
AttWalk: Attentive Cross-Walks for Deep Mesh Analysis

Ran Ben Izhak
Technion, Israel

benizhakran@gmail.com

Alon Lahav
Technion, Israel

alon.lahav2@gmail.com

Ayellet Tal
Technion, Israel

ayellet@ee.technion.ac.il

most
attentive

least
attentive

Figure 1: Most & least attentive walks. A set of random walks over a surface is a successful representation of meshes for
deep learning. Which walks contribute more to the representation? The most attentive walks (in cyan) provide a general
”view” of the object and explore its distinctive features, e.g. the guitar’s neck and strings. In contrast, the least attentive
walks (in magenta) focus on regions that do not distinguish the object from others, e.g. the round seat of the stool.

Abstract

Mesh representation by random walks has been shown
to benefit deep learning. Randomness is indeed a pow-
erful concept. However, it comes with a price—some
walks might wander around non-characteristic regions of
the mesh, which might be harmful to shape analysis, espe-
cially when only a few walks are utilized. We propose a
novel walk-attention mechanism that leverages the fact that
multiple walks are used for a single mesh representation.
The key idea is that the walks may provide each other with
information regarding the meaningful (attentive) features of
the mesh. We utilize this mutual information to extract a sin-
gle descriptor of the mesh. This differs from common atten-
tion mechanisms that use attention to improve the represen-
tation of each individual descriptor. Our approach achieves
SOTA results for two basic 3D shape analysis tasks: clas-
sification and retrieval. Even a handful of walks along a
mesh suffice for learning. Furthermore, our approach pro-
vides insight into mesh importance detection.

1. Introduction
Shape analysis of 3D objects is a fundamental aspect in

modern computer vision and computer graphics research.
This is due to the paramount importance of shape analysis to
numerous applications, including self-driving cars, virtual
& augmented reality, robotics, medicine and many more.

There are several representations of 3D objects, most no-
tably triangular meshes, point clouds and volumetric data.
This work focuses on triangular meshes, which are the most
common representation in computer graphics, thanks to
its efficiency and high-quality. Unfortunately, 3D meshes
are unordered and irregular, which is challenging for deep
learning algorithms. This has led to attempts to ”re–order”
the data and re-define the convolution & pooling operations,
in order to be able to utilize CNNs [14, 22, 53, 55].

Instead of re-ordering the unordered data to suit CNNs,
a different approach was recently proposed [31]: The idea
is to capture the geometry & topology of a mesh, by simply
walking along its surface in a random manner. The prop-
erties of the walk can be aggregated by a Recurrent Neural
Network (RNN). A given mesh can then be represented by

1546

several independent random walks.
Inspired by this approach, we show how to overcome its

major drawback by utilizing its unique characteristic. In
particular, while randomness is powerful, it might produce
walks that do not represent the mesh well, sometimes lead-
ing to failures even when many walks are used. However,
the fact that a mesh is represented by multiple walks helps
us to focus on the important properties of the walk—those
that distinguish the mesh from others.

We propose to learn how to weigh the features of the
various walks, exploiting the fact that they all represent the
very same mesh. These walks may provide each other in-
formation on the important features of the walk and jointly
derive a good mesh description. For intuition sake, let us
draw an analogy to sentences. Suppose that we are given
different sentences describing the same event (i.e., various
walks describing the same mesh). Our goal is come up with
a single description of the significant features of the event,
by utilizing the collection of sentences.

This idea is related to the notion of attention, which is
popular in NLP and in image processing, but is sparser in
mesh analysis in 3D [33, 38, 61]. However, differently from
other attention mechanisms, we interpret the attention vec-
tors as cross-walk probabilities (rather than as new feature
vectors). This enables us to use them, jointly with the orig-
inal feature vectors, to generate a single mesh descriptor.
This descriptor focuses on the distinctive mesh features en-
countered by specific random walks, while neglecting the
effect of commonplace features encountered by others. In
our event analogy, rather than improving the descriptors of
each sentence separately, our attention uses the various at-
tentions to generate a single event descriptor.

Interestingly, our novel walk-attention yields insight re-
garding the distinctiveness of mesh regions. Figure 1 il-
lustrates the most attentive walks—-those that influence the
final mesh descriptor the most (and similarly, the least at-
tentive walks). The most attentive walk of the stool, as de-
termined by our model, goes both through the seat and a
leg, whereas the least attentive walk goes only through the
seat, and thus misses information needed for classification.
Similarly, the most attentive walk of the guitar explores the
neck and the strings, and that of plant explores the flowers
(neglecting the walk on the vase).

We evaluate our method for two fundamental shape anal-
ysis applications: mesh classification and mesh retrieval.
We show that our model achieves SoTA results, using sig-
nificantly few walks for certain datasets. For instance, for
Modelnet40, 1

8

th of the walks suffice, compared to [31],
while the results improve. This is thanks to focusing on the
most distinctive portions of the walks, rather than averaging
all walks. Hence, the paper makes two contributions:

1. We introduce a novel attention mechanism to deep
learning on meshes. This mechanism also provides in-

sight into the regions of 3D objects that are more (or
less) important than others for shape analysis tasks.

