class index for
decision-based attacks). On the other hand, query-based
attacks can be categorized into optimization-based attacks
and local search-based attacks. Optimization-based meth-
ods optimize an adversary’s objective loss with estimated
gradients of the loss with respect to x̂t. In contrast, local
search-based attacks repeatedly update an image according
to how the model’s output changes after adding a small per-
turbation.

In the following, we briefly introduce various query-
based attacks used in this paper.

Bandit optimization with priors (Bandit-TD). Ilyas et
al. [21] observe that the image gradients in successive steps
of an iterative attack have strong correlations. In addition,
they find that the gradients of surrounding pixels also have
correlations. Bandit-TD exploits this information as priors
for efficient gradient estimation.

Simple Black-box Attack (SimBA & SimBA-DCT).
For each iteration, SimBA [17] samples a vector q
from a pre-defined set Q and modify the current image
x̂t with x̂t − q and x̂t + q and updates the image in the
direction of decreasing yc0 . Inspired by the observation
that low-frequency components make a major contribution
to misclassification [16], SimBA-DCT exploits DCT basis
in low-frequency components for query-efficiency.

Boundary Attack (BA). BA [5] updates x̂t on the
decision-boundary so that the perturbation norm gradually
decreases via random walks while misclassification is main-
tained.

Sign-OPT. Cheng et al. [10] treat a decision-based at-
tack as a continuous optimization problem of the nearest

distance to the decision boundary. They use the randomized
gradient-free method [29] for estimating the gradient of the
distance. Cheng et al. [11] propose Sign-OPT, which uses
the expectation of the sign of gradient with random direc-
tions to estimate the gradients efficiently without exhaustive
binary searches.

Hop Skip Jump Attack (HSJA). Chen et al. [7] im-
prove BA with gradient estimation. For each iteration of
HSJA, it finds an image on the boundary with a binary
search algorithm, and estimates the gradients, and calcu-
lates the step-size towards the decision boundary.

GeoDA. Rahmati et al. [34] propose a geometry-based
attack that exploits a geometric prior that the decision
boundary of the neural network has a small curvature on av-
erage near data samples. By linearizing the decision bound-
ary in the vicinity of samples, it can efficiently estimate the
normal vector of the boundary, which helps to reduce the
number of required queries for generating adversarial ex-
amples.

2.3. Adversarial Defenses

As Dong et al. [14] observe that randomization is impor-
tant for effective defense against query-based attacks, we
focus on randomization-based defenses among various de-
fense methods. In what follows, we briefly explain three
randomization-based defenses along with PGD-adversarial
training.

Random Self-Ensemble (RSE). RSE [26] adds Gaus-
sian noise with σinner = 0.1 to the input of each convolu-
tional layer, except for the first convolutional layer where
σinit = 0.2 is used. To stabilize the performance, they use
an ensemble of multiple predictions for each image.

Parametric Noise Injection (PNI). He et al. [20] pro-
pose a method to increase the robustness of neural net-
works by adding trainable Gaussian noise to the activation
or weight of each layer. They introduce learnable scale fac-
tors of noise and allow them to be learned with adversarial
training.

Random Resizing and Padding (R&P). Xie et al. [39]
propose a random input transform-based method. In front
of network inference, it applies random resizing and random
padding to its input sequentially, making adversaries obtain
noisy gradients. It can be easily applied to a pre-trained
model, but it increases total computational time due to the
enlarged input image.

PGD-Adversarial Training (PGD-AT). Madry et al.
[27] propose PGD-adversarial training which trains a model
with adversarial examples generated by Projected Gradient
Descent (PGD) [27]. Unlike other defenses that are ineffec-
tive against adaptive attacks, it is well known that PGD-AT
provides strong defense against a variety of white-box at-
tacks.
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3. Analysis

3.1. Our Approach

To defend against query-based black-box attacks, we add
Gaussian noise with a sufficiently small σ to the input as
follows.

fη(x) = f(x+ η), where η ∼ N (0, σ2I) and σ ≪ 1.
(3)

For an adversary, since the exact value of η is unknown,
there are multiple possible output values for any x, so fη
is a random process. In what follows, we will explain how
this transform introduces tremendous difficulty in both gra-
dient estimation and local search in query-based black-box
attacks.

