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Abstract

We study the problem of novel view synthesis from sparse
source observations of a scene comprised of 3D objects. We
propose a simple yet effective approach that is neither con-
tinuous nor implicit, challenging recent trends on view syn-
thesis. Our approach explicitly encodes observations into
a volumetric representation that enables amortized render-
ing. We demonstrate that although continuous radiance
field representations have gained a lot of attention due to
their expressive power, our simple approach obtains compa-
rable or even better novel view reconstruction quality com-
paring with state-of-the-art baselines [49] while increas-
ing rendering speed by over 400x. Our model is trained
in a category-agnostic manner and does not require scene-
specific optimization. Therefore, it is able to generalize
novel view synthesis to object categories not seen during
training. In addition, we show that with our simple for-
mulation, we can use view synthesis as a self-supervision
signal for efficient learning of 3D geometry without explicit
3D supervision.

1. Introduction
In order to understand the 3D world, an intelligent agent

must be able to perform quick inferences about a scene’s ap-
pearance and shape from unseen viewpoints given few ob-
servations. Being able to synthesize images at target cam-
era viewpoints efficiently given sparse source views serves
a fundamental purpose in building intelligent visual be-
haviour [10, 30, 40]. The problem of learning to synthesize
novel views has been widely studied in literature, with ap-
proaches ranging from traditional small-baseline view syn-
thesis relying on multi-plane imaging [6, 36, 51, 21], flow
estimation [52, 37], to explicitly modeling 3D geometry via
point-clouds [1], meshes [18], and voxels [7].

A recent wave of approaches for view synthesis have
adopted continuous radiance field representations [49, 35,
22, 39, 29], where scenes are represented as a continuous
function that shares its domain with the signal being fitted
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Figure 1: Our model performs scene-agnostic and category-
agnostic novel view synthesis in real time. A complete 3D
geometry of the scene is estimated through a single for-
ward pass. Our model consistently produces higher qual-
ity results comparing to the state-of-the-art view synthesis
approach pixelNeRF [49], while being over 400x faster in
rendering time.

(e.g. a function that takes points in R3 as input, to model
a 3D signal), as opposed to discrete representations where
the 3D signals are encoded in a discrete geometric struc-
ture like a volume [7] or a mesh [18]. Although continuous
radiance field representations enjoy the benefits of being
resolution-free or modeling view-dependent effects, they
are not efficient for real-world use cases that require real-
time performance. Typically, radiance field representations
have the following disadvantages. First, being computation-
ally costly to obtain when implicitly modeled [22, 29, 31],
e.g. the model parameters are optimized via gradient de-
scent for each object or scene, usually taking tens of hours
on commodity hardware. Second, requiring to densely cap-
ture observations of the scene being modeled [22, 29, 31]
for optimization. Third, not being able to amortize the ren-
dering cost across views, since radiance fields are evaluated
independently for every pixel being rendered [49, 39]. This
dramatically impacts the practicality of radiance field, since
rendering an image can take seconds on modern GPUs.

What makes an approach for novel view synthesis use-
ful? While photo-realistic results have been obtained with
continuous/implicit representations, these approaches are
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severely impacted by capture, optimization and rendering
time, hindering their practicality for deployment in systems
that require real-time performance, e.g. the ability to infer
views of unseen objects in real-time from sparse observa-
tions. Our approach enjoys the following benefits: (i) the
scene representation is fast to obtain, as it does not require
gradient-based optimization for new scenes and can be ob-
tained from sparse observations, and (ii) it is efficient to
render, since it models the complete 3D geometry and ap-
pearance in a single forward pass, allowing for amortized
rendering. Our experiments show that despite the simplicity
of our method, our performance notably matches or beats
recent state-of-the-art baselines based on few-shot continu-
ous scene representations across different metrics and set-
tings, producing accurate novel view reconstruction, while
rendering objects over 400x faster than the state-of-the-art,
pixelNeRF [49]. In addition, we find that the 3D geome-
try learned by our model in an unsupervised manner (i.e.
without the need to train with 3D geometry supervision) is
extremely compelling and very efficient to obtain, requiring
only a single forward pass of the model.

2. Related Work
Learning to synthesize novel views of an object or a

scene given one or more sparse observation has been widely
studied in the literature [6, 36, 51, 21, 4, 52, 3, 37, 7, 27,
1, 35]. A unifying problem definition for this set of ap-
proaches is to predict a target view given a source view/s,
conditioned on a relative camera transformation. One set
of approaches focuses on small and/or wide baseline view
synthesis where the goal is to synthesize a parallax effect
by using multi-plane imaging [6, 36, 51], local light-field
fusion [21] or cost volume estimation [4]. Another set of
approaches focuses on learning a free-form 2D flow field
that takes pixels from a single [52] or multiple source views
[37] and reconstructs a target view given the relative camera
transformation between source/s and target.

In addition, there is an extensive literature on tack-
ling view synthesis with voxel grid 3D representations
[7, 27, 34, 53, 24, 11, 19, 41]. Although our approach uses
a voxel grid 3D representation, it differs from existing work
in the following. As opposed to [7, 27, 41] where convolu-
tional 2D decoders are used to generate an image, our ap-
proach uses volumetric rendering to directly render an im-
age from the explicit voxel grid representation. In contrast
to [34, 19], our approach can generalize to multiple objects
without per scene training/optimization. Moreover, our ap-
proach is trained in a category-agnostic way as opposed to
[53, 24, 11], and it is trained on a large set of object cate-
gories (as opposed to 4 object categories in [41]) which can
be generalized to unseen object categories (cf. Sect. 4).