2. We present an end-to-end learning framework that re-
alizes this attention. It achieves SoTA results for 3D
shape classification and retrieval.

2. Related work
Mesh deep learning. A triangular mesh is the most
widespread 3D representation in computer graphics, used
in virtual reality, CAD, medical applications etc. A mesh
consists of sets of vertices V , edges E and faces F . Since
each vertex has a different number of neighbors, at different
distances, the basic question is how this irregular represen-
tation shall be handled within deep learning.

In an attempt to ”re–order” the data, it was suggested to
convert the mesh into volumetric grids [4, 13] or into mul-
tiple 2D projections (multi-view) [15, 30, 48, 54]. Point
clouds have been handled quite intensively as well, result-
ing in interesting convolution and pooling operators [1, 42,
44, 51, 60]. Recently, implicit functions have also been pro-
posed [17, 29, 37, 40]. See [18] for a thorough review.

To handle meshes directly, novel convolutions and/or
vertex neighborhoods have been defined [14, 19, 41, 46,
53]. Other works parameterize the mesh in 2D [5, 12, 25,
36, 47]. In [22], a unique idea of using the edges of the
mesh to perform pooling and convolution, is introduced.

Our work is based on a different idea, of representing a
mesh by a set of random walks over its vertices, along the
edges [31]. Each vertex of the walk is represented by the
3D coordinates offset from the previous vertex of the walk.
The walk is fed into a Recurrent Neural Network (RNN) that
”remembers” the walk’s history.

3D attention. Attention was first introduced in [2] for lan-
guage translation and has since revolutionized natural lan-
guage processing [8]. This success has inspired the applica-
tions of attention to image analysis tasks, such as in recog-
nition [11, 26, 66], synthesis [64], and captioning [59, 63].

In 3D, attention is used within multi-view representa-
tion, either aggregating features by attention in consecu-
tive views [20, 23, 54] or, in addition, selecting the next
views according to attention [7, 21]. Recently, attention
has been used for point clouds, attempting to capture the lo-
cal [27, 65] or the global [39, 50] context of a point. Others
have learned contextual relation between point patches [57].
Point transformers have also been proposed [58, 62].

The work on mesh attention, however, is sparser. It was
used for reconstructing 3D human pose [33] or for mesh
deformation [61]. In classification and segmentation, PD-
Meshnet [38] extend the primal-dual graph framework to
3D meshes, utilizing a graph attention network to capture
global context. The non-local nature of transformers is ex-
ploited in [33]. Attention masks are extracted in [61] in

1547

Figure 2: Architecture. Each walk, wi, is processed independently by Meshwalker [31], excluding its last classification
layer, resulting in a feature vector, fwi

, for each walk. These n feature vectors are the input to our novel attention module,
which produces a single mesh feature vector, fa, which emphasizes the most attentive properties of the mesh. The last fully-
connected layer transforms fa into a probability vector, which is used for shape analysis applications (e.g. p is a prediction
vector for classification). Figures 3 and 4 illustrate the architectures of MeshWalker and the cross-walk attention module.

order to attend different shape parts at lower scale, enabling
fine part-deformation for local attentive regions.

Our proposed attention is inherently different. It oper-
ates on multiple random walks on a mesh, using attention
to learn to produce a single cross-walk attentive features.

3. Model
We wish to learn how to separate the wheat from the

chaff, focusing on the mesh relevant features and ignoring
the irrelevant ones. For instance, to distinguish a chair from
a stool in Figure 1, it is beneficial to explore the backrest (or
the lack of it) and not the seat. Generally, in Figure 1 it is
better to focus on the features along the cyan walks than on
the features along the corresponding magenta walks.

We propose a novel model that benefits from having mul-
tiple pieces of information that explore the mesh in diverse
manners. Our key idea is that, given multiple feature vec-
tors, learned from their respective walks, we will learn to
focus on the most informative entries of these descriptors.
This is done by a novel Many-to-One (MtO) attention mod-
ule that generates a single feature vector from the multiple
sources. This descriptor highlights the informative features
and neglects the others. Furthermore, our attention is invari-
ant to the number of walks and to any possible relation be-
tween them (in contrary to multi-view attention, for exam-
ple, which might require fixed order and distance between
consecutive views, as well as a constant number of views).

In analogy, consider multiple sentences that describe the
same event from different perspectives (multiple walks that
describe the same mesh). Each sentence is processed sep-
arately and a feature vector is generated for it. Our goal is
to learn a single feature vector that describes the event as

a whole, by utilizing the collection of feature vectors gen-
erated for the sentences. This is different from common
attention units [52], where attention is used to improve the
individual descriptors. We note that this analogy is not com-
plete, as randomness is unique to our case.