3.2. Defense Against Optimization-based Attacks

In this subsection, we will explain how small Gaus-
sian input noise can disturb the gradient estimation in
optimization-based attacks. We first look at defense against
score-based attacks and then deal with decision-based at-
tacks.

The core of optimization-based attacks is an accurate es-
timation of ∇ℓ(x), which needs to be approximated with
finite difference because of the black-box setting. For in-
stance, the gradient can be estimated as g̃ by Random
Gradient-Free method [29] as follows.

g̃ =
1

B

B∑
i=0

gi,

where gi =
ℓ(x̂t + βu)− ℓ(x̂t)

β
u and u ∼ N (0, σ2I).

(4)
Conceptually, by introducing small Gaussian noise into in-
put, g̃ can greatly differ from the true gradient ∇ℓ as shown
in Fig. 1.

To illustrate it more formally, let us represent η by re-
placing it with η(x) to clarify η depends on both time and
x. Suppose f∗

η(x) is a sample function of the random pro-
cess fη(x)(x) at some time. Then, this function is noisy
with regard to x because of η(x). We also assume that ℓ∗

is derived from f∗
η(x), then unless Var[ℓ∗(x + u)] is ex-

tremely small, ℓ∗ is discontinuous and non-differentiable,
and thus, ∇ℓ∗ does not exist. Therefore, the estimated gra-
dient using finite differences does not converge to the tar-
get gradient ∇ℓ. For example, simplifying the problem,
if f is a one-dimensional function R → R and sampled
η(1.000) = 0.08 and η(1.001) = 0.03 then, the sampled
function values f(x + η(x)) at x = 1.000 and x = 1.001
become f(1.080) and f(0.9701), respectively. Therefore,
if the variance of f is large, the sample function becomes
more noisy.

In decision-based attacks, x̂t is likely to be in the vicinity
of the decision boundary. Therefore, even small noise can
move x̂t across the boundary so that the output is changed.
The estimated gradient through erroneous predictions hin-
ders the generation of adversarial examples. We illustrate
the working principle of SND against decision-based at-
tacks in supplementary material. Besides, the binary search
algorithm, which is widely used to calculate the distance to
the decision boundary [7, 11], can make a larger error due
to η. Therefore, algorithms such as HSJA, which assume
that x̂ is near the decision boundary, are likely to work in-
correctly.

3.3. Defense Against Local Search-based Attacks

Local search-based attacks try to update the image in
the direction that decreases the adversarial objective loss.
However, since the output is unreliable due to noise, this
becomes similar to random motion. Suppose an adversary
recognizes that the attack objective loss decreases for x̂t+q,
where q is a perturbation, and updates x̂t+1 as x̂t+q. How-
ever, since the actually evaluated input of f is x̂t + q + η,
where η ∼ N (0, σ2I), the attack objective loss might in-
crease at the originally intended input x̂t + q. This predic-
tion error makes the attack algorithm stuck in the iterative
process and prevents generating adversarial examples.

3.4. Adaptive Attacks on Small Noise Defense

Solid research for adversarial defense requires evaluat-
ing the defense ability against adaptive attacks that exactly
know the working principle of the defense [6]. Athalye
et al. [1] show that randomization-based defense such as
R&P can be circumvented through the Expectation Over
Transform (EOT) technique [2]. The EOT technique ap-
proximates the gradient at each gradient descent step by
averaging gradients w.r.t. several samples transformed by
randomization-based defenses. In the black-box setting, the
gradients w.r.t. an input cannot be obtained at once, and
it should be estimated using the finite-difference by giving
several queries. Therefore, EOT-based adaptive attacks in
black-box settings average outputs for each input to get a
reliable prediction for accurate gradient estimation.