In order to deal with the limitations of voxel grids, im-
plicit representations that model continuous radiance fields

for view interpolation [22, 29, 31, 32] have been proposed.
These approaches learn a radiance field for every scene or
object by fitting the parameters of a model (using gradient
descent) to a dense set of views of a scene and then in-
terpolating between those views. Note that this setting is
different from the novel view synthesis setting where the
problem is to predict a target view given a sparse source
view and a relative camera transformations. However, re-
cent approaches have applied continuous radiance fields to
the novel view synthesis problem [49, 39], showing that
it is possible to model multiple objects or scenes within a
single model and extrapolating to object categories unseen
during training. We can group recent approaches to novel
view synthesis with implicit and continuous radiance field
representations into two mutually exclusive categories. In
the first category we find approaches that provide an effi-
cient approach to explicitly encode source views into a con-
tinuous representation but are inefficient during rendering
due not being able to amortize the rendering process across
views [49, 39, 43] (see Sect. 3.3 for details). In the sec-
ond category, we find recent approaches that enable effi-
cient rendering through amortized rendering [48, 8, 45] but
where their continuous representation is implicit, and must
be fitted via gradient descent for every new object or scene
(typically taking days on commodity hardware).

In this paper we present a simple yet powerful approach
for novel view synthesis which explicitly encodes sources
views into a volumetric representation that enables amor-
tized rendering. Thus combining the best of both types of
recent approaches for novel view synthesis.

3. Methodology

The novel view synthesis problem is defined as follows.
Given a set S = {(Ii,Pi)}ni=0 of one or more source views,
where a view is defined as an image Ii ∈ R3×h×w together
with the camera pose Pi ∈ SO(3), we want to learn a
model fθ that can reconstruct a ground-truth target image
It conditioned on its pose Pt, where the predicted target
image is obtained as Ît = fθ(S,Pt).

We design fθ as a simple fully convolutional model that
allows amortized rendering. Our model processes a source
view through a 2D U-Net encoder [33] to produce a feature
map that is projected onto a latent volumetric representation
via an inverse projection step. This volumetric representa-
tion is further processed with a 3D U-Net model to learn
an RGBα volume1 to which the relative pose transforma-
tion between source and target views is applied, and finally
rendered into the predicted target view. We illustrate our
pipeline in Fig. 2.

1Note that we do not supervise training with an RGBα volume, the
model is forced to learn the RGBα volume through the rendering process.

3792



Is

Zs Vs Vt = T (Pst,Vs)

2D U-Net 3D U-Net

Ît
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Figure 2: Our model is comprised of three main components: a) a 2D U-Net image encoder, b) a 3D U-Net scene encoder,
and c) an amortized rendering process. The 2D U-Net encoder generates a 2D feature map Fs from the input image Is. The
feature map is then projected into a latent volume Zs via an inverse project step. A 3D U-Net network maps Zs into an
RGBα volume Vs. This RGBα volume is applied a relative pose transformation Pst to match the target view pose Pt, and
the resulting image Ît is created by rendering the RGBα using a simple volume rendering process that is amortized across
views.

3.1. Encoding

The initial step of our model is to encode the source Is ∈
R3×h×w with a fully convolutional U-Net encoder that pro-
duces a feature map Fs ∈ Rc×h×w that preserves the spatial
resolution of the source image. Once a feature map Fs is
obtained, we cast the features along rays into a latent volu-
metric tensor using the perspective camera matrix. In prac-
tice we perform an inverse projection step to back-project
Fs into a latent volumetric tensor Zs ∈ Rc×ds×hs×ws ,
where ds, hs, ws are depth, height and width for the vol-
umetric representation 2. Instead of reshaping 2D feature
maps into a 3D volumetric representation [7, 27], we found
that using an inverse projection step is beneficial to preserve
the 3D geometry and texture information (cf. Sect. 4 for
empirical evidence).

3.2. Learning a Renderable Volume

After the inverse projection step we simply process Zs

with a 3D U-Net [23] model and predict a final volume
Vs ∈ R4×ds×h×w. At this stage Vs encodes an RGBα
volume of the object or scene that can be efficiently ren-
dered. Similar to [49, 7] we apply the relative transfor-
mation Pst = PtP

−1
s between source and target camera

poses to the volumetric representation Vs to obtain a trans-
formed volumetric representation Vt that is aligned with
the target view. We define this transformation operation
as a function T (P,V) that takes as input a rigid trans-
formation P ∈ SO(3) and a volume V and applies the
rigid transformation to the volume. Note that we define
P ∈ SO(3), however, our formulation naturally extends
to other transformations groups (e.g. non-rigid or free-form
deformations).

2We used intrinsic camera parameters for the inverse projection step,
which we assume to be constant.

3.3. Amortized Rendering

We now turn to the task of rendering an RGBα volume
V into an image. Recent work on modeling scenes with
continuous neural radiance fields [22] has shown great re-
sults by using the rendering equation [13] in order to model
pixels. At rendering time, [22] propose to obtain a pixel
value by tracing the camera ray r from the near plane tn to
the far plane tf , and the expected color of a 2D pixel can be
calculated as follows (see [22] for details):

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (1)

where T (t) = exp(−
∫ tf
tn

σ(r(s))ds) denotes the accu-
mulated transmittance between the near plane and the cur-
rent point r(t) along the ray. In practice, numerical quadra-
ture and stratified sampling strategies are adopted to dis-
cretize the continuous integral and make the computation
viable.

However, a critical problem of the sampling process in
NeRF [22] is that it prevents the rendering process to be
amortized across views. This is because each ray integral
in Eq. 1 is independent and points sampled to approxi-
mate one ray integral are not reusable for other ray inte-
grals in the scene. Our approach side-steps the need to per-
form sampling by modelling the scenes complete geome-
try and appearance as an RGBα volume V ∈ R4×ds×h×w.
This allows us to amortize rendering across views (since all
rendered images of a scene share the same RGBα volume)
obtaining dramatic rendering speed improvements without
sacrificing reconstruction accuracy with respect to recent
baselines [49].

Before rendering our RGBα volume V, we apply a per-
spective deformation (using intrinsic camera parameters)
on the viewing frustum using inverse warping and trilinear
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sampling [12] (see Appendix for details). For a given pixel
location (i, j), the expected color Ĉ is calculated as:

Ĉi,j =

ds∑
k=1

T k
i,jα

k
i,jc

k
i,j , where T k

i,j =

k−1∏
m=1

(1− αm
i,j) (2)

where cki,j is the color value encoded in the first 3 chan-
nels of Vt and αk

i,j is the value at the last channel.