Figure 2 illustrates the architecture of our proposed
model. Hereafter, we briefly describe each of its compo-
nents, while elaborating on the attention module, which is
the key of our framework.
Random walks. Given a mesh, n random walks, wi,
1 ≤ i ≤ n are generated for it. Briefly, as in [31], a random
walk is defined as a sequence of vertices: The first vertex
is selected randomly, and then the next vertices are added
iteratively, where each vertex is chosen randomly from the
vertices adjacent (along an edge) to the current one. Each
walk vertex is represented as the 3D translation from the
previous vertex. Thus, each walk wanders around the mesh,
going through its ridges and valleys, exploring its meaning-
ful, as well as its non-meaningful parts.
MeshWalker. Given a random walk, we apply the Mesh-
Walker network [31], for each walk separately. Our model
consists of n instances of MeshWalker, excluding its last
classification layer. Each instance processes a single walk,
wi, independently, generating a feature vector for this walk
fwi

, 1 ≤ i ≤ n. As illustrated in Figure 3, MeshWalker
first learns to map each walk vertex to a new feature space
in high dimension, by fully-connected layers. Then, a Re-
current Neural Network (RNN), having a hidden state vector
(”memory”) that contains the information gathered along
the walk, is applied. It learns to accumulate the important
information along the walk and forget the non-important in-
formation. The RNN is implemented using three Gated Re-

1548

Figure 3: Meshwalker [31]. This network gets as input a
random walk (a sequence of vertices) along the mesh, wi.
Each vertex is first embedded into a higher dimension fea-
ture vector by two fully-connected layers. Then, subsequent
three RNN (GRU) layers process the sequence of feature
vectors into a single walk feature vector, fwi

, which de-
scribes the properties of the walk.

current Units (GRU) [9]. Thus, a different feature vector is
learned for each walk, describing the mesh from the specific
walk’s perspective.
Cross-walk attention. Our proposed cross-walk attention
module is illustrated in Figure 4. It gets as input n feature
vectors, fwi , and its goal is to learn how to generate a sin-
gle feature vector that describes the mesh, fa, such that the
important information from all the walks are aggregated.

We may think of every vector’s entry as describing a cer-
tain property of the walk. Thus, in order to compute entry i
in the resulting mesh feature vector, all the ith entries of the
walk feature vectors should be used, independently of the
other vectors’ entries. This is done by learning a weight for
each entry of each feature vector. For learning each weight,
however, all entries from all feature vectors should used. Fi-
nally, the weight vectors, jointly with the walk feature vec-
tors, are used to generate the final result. In the following,
we will elaborate on the details of this idea. However, we
note already that our scheme may be beneficial in other sce-
narios where the same object/scene/event can be described
in diverse, though tightly related, manners.

Our attention block consists of two sub-blocks. The first
sub-lock uses the attention information to improve the rep-
resentation of each individual feature vector, as commonly
done. The novelty of our attention module is the second
sub-block, which combined the information into a single
mesh attention vector.

In particular, the first sub-block is given n walk fea-
ture vectors {fwi}ni=1, stacked to form a matrix Fw. The
goal is to generate a new matrix of walk features, Ha, in
which each walk is enriched by information from other
walks. Given Fw, we learn its self-attention map, using the
scaled dot-product attention block of [52], which transforms

each walk features into a self-attention vector. Briefly, Fw

is transformed into three feature sub-spaces Q,K, V . In-
tuitively, the columns of Q and K are walks descriptors,
learned to represent relevancy to one another. While Q
and K play a similar role, their different walk descrip-
tors enable the walks to influence one another in a non-
symmetric manner. V ’s columns represent intra-walk at-
tention per entry. Q,K, V are computed as follows:

Q =W (q)Fw, K =W (k)Fw, V =W (v)Fw, (1)

whereW (q),W (k),W (v) ∈ Rd×d are learned weight matri-
ces that are used to project the walk feature vectors into dif-
ferent sub-spaces of dimension d. (In our implementation
d = 512, the same dimension as that of the walk feature
vectors). The self-attention weights are computed as

Wsa = softmax(
KTQ√

d
). (2)

Finally, the self-attention feature vectors are aggregated in
matrix Ha. Each column of Ha utilizes knowledge from all
the walks and will be used next to weigh the importance of
the different features of each walk, in order to represent the
mesh as a whole. Ha is defined as

Ha = VWsa. (3)

The second sub-block (the cross-walk attention sub-
block in Figure 4) aims at aggregating the walk features
in Fw into a single mesh feature vector fa. This is done
first giving Ha, in which each entry indicates the impor-
tance of that entry, a probabilistic interpretation, by apply-
ing softmax per row i. These probabilities are then multi-
plied, element-wise, by the walk feature vectors Fw, to cre-
ate the cross-walk attention features. That is to say, every
row is weighted (cross-walk) according to the learned prob-
abilities of each walk. Finally, the columns j of the cross-
walk attention matrix are summed, creating the sought-after
mesh feature vector, fa. This procedure is expressed as

G = Fw � softmax(Ha) (4)

(fa)i =

n∑
j=1

Gi,j .

This fine aggregation of multiple walks is at the core of the
success of our attention. This attention is invariant to the
order of the walks and to the choice of n, the number of
walks per object.

Note that fa resides in the original walk feature sub-
space, since each of its entries is a linear combination of the
corresponding entries of Fw. This enables the classification
layer in Figure 2 to process both single-walk features and
cross-walk attentive features seamlessly. This is essential to
our two-phase training, which is described next.