The above way of averaging the noisy output (i.e., ex-
pectation) is one of two primary techniques for handling
noise in derivative-free optimization [38]. The other pri-
mary technique is threshold selection which stores a reliable
candidate solution set (in our framework, candidate adver-
sarial examples) that makes minimal losses. It accepts a
new solution for the candidate set when the evaluated loss
is less than the recorded smallest loss by the threshold. This
principle of threshold selection can be adapted to the gradi-
ent estimation step in query-based attacks. Since decision-
based attacks try to reduce the size of adversarial pertur-
bation, selecting a candidate set with a sufficiently large
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ResNet-20 on CIFAR-10 ResNet-50 on ImageNet
Defense Clean Accuracy (%) Defense Clean Accuracy (%)
Baseline 91.34 Baseline 76.13
SND (σ = 0.001) 91.33 ± 0.02 SND (σ = 0.001) 76.10 ± 0.02
SND (σ = 0.01) 90.57 ± 0.09 SND (σ = 0.01) 75.47 ± 0.03
SND (σ = 0.02) 87.56 ± 0.18 SND (σ = 0.02) 73.91 ± 0.02
RSE 83.40 ± 0.15 PGD-AT 57.9
PNI 85.15 ± 0.18 R&P 74.26 ± 0.07

Table 1: Comparison of clean accuracy. For randomization-based methods, we denote the mean and standard deviation of
clean accuracy in 5 repetitive experiments with different random seeds.

threshold is identical to increasing σ of random perturba-
tions in the gradient estimation like Eq. 4 to ignore the
disturbance of small input noise. However, increasing the
perturbation size can amplify the gradient estimation error
by itself.

Therefore, following the suggestion of [1, 38], we de-
sign expectation-based adaptive attacks against SND. In the
following, we shed light on the difficulty of evading the pro-
posed defense with the adaptive attacks in detail.

In our framework, the input of the function, x + η, is
a Gaussian random process. But the result of the nonlin-
ear function f , f(x + η), is no longer a Gaussian random
process. This makes it very difficult for query-based attacks
to bypass SND. For expectation-based adaptive attacks, ad-
versaries can approximate f(x) as Eη[fη(x)] by taking the
average over multiple queries using the fact that E(η) = 0.
However, this attempt requires many queries for each it-
eration and greatly diminishes query efficiency. We note
that adversaries should also consider the query efficiency
for their adaptive attacks.

In addition, even if a large amount of queries are used,
Eη[fη(x)] may be different from f(x) because of the non-
linearity of the deep neural networks. With simple exam-
ples, we will explain how the expectation value differs from
the actual value when Gaussian noise is added to the input
of nonlinear functions.

Example 1 (A simple nonlinear function). Let F (x) =
xTx, where F : Rd → R, and Fη(x) = F (x +
η) where η ∼ N (0, σ2I). Suppose we estimate F (0) with
E[Fη(0)]. Then, E[Fη(0)] = E[(0 + η)T (0 + η)] =
E[ηTη] = dσ2. Therefore, E[Fη(0)] = dσ2 ̸= 0 = F (0)
and if d is very large (e.g., for an image of size 224×224×3,
d=150, 528), then the estimation error would be high.

Example 2 (A simple ReLU network case). Let ReLU(x) =
max(0, x) and F (x) = ReLU(wx+ b), where F : R −→ R.
Let Fη(x) = F (x+η), where η∼ N (0, σ2) and suppose we
estimate F (x) with E[Fη(x)]. Then E[Fη(x)] is as follows:

(wx+b)(1−Φ

(
−wx+ b

|w|σ

)
)+ |w|σϕ

(
−wx+ b

|w|σ

)
. (5)

Proof. Let w(x + η) + b be Y , then Y can be represented
with µy = wx+ b and σ2

y = w2σ2 as:

Y ∼ N (µy, σ
2
y). (6)

Then, Fη(x) is max(0, Y ) and E[Fη(x)] = E[max(0, Y )]
can be obtained by the law of total expectation.