3.4. Multiple View Aggregation

Our model can take an arbitrary number of source views
in S as input. In order to do so, we first obtain latent vol-
umes Zi for each source view i using the same encoding
process as in Sect. 3.1. Next, we take an arbitrary source
view i∗ in the set of source views as the origin of the coor-
dinate system. Latent volumes Zi are then aligned to this
origin using the relative transformation Pi,i∗ between cor-
responding pose Pi and origin pose Pi∗ . After that, we
pool the aligned volumes by taking the mean across views:

Z̄ =
1

n

∑
i∈n

T (Pi,i∗ ,Zi) (3)

Finally, the pooled volumetric latent Z̄ is fed to our 3D
U-Net to generate an RGBα volume V which can be effi-
ciently rendered as outlined in Sect. 3.3.

3.5. Training

Similar to [7, 49], we sample tuples of source and
target views together with their relative transformation
(Is, It,Pst) during training. We use the model fθ to pre-
dict the target from source Ît = fθ(Is,Pst) and minimize a
rendering loss. The rendering loss is a weighted sum of ℓ2
loss and SSIM [44] loss, defined as

Lrender =
∑
t

∥fθ(Is,Pst)− It∥22

+ λLssim(fθ(Is,Pst), It)

(4)

One advantage of our formulation is that it supports
the use of structural losses like SSIM [44] during training.
The SSIM loss has been previously proved useful for view
synthesis [7], and are not directly applicable to NeRF-like
methods [49], as they randomly sample sparse rays from
each image during training due to the computational con-
straints.

4. Experiments
Our model is evaluated on a series of well established

ShapeNet 3 [2] benchmarks where it achieves similar or bet-
ter visual quality compared to the state-of-the-art method

3licensed for non-commercial research purposes

pixelNeRF [49] and other recent baselines [7, 35], while
rendering objects in real time. We also evaluate the 3D
reconstruction capabilities of our model, where it out-
performs baseline unsupervised 3D reconstruction mod-
els. The following sections detail evaluations on category-
specific view synthesis for scenes with single and multiple
objects, as well as category-agnostic, multi-category, and
unseen-category objects. 3D reconstruction is evaluated in
Section 4.2, and the design and effectiveness of different
components of our model are discussed in Section 4.3.

4.1. Novel View Synthesis

In the novel view synthesis experiments we compare our
approach with several state-of-the-art techniques: ENR[7],
pixelNeRF [49], DVR [26], and SRN [35]. Our SSIM,
PSNR, and LPIPS [50] scores demonstrates that we produce
comparable or better rendering quality than pixelNeRF [49]
with an explicit volumetric scene representation, while in-
creasing the rendering speed 100× per view, allowing us to
render scenes in real-time as show in Table 3.

4.1.1 Category-Specific View Synthesis of Single Ob-
jects

We evaluate our model on the ShapeNet chairs and cars
categories in single-view and two-view settings, follow-
ing the same experimental protocol as baseline methods
[35, 7, 49]. These category-specific datasets contain 6, 591
different chairs and 3, 514 different cars. Each object has
50 views sampled uniformly on the full sphere, rendering
images resolution 128× 128 pixels.

Following pixelNeRF, we train a single model for both
the single-view and two-view settings. During training, we
randomly choose either one or two source views to pre-
dict the target view. For evaluation, we use either one or
two source views of an unseen object and predict 250 tar-
get views. Additionally, we also report the rendering time
comparison between pixelNeRF and our method.

Despite its simplicity, our model obtains very competi-
tive results compared to pixelNeRF, as shown in Table 1.
In general, we don’t observe obvious mistakes made by our
model when visually inspecting results. Fig. 3 shows a ran-
dom subset of source and predicted targets.

In Table 3 we show the average inference and rendering
time of both pixelNeRF and our approach. The inference
time is defined as the interval of time required to gener-
ate scene information (2D feature maps for pixelNeRF and
3D feature maps for our model) from the source views.
The rendering time is the time required to render a target
view given scene information. We compute per-view ren-
dering time and per-object rendering time, where per-object
rendering time is accumulated by rendering a total of 250
views. To conduct a fair comparison, we equate the effec-
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tive image batch size between pixelNeRF and our model.
All the run times are reported on an NVIDIA Tesla V100
GPU. As shown in Table 3, our per-view rendering time
is 0.0178s, 100x faster than pixelNeRF, taking 1.9047s to
render an image. In other words, our model achieves a ren-
dering speed of 56 FPS, which enables a real-time render-
ing experience. By amortizing the rendering step across
multiple views, our model renders 250 views in 1.022s
(245 FPS), while pixelNeRF renders the same 250 views
in 474.8606s (0.5 FPS). This translates to over a 400x
speedup. In addition, we test the generalization capabilities
of our model on real world data. We use the model trained
with ShapeNet cars categories and perform novel view syn-
thesis on real car images from [17]. We found our model
can generate plausible novel views with less artifacts and
blurry effects compared to pixelNeRF [49]. The complete
experiments protocol and qualitative visualizations can be
found in the appendix.

Table 1: Results on category-specific novel view synthesis
for ShapeNet chairs and cars. Our method achieves com-
petitive results compared to state-of-the-art approaches.

Data Methods
1-view 2-view

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Chairs

ENR 22.83 - - -
SRN 22.89 0.89 24.48 0.92

pixelNeRF 23.72 0.91 26.20 0.94
Ours 23.21 0.92 25.25 0.94

Cars

ENR 22.26 - - -
SRN 22.25 0.89 24.84 0.92

pixelNeRF 23.17 0.90 25.66 0.94
Ours 22.83 0.91 24.64 0.93

Table 2: Results on category-specific novel view synthesis
for multiple chairs. Compared to pixelNeRF, our method
predicts much more coherent synthesis results, and it beats
pixelNeRF by a significant margin on all three metrics.