1549

Figure 4: Cross-walk attention. Given n feature vectors fwi
, each representing a walk wi, we compute a cross-walk

attention vector fa. At first, the scaled dot product attention of [52] is applied to the input vectors. It starts by utilizing 3
parallel fully-connected layers per walk: the first two learn the attention between each walk vector to the other walk vectors,
and the third transfers the input walk to be multiplied by a function of the former two. The output of this sub-block are
attention feature vectors for the walks, denoted as Ha. The second sub-block generates a single vector that represents the
mesh in a way that weighs the importance of each walk to each entry. This is done in three steps, given n walk attention
feature vectors Ha: (1) softmax is applied per row in order to transform it into a weight (probability) vector. (2) Hadamard
product (

⊙
) between the acquired weights and the input walk features scales each feature entry according to its learned

importance. (3) The weighted walk features are summed across the walks, to produce the output feature vector fa.

Fully-connected layer. The final prediction vector, p, is
generated by a fully-connected layer, given fa as input.

Training. We pursue a two-phase training strategy. The
first phase attempts to extract the best features per walk in-
dependently. Thus, the network (Figure 2) is trained with-
out our cross-walk attention and learns to extract meaning-
ful features & to correctly classify the shape by every sin-
gle walk. In the second phase, we freeze the MeshWalker
block (the cyan rectangles in Figure 2) and train the atten-
tion block, so as to account for the most relevant features
across all walks. The two-phase training prevents the net-
work from focusing only on the most attentive walks, which
would result in avoiding to process mesh regions that are
less attentive, but may be important for fine results. In Sec-
tion 5 we compare this strategy to 1-phase training.

Recall that both the individual walk features fwi
and the

mesh feature vector fa reside in the same sub-space, thus
both phases can be trained by the same loss. Given a pre-
diction vector (either per-walk in Phase 1 or p of Figure 2
in Phase 2) and the corresponding class label l, training is
performed by minimizing the Softmax cross entropy loss

L(p, l) = − log
epl∑C
j=1 e

pj

. (5)

For retrieval, we train our model using a combination
of the softmax cross entropy loss and the triplet-center loss
(TCL) [24]. Intuitively, TCL attempts to push each walk pre-
diction vector closer to its corresponding class center and
away from centers of other classes. Specifically, given p

and l as above, the TCL is defined as

TCL(p, l) = max (D(p, cl) +m−min
k 6=l

D(p, ck), 0).

(6)
Here, each class is represented by a learned parametric cen-
ter ck (of the same dimension as p). The marginm is a hyper
parameter that prevents pushing the vector too far (m = 1
in our experiments). D(·) is the squared Euclidean distance.
The combination of the losses is defined as

L(p, l) = λ1TCL(p, l) + λ2L(p, l). (7)

In all our experiments λ1 = 1 and λ2 = 0.01. We note that
though this loss encourages the network to learn more dis-
criminative mesh features and indeed improves retrieval re-
sults, empirically it does not improve classification results.

Implementation details: Training is performed in batches
of M = 64 walks, where a batch contains walks from sev-
eral meshes. In the first phase each walk belongs to a dif-
ferent mesh, whereas in the second phase we use 8 walks
per mesh, for 8 meshes. All the meshes in our experiments
are normalized and simplified into 1K, 2K and 4K faces,
both to reduce the network capacity required for training
and as a form of data augmentation. At inference, we av-
erage the scores of the predictions at the different scales.
Meshes with less faces than the above scales are used with-
out simplification. In the first training phase, we use Adam
optimizer with cyclic learning rate of 5 · 10−4 to 10−6 with
20K iterations per cycle, for a total of 200K iterations. In
the second phase, we reduce the learning rate by half, which
is more stable for fine-tuning the cross-walk attention block,
training for additional 100K iterations.

1550

4. Applications
The performance of our model is evaluated on 3D shape

classification and retrieval, for a variety of datasets. For
each dataset, we compare our results to the results reported
in the literature; hence, each table presents results of dif-
ferent algorithms. We note that classification is intensively
explored, so the gain is bound to be small, whereas the gain
for retrieval is more substantial.

4.1. Mesh classification

Given a mesh, the goal is to classify it into one of
pre-defined classes. We apply our model to each mesh,
as described in Section 3, where the last fully-connected
layer outputs a classification prediction vector p. The three
datasets utilized differ in the number of classes and the num-
ber of objects per class. We report on two evaluation mea-
sures: Instance accuracy is defined as the percentage of the
correctly-classified objects. Class accuracy is defined as the
mean of class instance accuracy; thus it considers all classes
equally, ignoring their size. The two metrics are the same
for SHREC11, which is class-balanced, and differ for the
imbalanced datasets, ModelNet40 & 3D-FUTURE.

We will show below that the improvement achieved is
significant for the new challenging dataset (3D-FUTURE)
and is modest for the older datasets (SHREC11 & Model-
Net40) that already have good results. Yet, that improve-
ment is achieved using only 1

8

th of the walks.
3D-FUTURE [16]. This new dataset contains 9, 992 in-

dustrial CAD models of furniture. It consists of 7 super-
categories, having 1-12 sub-categories each, for a total of 34
categories. The train/test split is 6, 699/3, 293. This dataset
is challenging both due to the objects it contains and due to
its hierarchical structure, as objects in related sub-categories
may resemble each other, requiring fine-grain classification.