E[Fη(x)] = E[max(0, Y )]

= E[Y |Y > 0]Pr(Y > 0) + 0Pr(Y ≤ 0).
(7)

Using the truncated normal distribution, we recall the fact
as follows:

E[Y |Y > a] = µy + σy
ϕ((a− µy)/σy)

1− Φ((a− µy)/σy)
, (8)

where ϕ(x) = 1√
2π

exp(− 1
2x

2) and Φ(·) is the cumulative
distribution function of the standard normal distribution.
Since Pr(Y > 0)) = 1 − Φ(

µy

σy
), E[Fη(x)] is represented

as:

µy(1− Φ

(
−µy

σy

)
) + σyϕ

(
−µy

σy

)
= (wx+ b)(1− Φ

(
−wx+ b

|w|σ

)
) + |w|σϕ

(
−wx+ b

|w|σ

)
.

(9)
Therefore, if the noise is added to the input in the simple
ReLU case, there can be a difference between the actual
F (x) value and the estimated value by E[Fη(x)].

From the proof on the simple network, we can expect
that the average of the output may have an error with the
actual output even in a deep neural network.
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Attack method BA Sign-OPT HSJA GeoDA
# of queries 2K 5K 10K 2K 5K 10K 2K 5K 10K 2K 5K 10K
Baseline 36.2 69.5 84.6 59.1 88.9 91.2 86.4 89.2 89.2 64.7 71.3 76.5
SND (σ = 0.01) 14.0 17.8 20.0 21.7 22.3 22.8 16.5 19.9 22.7 12.0 12.1 12.4
SND (σ = 0.001) 33.0 53.0 61.3 20.6 22.2 23.4 48.1 67.6 81.9 11.7 11.8 12.2
RSE 18.2 19.0 19.8 18.7 18.7 18.7 19.9 22.2 23.4 19.7 19.9 20.5
PNI 15.1 15.4 15.8 18.1 18.1 18.1 17.4 19.2 20.6 19.9 20.2 20.4

Table 2: Evaluation of attack success rates (%) on the CIFAR-10 dataset.

Attack type Decision-based Attack
Attack method Sign-OPT HSJA GeoDA
# of queries 5K 10K 20K 5K 10K 20K 5K 10K 20K
Baseline 36.4% 62.4% 88.0% 64.0% 88.4% 99.6% 50.0% 62.8% 72.0%

(9.71) (4.72) (2.38) (4.43) (2.34) (1.28) (6.38) (5.04) (4.12)
SND (σ=0.01) 6.8% 6.8% 7.2% 6.4% 7.6% 8.4% 7.2% 7.6% 7.6%

(41.37) (70.27) (87.94) (31.03) (26.81) (22.93) (33.48) (33.14) (32.61)
SND (σ=0.001) 6.8% 7.6% 8.0% 13.6% 20.4% 32.4% 8.4% 8.8% 9.2%

(35.15) (54.33) (88.29) (11.60) (8.86) (6.75) (27.44) (25.88) (24.41)
PGD-AT 28.8% 30.0% 32.4% 30.4% 33.2% 36.0% 32.4% 34.0% 35.6%

(30.67) (24.66) (19.72) (20.99) (17.27) (13.46) (14.54) (13.63) (12.90)
R&P 13.2% 13.2% 13.2% 13.6% 15.2% 16.0% 14.4% 14.4% 15.2%

(51.19) (82.14) (85.78) (33.01) (31.00) (29.42) (31.72) (31.21) (30.45)
Attack type Score-based Attack
Attack method SimBA SimBA-DCT Bandit-TD
# of queries 5K 10K 20K 5K 10K 20K 5K 10K 20K
Baseline 74.0% 74.4% 74.4% 94.8% 95.2% 95.2% 94.0% 97.2% 98.4%

(3.89) (3.99) (4.02) (3.12) (3.14) (3.14) (4.70) (4.70) (4.70)
SND (σ=0.01) 8.4% 9.2% 10.0% 8.4% 8.8% 10.4% 15.2% 15.2% 16.4%