Methods
2-view

PSNR↑ SSIM↑ LPIPS ↓

SRN 14.67 0.664 0.431
pixelNeRF 23.40 0.832 0.207

Ours 24.13 0.907 0.098

4.1.2 Category-Specific View Synthesis of Multiple
Objects

We further extend the category-specific evaluation to the
multiple-chair dataset proposed by pixelNeRF. This dataset
consists of images rendered with two randomly located and

Table 3: Inference and rendering time (in seconds) analysis
between pixelNeRF and our method. We show our model
can achieve over 100x faster per-frame and over 400x faster
per-object rendering speed.

pixelNeRF Ours

Inference Rendering Inference Rendering

Per-view 0.0053 1.8994 0.0146 0.0032
Per-object 0.0053 474.8553 0.0146 1.0074

oriented chairs. The dataset is designed so that the model
cannot simply rely on certain semantic cues such as the
symmetric property of a chair to perform geometry com-
pletion. The learned model should be flexible and robust
enough to represent scenes instead of a single object. All
images are rendered with a resolution of 128× 128.

We report reconstruction quality metrics in Table 2. De-
spite the increased complexity of this setting, our simple
model outperforms pixelNeRF across metrics, and exceeds
the object-centric method SRN [35] by a large margin. Fig.
4 shows randomly sampled qualitative results. We observe
that the views rendered by our model have cleaner geometry
than pixelNeRF, which fails to predict a reasonable geome-
try at certain angles and suffers from ghosting artifacts.

4.1.3 Category-agnostic View Synthesis

The category-agnostic setting is much more challenging
than the category-specific one, because the model needs ca-
pacity to jointly learn objects across a range of completely
different categories. To evaluate our model in the category-
agnostic setting, we follow the same training protocol as
baseline method [16] and evaluate on 13 different cate-
gories. Each object was rendered in 24 different views with
a resolution of 64× 64. We summarize our results in Table
4. Our model beats all baseline methods in every metric.
The qualitative visualization in Fig. 5 indicates our model
can generate more clean geometry compared to pixelNeRF,
which is corroborates the results obtained by our method in
the multi-chair dataset.

4.1.4 Unseen-Category View Synthesis

In order to evaluate how our model generalizes to cate-
gories not seen during training, we follow the settings in
pixelNeRF, and use only three object categories for train-
ing, namely airplane, car, and chair. We then evaluate on
10 unseen object categories. Table 5 compares the perfor-
mance of our method with several baselines. We achieve
state-of-the-art performance in SSIM and LPIPS, while per-
forming slightly worse than pixelNeRF [49] on PSNR. Fig.
5 indicates that our method is able to learn a good object
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Figure 3: Qualitative results on category-specific single chair & single car. The model can either take (a) single view or
(b) two views as input to synthesis novel views. We find similar rendering quality comparing to pixelNeRF [49] and better
geometry prediction comparing to ENR [7] and SRN [35].
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Figure 4: Qualitative results on category-specific multiple chairs. The models take two-view images as input. Compared
to pixelNeRF, our model renders a cleaner appearance and more complete geometry for chairs with complex shapes.
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pixelNeRF
<latexit sha1_base64="4ZXnLaqoBtXeod3B+fez1zb2TsQ=">AAAB+nicbVDJSgNBEO1xjXFL9OilMQiewkwU9BgUxJNEMQskQ+jp1CRNeha6azRhzKd48aCIV7/Em39jZzlo4oOCx3tVVNXzYik02va3tbS8srq2ntnIbm5t7+zm8ns1HSWKQ5VHMlINj2mQIoQqCpTQiBWwwJNQ9/qXY7/+AEqLKLzHYQxuwLqh8AVnaKR2Lt9CGGAaiwHIG7i7GtF2rmAX7QnoInFmpEBmqLRzX61OxJMAQuSSad107BjdlCkUXMIo20o0xIz3WReahoYsAO2mk9NH9MgoHepHylSIdKL+nkhZoPUw8ExnwLCn572x+J/XTNA/d1MRxglCyKeL/ERSjOg4B9oRCjjKoSGMK2FupbzHFONo0sqaEJz5lxdJrVR0Toql29NC+WIWR4YckENyTBxyRsrkmlRIlXDySJ7JK3mznqwX6936mLYuWbOZffIH1ucPRj2T/w==</latexit>

Ours
<latexit sha1_base64="z2Js6CFrE+6iwwMmsTPTPAGhk3I=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxZsRzAOyS5idTJIhsw9mesSw5De8eFDEqz/jzb9xkuxBEwsaiqpuurvCVAqNrvvtrKyurW9sFraK2zu7e/ulg8OmToxivMESmah2SDWXIuYNFCh5O1WcRqHkrXB0M/Vbj1xpkcQPOE55ENFBLPqCUbSS7yN/wuzOKD0h3VLZrbgzkGXi5aQMOerd0pffS5iJeIxMUq07nptikFGFgkk+KfpG85SyER3wjqUxjbgOstnNE3JqlR7pJ8pWjGSm/p7IaKT1OAptZ0RxqBe9qfif1zHYvwoyEacGeczmi/pGEkzINADSE4ozlGNLKFPC3krYkCrK0MZUtCF4iy8vk2a14p1XqvcX5dp1HkcBjuEEzsCDS6jBLdShAQxSeIZXeHOM8+K8Ox/z1hUnnzmCP3A+fwBK35HY</latexit>

GT
<latexit sha1_base64="unQt94OX0IY6WzDcrKYgNhXPkVE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoQY8R8sJkCbOTSTJkdnaZ6RXDkr/w4kERr/6NN//GSbIHTSxoKKq66e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg4bJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PRzdRvPnJtRKRqOI65H9KBEn3BKFrpoYP8CdPb2oR0C0W35M5AlomXkSJkqHYLX51exJKQK2SSGtP23Bj9lGoUTPJJvpMYHlM2ogPetlTRkBs/nV08IadW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Kz8VKk6QKzZf1E8kwYhM3yc9oTlDObaEMi3srYQNqaYMbUh5G4K3+PIyaZRL3nmpfH9RrFxnceTgGE7gDDy4hArcQRXqwEDBM7zCm2OcF+fd+Zi3rjjZzBH8gfP5A15FkLY=</latexit>