For this dataset, we trained our model with the class-
balanced loss of [10], which was found empirically to out-
perform cross-entropy. This loss handles well heavily-
imbalanced datasets (the number of training shapes per cat-
egory ranges between 8 to 633). It is given by:

CBsoftmax(p, l) = −
1− β
1− βnl

log
epl∑C
j=1 e

pj

. (8)

For each mesh prediction vector p and label l, we weigh
the cross entropy loss according to the number of training
objects with the same label nl, where β is a hyper-parameter
in the range [0, 1], set empirically to 0.9.

Table 1 shows that our method outperforms previous
methods, both point-based or multi-view. Following [16],
we omit categories with less than 10 training samples from
the train/test sets, thus we are left with 32 categories.

SHREC11 [32]. This dataset consists of 30 classes,
each contains 20 meshes. Typical classes are camels, cats,

Method Input Class Instance
AttWalk (Ours) mesh 72.1% 73.7%
MeshWalker [31] mesh 68.9% 70.6%
PointNet++ [44] point cloud 69.9% -
MVCNN [48] multi-views 69.2% -

Table 1: 3D-FUTURE classification (class/instance accu-
racy). Our results outperform those reported in [16].

Method Input Split-16 Split-10
AttWalk (Ours) Mesh 100% 99.7%
PD-MeshNet [38] Mesh 99.7% 99.1%
MeshWalker [31] Mesh 98.6% 97.1%
HSN [55] Mesh - 96.1%
MeshCNN [22] Mesh 98.6% 91.0%
GWCNN [12] Mesh 96.6% 90.3%
SG [6] Mesh 70.8% 62.6%

Table 2: SHREC11 classification. Split-16(/10) indicates
that 16(/10) objects were used for training out of 20 in each
class. Our method achieves perfect results for the 16/4 split
and almost perfect results for the 10/10 split.

glasses, centaurs, hands etc. Following the setup of [12], the
objects in each class are split into 16 (/10) training examples
and 4 (/10) testing examples.

Table 2 compares the performance of state-of-the-art al-
gorithms on this dataset. Each result is the average of 3
random splits into train/test sets. Our method outperforms
SoTA methods. In fact, for the 16/4 split it achieves a per-
fect score and for the 10/10 split an almost-perfect score.

ModelNet40 [56]. This dataset contains 12, 311 CAD
models from 40 categories, out of which 9, 843 models are
used for training and 2, 468 for testing. Table 3 shows
that our method outperforms other mesh-based methods.
Thanks to our cross-walk attention that focuses on the rel-
evant information from each walk, the good performance
is achieved using only 8 walks per shape, compared to 64
walks in [31].

We note that ModelNet40 is considered challenging for
mesh-based methods, since it contains many non-watertight
and multiple-component object. Thus, multi-view methods
outperform mesh-based methods for this particular dataset.
In addition, as discussed in [49], multi-view methods rely
on networks that are pre-trained not only on mesh datasets,
but also on a large dataset of images (ImageNet).

4.2. Retrieval

Given a query object, the goal is to retrieve objects from
a given dataset, ordered by their relevancy. Relevancy is de-

1551

Method Input Class Instance
AttWalk (Ours) mesh 89.9% 92.5%
MeshWalker [31] mesh 89.9% 92.3%
MeshNet [14] mesh - 91.9%

RS-CNN [35] point cloud - 93.6%
KPConv [51] point cloud - 92.9%
PointNet [42] point cloud 86.2% 89.2%

Subvolume [43] volume - 89.2%
3DShapeNets [56] volume 77.3% 84.7%

View-GCN [54] multi-views 96.5% 97.6%
MVCNN-New [49] multi-views 92.4% 95.0%
Rotationnet [30] multi-views 92.4% 94.8%

Table 3: ModelNet40 classification. Our method achieves
SoTA results compared to other mesh-based methods; com-
parable with MeshWalker, it does so with 1

8 of the walks.

termined, for each returned object, according to the query’s
category and sub-category (if applied). We evaluate our
method on two large-scale retrieval datasets: ModelNet40
and ShapeNet-Core55. The most common evaluation mea-
sure is the mean average precision (mAP), which is used al-
most solely for ModelNet40. For ShapeNet-Core55, other
measures are utilized as well, most notably the Normalized
Discounted Cumulative Gain (NDCG). Specifically, for a
returned list with N objects, we consider those that belong
to the query’s category as positives and the others as neg-
atives. mAP is the mean of the precision scores at every
positive retrieved object position in the list. For NDCG, the
relevancy of each returned object is graded between 0 to 3,
considering both category and sub-category [28]. In [45],
both macro and micro average results are evaluated. The
macro-average gives equal weights to the scores of all the
queries; the micro-average first averages the scores of each
category and then averages the scores of the categories, giv-
ing every category an equal weight, regardless of its size.

ModelNet40 [56]. We use the most common
9, 843/2, 468 train/test split (a few papers use other splits).
Table 4 shows that our method achieves SoTA results. (The
results of [31] are from our runs.)