(0.52) (0.55) (0.57) (0.56) (0.58) (0.60) (4.74) (4.74) (4.74)
SND (σ=0.001) 27.2% 35.6% 50.4% 46.4% 60.4% 68.4% 7.2% 7.6% 8.4%

(1.84) (2.14) (2.43) (2.22) (2.44) (2.58) (4.83) (4.83) (4.83)
PGD-AT 27.6% 27.6% 27.6% 36.0% 36.0% 36.0% 38.8% 45.2% 52.8%

(5.46) (7.55) (10.17) (5.36) (6.21) (6.62) (3.54) (3.54) (3.54)
R&P 26.4% 27.6% 28.0% 27.2% 28.4% 29.2% 32.0% 33.2% 33.6%

(0.48) (0.51) (0.54) (0.52) (0.55) (0.58) (4.50) (4.50) (4.50)

Table 3: Evaluation of attack success rates against defenses on the ImageNet dataset. We denote the average ℓ2 norm of
perturbations in the parenthesis.

4. Experiments and Discussion

4.1. Experimental Settings

In this section, we evaluated the defense ability of SND
against eight query-based black-box attacks: BA, Sign-
OPT, HSJA, GeoDA, SimBA, SimBA-DCT, Bandit-TD,
and Subspace Attack, along with other defense methods:
PNI, RSE, R&P, and PGD-AT. We used the CIFAR-10 [23]
and ImageNet [13] datasets for our experiments and fol-
lowing previous studies [7, 17, 20], we used ResNet-20 for
CIFAR-10 and ResNet-50 [19] for ImageNet as target net-
works. Following [5], we randomly sampled 1,000 and 250

correctly classified images from the CIFAR-10 test set and
the ImageNet validation set for evaluation. We describe de-
tailed experimental settings in supplementary material.

For evaluation metrics, we first define a successfully at-
tacked image as an image from which an attack can find
an adversarial image within the perturbation budget ϵ and
query budget Q. With this definition, we use attack suc-
cess rate, which is the percentage of the number of success-
fully attacked images over the total number of evaluated im-
ages. We note that since we evaluate defense performance,
a lower attack success rate is better. We measured the
ℓ2 norm of perturbations and set ϵ to 1.0 for the CIFAR-10
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dataset, and to 5.0 for the ImageNet dataset. Note that we
denote the qth query image as x̂q . x̂q and x̂t can be differ-
ent.

4.2. Evaluation of Clean Accuracy

We first evaluated the clean accuracy of models with
defenses on the original test split (10K images) of the
CIFAR-10 and validation split (50K images) of the Ima-
geNet dataset. As shown in Table 1, SND hardly reduces
the clean accuracy compared to other methods. The accu-
racy drop caused by SND is not significant at σ ≤ 0.01,
which implies that sufficiently small σ hardly affects clean
accuracy.

4.3. Evaluation on the CIFAR-10 Dataset

We performed four decision-based attacks against mod-
els with defenses, and Table 2 shows the evaluated attack
success rates. SND shows competitive defense ability de-
spite having more than 5% higher clean accuracy compared
to other defenses. Moreover, due to significant performance
drop, RSE and PNI cannot be applied to the models for
large-scale image classification with the ImageNet dataset.

4.4. Evaluation on the ImageNet Dataset

We performed six query-based attacks against models
with defenses, and Table 3 shows the evaluated attack suc-
cess rates. When the query budget Q is 20K, the average
of the attack success rates over the attacks against the base-
line is 87.9%, whereas SND with σ = 0.01 significantly
reduces it to 10.0%. SND with σ = 0.001 also significantly
reduces the average attack success rate to 29.5%, which is
comparable to the second-best method, R&P (22.5%).

We also calculated the average ℓ2 norm of perturbations
of query images ||x0− x̂q||2 at the predefined query budget
Q to show whether the perturbation norm diverges or not. If
an attack stops in the middle without requesting Q queries,
we used the last query image instead. In decision-based
attacks, it can be seen that randomization-based defenses,
SND and R&P, significantly increase the perturbation norm
as q increases. In SimBA and SimBA-DCT, the perturbation
norm is minimal in SND and R&P, which implies that the
attacks have significant difficulty in finding a perturbation
which decreases yc0 .