Input
<latexit sha1_base64="AEuS1iOF73SdijggiR8iirj+7hI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoRW8RzAOSJcxOZpMhsw9neoNhyXd48aCIVz/Gm3/jbLIHTSxoKKq66e7yYik02va3tbK6tr6xWdgqbu/s7u2XDg6bOkoU4w0WyUi1Paq5FCFvoEDJ27HiNPAkb3mjm8xvjbnSIgofcBJzN6CDUPiCUTSS20X+hOldGCc4Jb1S2a7YM5Bl4uSkDDnqvdJXtx+xJOAhMkm17jh2jG5KFQom+bTYTTSPKRvRAe8YGtKAazedHT0lp0bpEz9SpkIkM/X3REoDrSeBZzoDikO96GXif14nQf/KTUX2Ew/ZfJGfSIIRyRIgfaE4QzkxhDIlzK2EDamiDE1ORROCs/jyMmlWK855pXp/Ua5d53EU4BhO4AwcuIQa3EIdGsDgEZ7hFd6ssfVivVsf89YVK585gj+wPn8AEOiSSQ==</latexit>

pixelNeRF
<latexit sha1_base64="4ZXnLaqoBtXeod3B+fez1zb2TsQ=">AAAB+nicbVDJSgNBEO1xjXFL9OilMQiewkwU9BgUxJNEMQskQ+jp1CRNeha6azRhzKd48aCIV7/Em39jZzlo4oOCx3tVVNXzYik02va3tbS8srq2ntnIbm5t7+zm8ns1HSWKQ5VHMlINj2mQIoQqCpTQiBWwwJNQ9/qXY7/+AEqLKLzHYQxuwLqh8AVnaKR2Lt9CGGAaiwHIG7i7GtF2rmAX7QnoInFmpEBmqLRzX61OxJMAQuSSad107BjdlCkUXMIo20o0xIz3WReahoYsAO2mk9NH9MgoHepHylSIdKL+nkhZoPUw8ExnwLCn572x+J/XTNA/d1MRxglCyKeL/ERSjOg4B9oRCjjKoSGMK2FupbzHFONo0sqaEJz5lxdJrVR0Toql29NC+WIWR4YckENyTBxyRsrkmlRIlXDySJ7JK3mznqwX6936mLYuWbOZffIH1ucPRj2T/w==</latexit>

Ours
<latexit sha1_base64="z2Js6CFrE+6iwwMmsTPTPAGhk3I=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxZsRzAOyS5idTJIhsw9mesSw5De8eFDEqz/jzb9xkuxBEwsaiqpuurvCVAqNrvvtrKyurW9sFraK2zu7e/ulg8OmToxivMESmah2SDWXIuYNFCh5O1WcRqHkrXB0M/Vbj1xpkcQPOE55ENFBLPqCUbSS7yN/wuzOKD0h3VLZrbgzkGXi5aQMOerd0pffS5iJeIxMUq07nptikFGFgkk+KfpG85SyER3wjqUxjbgOstnNE3JqlR7pJ8pWjGSm/p7IaKT1OAptZ0RxqBe9qfif1zHYvwoyEacGeczmi/pGEkzINADSE4ozlGNLKFPC3krYkCrK0MZUtCF4iy8vk2a14p1XqvcX5dp1HkcBjuEEzsCDS6jBLdShAQxSeIZXeHOM8+K8Ox/z1hUnnzmCP3A+fwBK35HY</latexit>

GT
<latexit sha1_base64="unQt94OX0IY6WzDcrKYgNhXPkVE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoQY8R8sJkCbOTSTJkdnaZ6RXDkr/w4kERr/6NN//GSbIHTSxoKKq66e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg4bJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PRzdRvPnJtRKRqOI65H9KBEn3BKFrpoYP8CdPb2oR0C0W35M5AlomXkSJkqHYLX51exJKQK2SSGtP23Bj9lGoUTPJJvpMYHlM2ogPetlTRkBs/nV08IadW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Kz8VKk6QKzZf1E8kwYhM3yc9oTlDObaEMi3srYQNqaYMbUh5G4K3+PIyaZRL3nmpfH9RrFxnceTgGE7gDDy4hArcQRXqwEDBM7zCm2OcF+fd+Zi3rjjZzBH8gfP5A15FkLY=</latexit>

(a) Novel View Synthesis on Multiple Categories
<latexit sha1_base64="eNgw3+SO3BRJmG20xHqYA3XrDpA=">AAACIHicbVA9SwNBEN3z2/gVtbRZDEJswl0UtAymsVEUTRSSEPY2k2TJ3u6xO6eGIz/Fxr9iY6GIdvpr3MQUanww8Hhvhpl5YSyFRd//8KamZ2bn5hcWM0vLK6tr2fWNqtWJ4VDhWmpzHTILUiiooEAJ17EBFoUSrsJeeehf3YCxQqtL7MfQiFhHibbgDJ3UzB7UEe4wzbNdeqpvQNKqgFt60VfYBSss1YqeJBJFLIGWGUJHGwF2QJvZnF/wR6CTJBiTHBnjrJl9r7c0TyJQyCWzthb4MTZSZlBwCYNMPbEQM95jHag5qlgEtpGOHhzQHae0aFsbVwrpSP05kbLI2n4Uus6IYdf+9Ybif14twfZhIxUqThAU/17UTiRFTYdp0ZYwwFH2HWHcCHcr5V1mGEeXacaFEPx9eZJUi4Vgr1A838+VjsZxLJAtsk3yJCAHpESOyRmpEE7uySN5Ji/eg/fkvXpv361T3nhmk/yC9/kFVdOjGA==</latexit>