ShapeNet-Core55. This dataset, which is a subset of
ShapeNet, contains 51, 162 3D objects from 55 categories,
each is subdivided into 1-28 sub-categories. The dataset
is split into 35, 764 / 5, 133 / 10, 265 training / validation
/ testing objects. The results are reported on the test set,
using the evaluation code provided by [45]. As in [45], we
retrieve up to 1000 object whose Euclidean distance from
the prediction vector of the query object is smaller than 2m,
where m is the margin hyperparameter from Equation 6.

Table 5 shows that our performance outperforms those
of SoTA methods in both metrics. As NDCG takes into ac-

Method Input mAP
AttWalk Mesh 91.2
MeshWalker [31] Mesh 87.7
MeshNet [14] Mesh 81.9
GWCNN [12] Mesh 59.0

DensePoint [34] Point Cloud 88.5

MVCNN [48] multi-views 79.5
SeqViews [21] multi-views 89.1

Table 4: ModelNet40 retrieval. Our method outperforms
other methods applied to the full dataset.

microAll macroAll
Method mAP NDCG mAP NDCG
AttWalk 81.1 86.7 65.5 68.2
DLAN [45] 66.3 76.2 47.7 56.3

ViewGCN [54] 78.4 85.2 60.2 66.5
GIFT [3] 64.0 76.5 44.7 54.8
MVCNN [48] 73.5 81.5 56.6 64.0
RotationNet [30] 77.2 86.5 58.3 65.6

Table 5: ShapeNet-Core55 retrieval [45]. Our method
outperforms both mesh-based (upper table) and multi-view
(lower table) methods.

count the sub-categories, our high scores demonstrate how
well our cross-walk attention captures the objects’ distinc-
tive features. This property is also observed in Figure 1.
The bathtub and the desk are erroneously classified by [31]
as a lamp and a sink, respectively. Our method correctly
focuses on walks that depict a broader view of the objects,
including their outlines, resulting in correct classification.

5. Ablation Study
Insights on the most/least attentive walks. What charac-
terizes attentive walks? To answer this question we analyze
the results of ModelNet40 classification. We consider the
attention rank of a walk according to its contribution to the
final mesh feature vector Fa. Since the contribution of a
walk to each entry of Fa differs, we average these contribu-
tions. Hereafter we discuss the affects we observed.
(1) All walks contribute to the final feature vector, however
the contribution of the most attentive walk is 70% higher
than that of the least attentive walk (17% vs. 10%).
(2) The most-attentive walk is 36% longer than the least
attentive walk on average. A possible explanation is that
longer edges tend to describe the outline of the object,
which is meaningful for capturing the shape of the object.
(3) No correlation is found between the the number of faces
adjacent to a walk and the attentiveness of this walk. How-

1552

ever, similarly to (2), the most attentive walks ”cover” more
surface area (of the faces adjacent to the walk).
(4) The median Gaussian curvature of the most attentive
walk is smaller (by 21%) than that of the least attentive
walk. This can be explained, similarly to (2), by the fact
that attentive walks tend to describe the major parts of the
object and not to focus on small (high-curvature) details.
Training: 2-phase vs. 1-phase. Recall that we train our
model in two phases, first training only MeshWalker and
then training only the attention module. We compare this
strategy to a single-phase (end-to-end) training, for Model-
Net40 and for 3D-Future. For both datasets, 2-phase train-
ing yields better results: The instance accuracy is 92.5 vs.
89.2 for ModelNet40 and 73.7 vs. 71.4 for 3D-Future. A
possible explanation is that 2-phase training forces Mesh-
Walker to learn the most meaningful features for each walk
independently, whereas an end-to-end system makes it eas-
ier to focus on the ”easier” (more meaningful) walks. But,
as we saw above, even the least-attentive walks contribute
to the final results and hence should not be neglected.
Number of walks. How many random walks suffice for
optimal exploration of a mesh? Table 6 shows that 8 walks
(in training and testing) already achieve the best results for
SHREC11 classification. These results are reinforced in Ta-
ble 3 for ModelNet40.

Walks 1 2 4 8 16 32

Accuracy 98.1 99.1 99.6 99.7 99.7 99.7

Table 6: Number of walks. 8 walks suffice for best perfor-
mance, in contrast to [31], where 32-64 walks are used.

Alternative walk aggregation methods. Our model ag-
gregates walks using our novel attention scheme. Table 7
compares our results to alternative aggregation strategies
for generating a single shape descriptor from multiple walk
features. It shows that our proposed scheme outperforms
average & max pooling on fwi

, as well as adding average
& max pooling to the self-attention matrix Ha. The latter
two aggregations demonstrate that indeed self-attention by
itself does not suffice for achieving SoTA results.
Walk length. The longer the walk, the better the perfor-
mance. However, once the walk reaches 0.3 of the vertices,
the performance does not improve further. For instance, on
SHREC11, we get 90.5 accuracy when the walk contains
0.1 of the vertices, 99.2 accuracy for 0.2 of the vertices, and
99.7 accuracy for 0.3 or more of the vertices.