4.5. Empirical Evidence for Assumptions of SND

To provide supporting evidence for assumptions of
SND in score-based attacks, we calculated σ̂ =√

Var[ℓ(x+ η)], where η ∼ N (0, σ2I). With σ =
0.01 and 1,000 test images of the CIFAR-10, we evaluated
ℓ(x + η) for 100 iterations for each clean image and cal-
culated the σ̂ averaged over all images. In our experiment,
σ̂ = 0.04 which is small but sufficient to make ℓ(x+ η) to
be non-differentiable about x.

Defense SND SND
Attack (σ = 0.001) (σ = 0.01)
BA 0.134 0.227
Sign-OPT 0.216 0.215
HSJA 0.255 0.189
GeoDA 0.314 0.391
None 0.002 0.021

Table 4: Evaluation of P (h(x) ̸= h(x+ η)).

In decision-based attacks, our assumption in Section 3.2
is that if x̂t is near the decision boundary, small noise can
easily move the image across the boundary. We evaluated
Pmis := P (h(x) ̸= h(x + η)) through experiments. We
counted the above mismatch case for all queries during the
attack process. With σ = 0.001, 0.01 and the CIFAR-10
test images, the average of Pmis over all the attacks is cal-
culated as 0.22 and 0.25, respectively. In contrast, on clean
images, Pmis is obtained as 0.002 and 0.021, respectively.
Therefore, the results shown in Table 4 support our argu-
ment.

4.6. Evaluation of Adaptive Attacks Against SND

As described in Section 3.4, we devised an adaptive at-
tack against SND that takes the expectation of predictions
for repetitive T queries. In this experiment, we performed
HSJA against SND with σ = 0.01 on the CIFAR-10 dataset.
Since HSJA is a decision-based attack, we regard the most
predicted class in T queries as the expected class. We mea-
sured the attack success rate and Pmis according to the
query budget, and the adaptive attack clearly shows a higher
attack success rate than the baseline (T = 1), as shown in
Table 5. On the same query budget, however, the adaptive
attack shows a lower attack success rate (e.g., 22.7% (T=1)
> 18.2% (T=5) at Q=10K, and 29.3% (T=5) > 27.3%
(T=10) at Q=50K). Therefore, the expectation-based adap-
tive attack has limitations due to the restricted query budget.
Moreover, even if T increases, Pmis does not decrease and
this reinforces our argument in Section 3.4. We also applied
the adaptive attack to BA, SO, and GeoDA on CIFAR-10
and two score-based attacks (SimBA-DCT and Bandit-TD)
on ImageNet for comprehensive comparisons. The experi-
mental results are shown in supplementary material.

4.7. Varying σ for Each Inference

So far, we have used a fixed σ for SND. Changing σ for
each query may reduce clean accuracy while maintaining
the defense ability. From this motivation, we multiplied η
with k which is randomly sampled between 0 and 1 from
the beta distributions with three different settings: (1) Uni-
formly random (the same as α=β=1) (2) Sampling from
a beta distribution with α=β=2 whose probability density
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# of queries 2K×T 5K×T 10K×T Pmis

HSJA (T=1) 16.5% 19.9% 22.7% 0.189
HSJA (T=5) 18.2% 23.8% 29.3% 0.321
HSJA (T=10) 21.0% 27.3% 34.9% 0.376
HSJA (T=20) 25.2% 34.0% 46.6% 0.410
# of queries 50K 100K 200K
HSJA 29.0% 30.1% 31.0% 0.120

Table 5: Attack success rates of the adaptive version of
HSJA against SND (σ = 0.01) with different T .

function (PDF) is ∩-shaped. (3) Sampling from a beta dis-
tribution with α=β=0.5 whose PDF is ∪-shaped. We cal-
culated clean accuracy and average ℓ2 norm of noise for
each method. Among the three ways, at σ = 0.01, α=β=2
is better than the others in terms of the loss of clean accu-
racy and the defensive ability against Sign-OPT. Detailed
results can be found in supplementary material.