(b) Novel View Synthesis on Unseen Categories
<latexit sha1_base64="7FywZsqNAHCyex3cuz9rikgOOFU=">AAACHnicbVDLSgNBEJz1bXxFPXoZDEK8hF0f6FH04kkimigkIcxOOsmQ2ZllplcNS77Ei7/ixYMigif9GyePgyYWNBRV3XR3hbEUFn3/25uanpmdm19YzCwtr6yuZdc3ylYnhkOJa6nNbcgsSKGghAIl3MYGWBRKuAk7Z33/5g6MFVpdYzeGWsRaSjQFZ+ikevawivCAaT7cpRf6DiQtC7inV12FbbDCUq1oSVkARc8YQksbAbZH69mcX/AHoJMkGJEcGaFYz35WG5onESjkkllbCfwYaykzKLiEXqaaWIgZ77AWVBxVLAJbSwfv9eiOUxq0qY0rhXSg/p5IWWRtNwpdZ8Swbce9vvifV0mweVxLhYoTBMWHi5qJpKhpPyvaEAY4yq4jjBvhbqW8zQzj6BLNuBCC8ZcnSXmvEOwX9i4PcienozgWyBbZJnkSkCNyQs5JkZQIJ4/kmbySN+/Je/HevY9h65Q3mtkkf+B9/QCTBaIn</latexit>

Figure 5: Qualitative results on (a) category-agnostic and (b) unseen-category datasets. We test the capacity of our
model by training it across different categories in a single-view setting. We evaluate the performance on both seen an unseen
categories. We consistently observe cleaner views predicted by our model compared to the baseline.
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Table 4: Quantitative results on category-agnostic view synthesis. Our model beats all baselines with a noticeable margin
in terms of the mean metrics. The LPIPS score for our mode is significant better compared to state-of-the-art methods in all
categories.

Metrics Methods plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat mean

PSNR↑

DVR 25.29 22.64 24.47 23.95 19.91 20.86 23.27 20.78 23.44 23.35 21.53 24.18 25.09 22.70
SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28

pixelNeRF 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
Ours 30.15 27.01 28.77 27.74 24.13 24.13 28.19 24.85 30.23 27.32 26.18 27.25 28.91 27.08

SSIM↑

DVR 0.905 0.866 0.877 0.909 0.787 0.814 0.849 0.798 0.916 0.868 0.840 0.892 0.902 0.860
SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

pixelNeRF 0.956 0.928 0.924 0.946 0.876 0.871 0.914 0.869 0.970 0.919 0.913 0.925 0.940 0.910
Ours 0.957 0.930 0.925 0.948 0.877 0.871 0.916 0.869 0.970 0.920 0.914 0.926 0.941 0.920

LPIPS↓

DVR 0.095 0.129 0.125 0.098 0.173 0.150 0.172 0.170 0.094 0.119 0.139 0.110 0.116 0.130
SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

pixelNeRF 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
Ours 0.061 0.080 0.076 0.085 0.103 0.105 0.091 0.116 0.048 0.081 0.071 0.080 0.094 0.082

prior, allowing it to generate feasible geometry for unseen
categories such as benches and sofas. We also observe that
the novel view images predicted by pixelNeRF are consis-
tently more blurry, which explains its better performance on
PSNR. On contrary, our model predicts sharp images that
are more favorable by human perception, resulting in better
metrics like LPIPS.

4.2. 3D Reconstruction

We now turn to the task of evaluating the 3D geome-
try learned by our approach in a self-supervised manner by
minimizing a novel view synthesis objective. In this set-
ting, we evaluate 3D reconstruction by taking the mean
intersection-over-union (mIoU) over the predicted α vol-
ume (the last channel of Vs) and the corresponding ground
truth occupancy volume. We compare our model to sev-
eral unsupervised 3D reconstruction methods: PrGAN [15],
PlatonicGAN/3D [11], Multi.-View [47], and 3DGAN[46].
PlatonicGAN and PrGAN adopt a adversarial approach to
learn 3D reconstruction given a single image with a canon-
ical view. For this evaluation, we utilize the model trained
with category-agnostic supervision and report results on the
airplane class as introduced in [11]. The predicted alpha
volume is binarized using a threshold τ = 0.05. The ground
truth data is obtained from the ShapeNet voxelized volumes
[5] and upsampled from 323 to 643 via nearest-neighbor in-
terpolation. We then calculate the mIoU score and report
in Table 6. Results of other models are directly taken from
PlatonicGAN [11].

As shown in Table 6, our model predicts accurate 3D
reconstruction, outperforming the best baseline by 10% in
mIoU. We attribute this boost in performance to the fact
that our model can easlily tap large quantities of data in
a category-agnostic manner. Whereas in GAN approaches
like PlatonicGAN category-agnostic training has tradition-
ally been a very an extremely difficult problem, prevent-

ing these approaches to tap large quantities of data for view
synthesis. Fig. 6 shows qualitative 3D reconstruction re-
sults where we observe that our model produces accurate
3D models of objects. Furthermore, we extend the 3D re-
construction evaluation by including two supervised base-
lines V-LSMs[14] and 3D-R2N2 [5]. Our model obtains a
mIoU of 63.25% averaged across categories, while V-LSMs
achieves 61.5% and 3D-R2N2 achieves 55.1%. Complete
comparison details can be found in the appendix.

4.3. Ablation Studies

To better understand the benefits of each component of
our model, we perform ablation studies by excluding one of
each of the following components: inverse projection, 2D
U-Net, 3D U-Net, or halved 3D voxel resolution. We use a
1/4 training split of the ShapeNet chairs dataset and evalu-
ate the performance on the full test split. Table 7 summa-
rizes our findings. Starting from the right-most column, we
sequentially remove and replace the components with their
simplified variants and measure the model performance us-
ing the PSNR metric. It turns out that each component con-
tributes [0.1, 0.5] metric improvements. The inverse pro-
jection component is essential in terms of preserving the
implicit geometric and texture information, in comparison
to naively reshaping 2D feature volume into 3D [7, 27].
2D/3D U-Nets are useful to synthesize abstract geometry
while preserving texture with skip connections, in compar-
ison to single-path ResNet network structure. The halved
3D resolution is beneficial in reducing the tensor memory
footprint and increasing the receptive field.