Affect of the TCL loss (Eq. 7). If we used the loss of Eq. 5
instead of Eq. 7 in retrieval, the mAP would be as follows:
(1) For ModelNet40 91.0 compared to 91.2 (still SoTA);
(2) For ShapeNetCore55 microAll 78.2 compared to 81.1
(comparable to previous SoTA); (3) For ShapeNetCore55
macroAll 63.5 compared to 65.5 (still SoTA).

Aggregation method Class Instance
Cross-walk Attention (our) 72.1 73.7
Average pooling 70.1 71.0
Max pooling 58.2 60.5
Ha + Average pooling 69.3 71.7
Ha + Max pooling 69.7 71.3

Table 7: Walk aggregation approaches. Our attention out-
performs other aggregation strategies (3D-Future).

Runtime. The average inference time on Quadro P6000 is
62.2 milliseconds (on ModelNet40) (compared to 128 ms
in [31]). Training takes 94.3 milliseconds per object.
Limitations. Figure 5 illustrates a failure case, where a ma-
jority rule of [31] would be preferable. Though 5 of 8 walks
indicate that the shape is a bathtub, our attention gives more
weight to features that indicate that this is a bed. The most
attentive walk (in cyan), which provides a global view of the
shape, classifies it as a bed due to the special shape of this
bathtub. The least attentive walk (in magenta) visits mostly
the tap and thus classifies the bathtub as a sink.

Figure 5: Limitation. Our algorithm classifies the bathtub
as a bed, giving more attention to features resembling a bed,
as shown by the most attentive walk (in cyan).

6. Conclusion
This paper introduced attention into a 3D learning frame-

work, which is under-explored. It showed how multiple ran-
dom walks along the surface may jointly indicate the most
attentive features of a 3D mesh. The key idea is that ex-
ploring the mesh in different ways, by different walks, can
be leveraged for both learning the meaningful attributes of
the surface and to reduce the number of walks needed. Our
approach achieves state-of-the-art results for shape classifi-
cation and shape retrieval on commonly-used datasets.

We intend to adapt our approach to other applications,
most notably shape segmentation. Adjusting our approach
to multi-scale is also a direction that worth further studying.
Acknowledgements. We gratefully acknowledge the sup-
port of the Israel Science Foundation 1083/18, the Ministry
Science and Technology (MOST) 3-17513, and Rafael.

1553

References
[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM
Transactions on Graphics (TOG), 2018.

[2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In ICLR, 2015.

[3] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and
Longin Jan Latecki. Gift: A real-time and scalable 3d shape
search engine. In CVPR, 2016.

[4] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-
cher. 3dmfv: Three-dimensional point cloud classification
in real-time using convolutional neural networks. IEEE
Robotics and Automation Letters, 3:3145–3152, 2018.

[5] Davide Boscaini, Jonathan Masci, Emanuele Rodoià, and
Michael Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. In NeurIPS,
2016.

[6] Alexander M Bronstein, Michael M Bronstein, Leonidas J
Guibas, and Maks Ovsjanikov. Shape google: Geometric
words and expressions for invariant shape retrieval. ACM
Transactions on Graphics (TOG), 2011.

[7] Songle Chen, Lintao Zheng, Yan Zhang, Zhixin Sun, and Kai
Xu. Veram: View-enhanced recurrent attention model for 3D
shape classification. IEEE transactions on visualization and
computer graphics, 25(12):3244–3257, 2018.

[8] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-
term memory-networks for machine reading. In EMNLP,
2016.

[9] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. In
EMNLP, 2014.

[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In CVPR, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[12] Danielle Ezuz, Justin Solomon, Vladimir G Kim, and Mirela
Ben-Chen. GWCNN: A metric alignment layer for deep
shape analysis. In Computer Graphics Forum, 2017.

[13] Gabriele Fanelli, Thibaut Weise, Juergen Gall, and Luc Van
Gool. Real time head pose estimation from consumer depth
cameras. In ICPR, 2011.

[14] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and
Yue Gao. Meshnet: Mesh neural network for 3D shape rep-
resentation. In AAAI, volume 33, pages 8279–8286, 2019.

[15] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and
Yue Gao. GVCNN: group-view convolutional neural net-
works for 3D shape recognition. In CVPR, 2018.

[16] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Bin-
qiang Zhao, Steve Maybank, and Dacheng Tao. 3D-
FUTURE: 3D Furniture shape with TextURE. arXiv preprint
arXiv:2009.09633, 2020.

[17] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3D shape. In CVPR, 2020.

[18] Abubakar Sulaiman Gezawa, Yan Zhang, Qicong Wang, and
Lei Yunqi. A review on deep learning approaches for 3D data
representations in retrieval and classifications. IEEE Access,
8:57566–57593, 2020.

[19] Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos
Zafeiriou. SpiralNet++: A fast and highly efficient mesh
convolution operator. In ICCV Workshops, 2019.

[20] Zhizhong Han, Honglei Lu, Zhenbao Liu, Chi-Man Vong,
Yu-Shen Liu, Matthias Zwicker, Junwei Han, and CL Philip
Chen. 3D2SeqViews: Aggregating sequential views for
3D global feature learning by CNN with hierarchical atten-
tion aggregation. IEEE Transactions on Image Processing,
28(8):3986–3999, 2019.