4.8. Defense Against Hybrid Black-box Attacks

Since SND protects models by interfering with gradient
estimation and the local search of query-based attacks, we
do not expect SND is effective against transfer-based at-
tacks as these attacks exploit the transferability of adversar-
ial examples. However, our method is complementary with
other defenses, which are mainly effective against transfer-
based black-box attacks such as [22] and [36]. Combined
with other defense techniques, SND can work well against
general black-box attacks, provided that the model’s param-
eters are kept secret to adversaries.

To support this argument, we experimented with Sub-
space attack [18], a hybrid attack that exploits transferabil-
ity in query-based attacks. Specifically, the Subspace at-
tack exploits transferability-based priors, which are gradi-
ents from local substitute models trained on a small proxy
dataset. We used pre-trained ResNet-18 and ResNet-34 [19]
as reference models for gradient priors. We performed the
attack based on the ℓ∞ norm because the authors provide
parameter settings only for the ℓ∞ norm.

Detailed experimental results are described in supple-
mentary material, but the results show that SND alone can-
not effectively defend against the hybrid attack with gradi-
ent priors. However, when SND is combined with PGD-AT,
it effectively protects the model and decreases the attack
success rate from 100% to 42.4% at Q=20K and σ=0.01.
To focus on the defensive ability against gradient estima-
tion, we recalculated the attack success rate without initially
misclassified images. Then, the newly obtained attack suc-
cess rate decreases from 100% to 16.4% at Q=20K. This
result implies that SND can be combined with other de-
fenses against transfer-based attacks to achieve strong de-
fense ability against all types of black-box attacks.

5. Related Work
The idea of injecting random noise at the inference stage

for improving adversarial robustness is not new [32, 33, 28].
However, we note that small input noise, which is insuffi-
cient to prevent white-box attacks, is surprisingly effective
in defending models against query-based black-box attacks.

5.1. History-based Detection Methods Against
Query-based Black-box Attacks.

To the best of our knowledge, studies that mainly target
defending against query-based black-box attacks have not
yet been published. However, history-based detection tech-
niques for query-based attacks have been proposed recently
[9, 25]. Considering that adversary requires many queries
of similar images for finding an adversarial example, they
store information about past query images to detect the un-
usual behavior of query-based attacks.

5.2. Certified Defense With Additive Gaussian
Noise.

Li et al. [24] analyze the connection between the robust-
ness of models against additive Gaussian noise and adver-
sarial perturbations. They derive the certified bounds on the
norm bounded adversarial perturbation, and they propose
a new training strategy to improve the certified robustness.
Similarly, randomized smoothing [12] creates a smoothed
classifier that correctly classifies when Gaussian noise is
added to the classifier’s input. Cohen et al. [12] prove that
this smoothed classifier can have ℓ2 certified robustness for
an input. Both SND and the above certified defenses add
Gaussian noise to the input. However, the purpose of the
addition of noise in the certified defenses is to induce the
classifier to gain certified robustness. Whereas SND adds
noise to disturb an accurate measurement of the output to
defend against query-based black-box attacks at the infer-
ence. In addition, the certified defenses use a much larger σ
(≥ 0.25) than SND (0.01).

6. Conclusion
In this paper, we highlight that even small Gaussian

input noise can effectively neutralize query-based black-
box attacks and name this approach Small Noise Defense
(SND). Our work suggests that query-based black-box at-
tacks should consider the randomness of the target net-
work as well. We demonstrate its effectiveness against eight
query-based attacks with CIFAR-10 and ImageNet datasets.
Interestingly, SND is very simple and easy for defenders but
difficult for attackers to bypass. SND is readily applicable
to pre-trained models by adding only one code line. Due to
its simplicity and effectiveness, we hope that SND will be
used as a baseline of defense against query-based black-box
attacks in the future.
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