5. Conclusion
We have presented a simple yet effective approach to per-

form novel view synthesis of objects without explicit 3D su-
pervision. Contrary to recent developments using radiance
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Table 5: Quantitative results on unseen-category view synthesis. Our model obtains slightly worse PSNR, similar SSIM
and better LPIPS metrics when compared to pixelNeRF.

Metrics Methods bench cbnt. disp. lamp spkr. rifle sofa table phone boat mean

PSNR↑

DVR 18.37 17.19 14.33 18.48 16.09 20.28 18.62 16.20 16.84 22.43 17.72
SRN 18.71 17.04 15.06 19.26 17.06 23.12 18.76 17.35 15.66 24.97 18.71

pixelNeRF 23.79 22.85 18.09 22.76 21.22 23.68 24.62 21.65 21.05 26.55 22.71
Ours 23.10 22.27 17.01 22.15 20.76 23.22 24.20 20.54 19.59 25.77 21.90

SSIM↑

DVR 0.754 0.686 0.601 0.749 0.657 0.858 0.755 0.644 0.731 0.857 0.716
SRN 0.702 0.626 0.577 0.685 0.633 0.875 0.702 0.617 0.635 0.875 0.684

pixelNeRF 0.863 0.814 0.687 0.818 0.778 0.899 0.866 0.798 0.801 0.896 0.825
Ours 0.865 0.819 0.686 0.822 0.785 0.902 0.872 0.792 0.796 0.898 0.825

LPIPS↓

DVR 0.219 0.257 0.306 0.259 0.266 0.158 0.196 0.280 0.245 0.152 0.240
SRN 0.282 0.314 0.333 0.321 0.289 0.175 0.248 0.315 0.324 0.163 0.280

pixelNeRF 0.164 0.186 0.271 0.208 0.203 0.141 0.157 0.188 0.207 0.148 0.182
Ours 0.135 0.156 0.237 0.175 0.173 0.117 0.123 0.152 0.176 0.128 0.150

Input
<latexit sha1_base64="AEuS1iOF73SdijggiR8iirj+7hI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoRW8RzAOSJcxOZpMhsw9neoNhyXd48aCIVz/Gm3/jbLIHTSxoKKq66e7yYik02va3tbK6tr6xWdgqbu/s7u2XDg6bOkoU4w0WyUi1Paq5FCFvoEDJ27HiNPAkb3mjm8xvjbnSIgofcBJzN6CDUPiCUTSS20X+hOldGCc4Jb1S2a7YM5Bl4uSkDDnqvdJXtx+xJOAhMkm17jh2jG5KFQom+bTYTTSPKRvRAe8YGtKAazedHT0lp0bpEz9SpkIkM/X3REoDrSeBZzoDikO96GXif14nQf/KTUX2Ew/ZfJGfSIIRyRIgfaE4QzkxhDIlzK2EDamiDE1ORROCs/jyMmlWK855pXp/Ua5d53EU4BhO4AwcuIQa3EIdGsDgEZ7hFd6ssfVivVsf89YVK585gj+wPn8AEOiSSQ==</latexit>

Ours
<latexit sha1_base64="z2Js6CFrE+6iwwMmsTPTPAGhk3I=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxZsRzAOyS5idTJIhsw9mesSw5De8eFDEqz/jzb9xkuxBEwsaiqpuurvCVAqNrvvtrKyurW9sFraK2zu7e/ulg8OmToxivMESmah2SDWXIuYNFCh5O1WcRqHkrXB0M/Vbj1xpkcQPOE55ENFBLPqCUbSS7yN/wuzOKD0h3VLZrbgzkGXi5aQMOerd0pffS5iJeIxMUq07nptikFGFgkk+KfpG85SyER3wjqUxjbgOstnNE3JqlR7pJ8pWjGSm/p7IaKT1OAptZ0RxqBe9qfif1zHYvwoyEacGeczmi/pGEkzINADSE4ozlGNLKFPC3krYkCrK0MZUtCF4iy8vk2a14p1XqvcX5dp1HkcBjuEEzsCDS6jBLdShAQxSeIZXeHOM8+K8Ox/z1hUnnzmCP3A+fwBK35HY</latexit>

GT
<latexit sha1_base64="unQt94OX0IY6WzDcrKYgNhXPkVE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoQY8R8sJkCbOTSTJkdnaZ6RXDkr/w4kERr/6NN//GSbIHTSxoKKq66e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg4bJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PRzdRvPnJtRKRqOI65H9KBEn3BKFrpoYP8CdPb2oR0C0W35M5AlomXkSJkqHYLX51exJKQK2SSGtP23Bj9lGoUTPJJvpMYHlM2ogPetlTRkBs/nV08IadW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Kz8VKk6QKzZf1E8kwYhM3yc9oTlDObaEMi3srYQNqaYMbUh5G4K3+PIyaZRL3nmpfH9RrFxnceTgGE7gDDy4hArcQRXqwEDBM7zCm2OcF+fd+Zi3rjjZzBH8gfP5A15FkLY=</latexit>

Input
<latexit sha1_base64="AEuS1iOF73SdijggiR8iirj+7hI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoRW8RzAOSJcxOZpMhsw9neoNhyXd48aCIVz/Gm3/jbLIHTSxoKKq66e7yYik02va3tbK6tr6xWdgqbu/s7u2XDg6bOkoU4w0WyUi1Paq5FCFvoEDJ27HiNPAkb3mjm8xvjbnSIgofcBJzN6CDUPiCUTSS20X+hOldGCc4Jb1S2a7YM5Bl4uSkDDnqvdJXtx+xJOAhMkm17jh2jG5KFQom+bTYTTSPKRvRAe8YGtKAazedHT0lp0bpEz9SpkIkM/X3REoDrSeBZzoDikO96GXif14nQf/KTUX2Ew/ZfJGfSIIRyRIgfaE4QzkxhDIlzK2EDamiDE1ORROCs/jyMmlWK855pXp/Ua5d53EU4BhO4AwcuIQa3EIdGsDgEZ7hFd6ssfVivVsf89YVK585gj+wPn8AEOiSSQ==</latexit>