[21] Zhizhong Han, Mingyang Shang, Zhenbao Liu, Chi-Man
Vong, Yu-Shen Liu, Matthias Zwicker, Junwei Han, and
CL Philip Chen. Seqviews2seqlabels: Learning 3D global
features via aggregating sequential views by rnn with atten-
tion. IEEE Transactions on Image Processing, 28(2):658–
672, 2018.

[22] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. MeshCNN: a network
with an edge. ACM Transactions on Graphics (TOG), 2019.

[23] Xinwei He, Tengteng Huang, Song Bai, and Xiang Bai. View
n-gram network for 3D object retrieval. In ICCV, 2019.

[24] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang
Bai. Triplet-center loss for multi-view 3D object retrieval. In
CVPR, 2018.

[25] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

[26] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In ICCV, 2019.

[27] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In CVPR, 2020.

[28] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-
based evaluation of ir techniques. ACM Transactions on In-
formation Systems (TOIS), 2002.

[29] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Lo-
cal implicit grid representations for 3D scenes. In CVPR,
2020.

[30] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi
Nishida. Rotationnet: Joint object categorization and pose
estimation using multiviews from unsupervised viewpoints.
In CVPR, 2018.

[31] Alon Lahav and Ayellet Tal. Meshwalker: Deep mesh under-
standing by random walks. ACM Transactions on Graphics
(TOG), 2020.

1554

[32] Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawa-
mura, Y Kurita, G Lavoua, and P Dp Suetens. Shape retrieval
on non-rigid 3D watertight meshes. In 3DOR, 2011.

[33] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. arXiv
preprint arXiv:2012.09760, 2020.

[34] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, 2019.

[35] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, 2019.

[36] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lip-
man. Convolutional neural networks on surfaces via seam-
less toric covers. ACM Transactions on Graphics (TOG),
2017.

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019.

[38] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Da-
vide Scaramuzza, and Luca Carlone. Primal-dual mesh con-
volutional neural networks. In NeurIPS, 2020.

[39] Anshul Paigwar, Ozgur Erkent, Christian Wolf, and Christian
Laugier. Attentional pointnet for 3D-object detection in point
clouds. In CVPR, 2019.

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, 2019.

[41] Adrien Poulenard and Maks Ovsjanikov. Multi-directional
geodesic neural networks via equivariant convolution. ACM
Transactions on Graphics (TOG), 2018.

[42] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017.

[43] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3D data. In
CVPR, 2016.

[44] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NeurIPS, 2017.

[45] Manolis Savva, Fisher Yu, Hao Su, Asako Kanezaki,
Takahiko Furuya, Ryutarou Ohbuchi, Zhichao Zhou, Rui Yu,
Song Bai, Xiang Bai, et al. Large-scale 3D shape retrieval
from ShapeNet Core55: SHREC’17 track. In 3DOR, 2017.

[46] Jonas Schult, Francis Engelmann, Theodora Kontogianni,
and Bastian Leibe. Dualconvmesh-net: Joint geodesic and
euclidean convolutions on 3D meshes. In CVPR, 2020.

[47] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning
3D shape surfaces using geometry images. In ECCV, 2016.

[48] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3D shape recognition. In ICCV, 2015.

[49] Jong-Chyi Su, Matheus Gadelha, Rui Wang, and Subhransu
Maji. A deeper look at 3D shape classifiers. In ECCV, 2018.

[50] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi,
and Kwang Moo Yi. Acne: Attentive context normalization
for robust permutation-equivariant learning. In CVPR, 2020.

[51] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. KPConv: Flexible and deformable convolution for
point clouds. In ICCV, 2019.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017.

[53] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3D shape analysis. In
CVPR, 2018.

[54] Xin Wei, Ruixuan Yu, and Jian Sun. View-gcn: View-based
graph convolutional network for 3d shape analysis. In CVPR,
2020.

[55] Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt.
Cnns on surfaces using rotation-equivariant features. ACM
Transactions on Graphics (TOG), 2020.

[56] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapeNets: A deep representation for volumetric shapes. In
CVPR, 2015.

[57] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming
Zhang, Kai Xu, and Jun Wang. Mlcvnet: Multi-level con-
text votenet for 3D object detection. In CVPR, 2020.

[58] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional shapecontextnet for point cloud recognition. In
CVPR, 2018.

[59] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In ICML, 2015.

[60] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In ECCV, 2018.

[61] Jie Yang, Lin Gao, Qingyang Tan, Yihua Huang, Shihong
Xia, and Yu-Kun Lai. Multiscale mesh deformation com-
ponent analysis with attention-based autoencoders. arXiv
preprint arXiv:2012.02459, 2020.

[62] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
CVPR, 2019.

[63] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alex Smola. Stacked attention networks for image question
answering. In CVPR, 2016.

[64] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks. In
ICML, 2019.

[65] Wenxiao Zhang and Chunxia Xiao. Pcan: 3D attention map
learning using contextual information for point cloud based
retrieval. In CVPR, 2019.

[66] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, 2020.

1555