Ours
<latexit sha1_base64="z2Js6CFrE+6iwwMmsTPTPAGhk3I=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxZsRzAOyS5idTJIhsw9mesSw5De8eFDEqz/jzb9xkuxBEwsaiqpuurvCVAqNrvvtrKyurW9sFraK2zu7e/ulg8OmToxivMESmah2SDWXIuYNFCh5O1WcRqHkrXB0M/Vbj1xpkcQPOE55ENFBLPqCUbSS7yN/wuzOKD0h3VLZrbgzkGXi5aQMOerd0pffS5iJeIxMUq07nptikFGFgkk+KfpG85SyER3wjqUxjbgOstnNE3JqlR7pJ8pWjGSm/p7IaKT1OAptZ0RxqBe9qfif1zHYvwoyEacGeczmi/pGEkzINADSE4ozlGNLKFPC3krYkCrK0MZUtCF4iy8vk2a14p1XqvcX5dp1HkcBjuEEzsCDS6jBLdShAQxSeIZXeHOM8+K8Ox/z1hUnnzmCP3A+fwBK35HY</latexit>

GT
<latexit sha1_base64="unQt94OX0IY6WzDcrKYgNhXPkVE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoQY8R8sJkCbOTSTJkdnaZ6RXDkr/w4kERr/6NN//GSbIHTSxoKKq66e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg4bJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PRzdRvPnJtRKRqOI65H9KBEn3BKFrpoYP8CdPb2oR0C0W35M5AlomXkSJkqHYLX51exJKQK2SSGtP23Bj9lGoUTPJJvpMYHlM2ogPetlTRkBs/nV08IadW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Kz8VKk6QKzZf1E8kwYhM3yc9oTlDObaEMi3srYQNqaYMbUh5G4K3+PIyaZRL3nmpfH9RrFxnceTgGE7gDDy4hArcQRXqwEDBM7zCm2OcF+fd+Zi3rjjZzBH8gfP5A15FkLY=</latexit>

Input
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Figure 6: Qualitative results for 3D geometry reconstruction. We visualize the predicted α volume with its raw resolution
643 and the ground truth volume with its raw resolution 323. With a single-forward pass, our model can perform 3D geometry
reconstruction given a single view of objects from 13 different categories. Our model trained with only 2D supervision
consistently predicts meaningful and full geometry.

Table 6: Quantitative results for 3D geometry recon-
struction on Airplanes class. Our model outperforms all
baseline models in terms of single-view 3D reconstruction.

PrGAN PlatonicGAN Multi.-View 3DGAN PlatonicGAN 3D Ours

mIoU↑ 0.11 0.20 0.36 0.46 0.44 0.58

Table 7: Ablation studies on different model compo-
nents. We show the effectiveness of various model compo-
nents, trained with a 1/4 size of the ShapeNet chairs dataset.

- inv projection - 2D U-Net - 3D U-Net - half 3D resolution Full

PSNR 20.62 21.10 21.45 21.82 21.94

fields for view synthesis, our approach is neither continu-
ous nor implicit. Despite the simplicity of our approach, we
demonstrate that our model obtains comparable or even bet-
ter performance than recent state-of-the-art approaches for
few shot view synthesis using radiance fields [49], while

rendering objects at over 400x speed up. In addition, our
model learns accurate 3D geometry in a self-supervised
manner, relaxing the need of a large amount of 3D geom-
etry data, and surpassing recent baselines for unsupervised
learning of 3D geometry.

As a future work (appendix), we plan to investigate the
use of explicit sparse space representations such as octrees
[38, 42, 48], mixture of volumetric primitives [20], and
scene graphs [28, 25] to increase our geometric capacity.
Our current model cannot produce view-dependent lighting
effects. This limitation can be addressed with a more infor-
mative material representation and a shading model that in-
corporates view direction, lighting, and surface information.
We can also utilize techniques such as spherical harmonics
[9] or a learned multilayer perceptron (MLP) to synthesize
the color with view-dependent specular effects. By doing
so during rendering time, we can leverage more advanced
rendering techniques such as deferred rendering to better
estimate the radiance field that captures both incoming light
and material properties.

3798



References
[1] Kara-Ali Aliev, Dmitry Ulyanov, and Victor Lempit-

sky. Neural point-based graphics. arXiv preprint
arXiv:1906.08240, 2(3):4, 2019.

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[3] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neu-
ral image based rendering with continuous view control. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4090–4100, 2019.

[4] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H
Kim, and Jan Kautz. Extreme view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 7781–7790, 2019.

[5] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2016.

[6] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural point cloud rendering via multi-plane
projection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7830–
7839, 2020.

[7] Emilien Dupont, Miguel Angel Bautista, Alex Colburn,
Aditya Sankar, Carlos Guestrin, Josh Susskind, and Qi
Shan. Equivariant neural rendering. arXiv preprint
arXiv:2006.07630, 2020.

[8] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. arXiv preprint arXiv:2103.10380, 2021.

[9] Robin Green. Spherical harmonic lighting: The gritty details.
In Archives of the game developers conference, volume 56,
page 4, 2003.

[10] Adam W Harley, Shrinidhi Kowshika Lakshmikanth, Paul
Schydlo, and Katerina Fragkiadaki. Tracking emerges by
looking around static scenes, with neural 3d mapping. In
European Conference on Computer Vision, pages 598–614.
Springer, 2020.

[11] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escap-
ing plato’s cave: 3d shape from adversarial rendering. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 9984–9993, 2019.

[12] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. arXiv
preprint arXiv:1506.02025, 2015.

[13] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165–
174, 1984.
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