
Auto-X3D: Ultra-Efficient Video Understanding via Finer-Grained Neural
Architecture Search

Yifan Jiang1*, Xinyu Gong1∗, Junru Wu2, Humphrey Shi3,5, Zhicheng Yan4, Zhangyang Wang1

1University of Texas at Austin 2Texas A&M University
3University of Oregon 4Facebook AI 5Picsart AI Research (PAIR)
{yifanjiang97,xinyu.gong,atlaswang}@utexas.edu

Abstract

Efficient video architecture is the key to deploying video
recognition systems on devices with limited computing re-
sources. Unfortunately, existing video architectures are of-
ten computationally intensive and not suitable for such ap-
plications. The recent X3D work presents a new family of
efficient video models by expanding a hand-crafted image
architecture along multiple axes, such as space, time, width,
and depth. Although operating in a conceptually large
space, X3D searches one axis at a time, and merely explored
a small set of 30 architectures in total, which does not suffi-
ciently explore the space. This paper bypasses existing 2D
architectures, and directly searched for 3D architectures in
a fine-grained space, where block type, filter number, ex-
pansion ratio and attention block are jointly searched. A
probabilistic neural architecture search method is adopted
to efficiently search in such a large space. Evaluations on
Kinetics and Something-Something-V2 benchmarks confirm
our AutoX3D models outperform existing ones in accuracy
up to 1.3% under similar FLOPs, and reduce the computa-
tional cost up to ×1.74 when reaching similar performance.

1. Introduction
Video models are arguably living in a much larger de-

sign space than image models, as they are expected to ab-
stract information in both spatial- and temporal dimensions,
which requires a larger set of layer types and more com-
plicated arrangements of the layers. However, many exist-
ing video models are simply built on top of image mod-
els, which are tailored to process video by applying image
models to individual/a stack of frames (e.g. two-stream
network [38]), replacing 2D- with 3D convolution (e.g.
C3D [34], I3D [2], S3D [42], CSN [35]), or adding tem-
poral convolution (e.g. R(2+1)D [36]). Such an image-to-
video design process has served us as a fast path to build
video architectures, but may also limit our exploration of

*The first two authors contribute equally.

0.2 0.4 0.6 0.8 1.0

73

74

75

76

78

77

TFLOPS / Video (# multiply-adds x 1012)

To
p-

1
A

cc
ur

ac
y

on
 K

in
et

ic
s-

40
0

(%
)

1.2 1.4

X3DAutoX3D

EfficientNet3D
TSM

SlowFast

0
72

VoV3D

79

+1.3% Higher

x1.74 Faster

Figure 1: Main results on Kinetics-400. Compared to
other SOTA models, the proposed AutoX3D network series
achieve better Accuracy-To-Complexity (ATC) trade-off.

the video architectures. On the other side, to design video
architectures from scratch, one needs to take into account
many more factors, than that of image recognition models.
For example, one has to not only extend the inputs, fea-
tures, and/or filter kernels into the temporal axis [2], but
also strike a balance over many factors, such as the depth
(number of layers), width (filter number), and spatial res-
olution, to achieve a good Accuracy-To-Complexity (ATC)
trade-off [33].

Recently, machine-designed architectures by Neural
Architecture Search (NAS) have surpassed the human-
designed ones for image recognition [28, 24, 33, 44]. For
video action recognition, the latest work X3D [9] placed
a new milestone in this line: it progressively expanded a
hand-crafted 2D architecture into 3D spatial-temporal ones,
by expanding along multiple axes, including space, time,
width, and depth. As the joint search space of all axes
is extremely large, X3D only searches over one axis at a
time, progressively expanding the architectures to meet the

2554

target complexity. Although competitive ATC trade-off is
achieved, those architectures are searched after only explor-
ing 30 architectures in the space, which includes a total of
3,780 architectures. Can we search video architectures with
better ATC if the design space is more sufficiently explored?

Moreover, X3D models still conform to many manual
design choices in the hand-crafted 2D architecture based on
MobileNet [31]. For example, the temporal-spatial kernel
size is fixed to be 3 × 32 for depthwise convolution in the
3D MBConv (Mobile Inverted Bottleneck Conv) building
block, the expansion rate is fixed to be 2.25, and all blocks
in the same stage chooses the same number of filters while
the difference in the number of filters between blocks from
neighboring stages is always 2×. For the model architec-
ture, X3D only explores to uniformly expand the number of
filters and number of blocks to change the model complex-
ity. Can we go beyond hand-crafted 2D architectures, and
directly search for 3D architectures while allowing different
architectures in individual building blocks?

This paper aims to address those questions, and takes
steps further towards the direction of efficient video recog-
nition . The goal is fundamentally challenging as it requires
us to rethink the design space of the video architecture, relax
many constraints which are made to facilitate manual explo-
ration, and more aggressively explore the design space.

To this end, this paper directly searches for efficient
video architecture, leading to our work of AutoX3D . Dif-
ferent from X3D which ignores the variations of the block
types and only uniformly expands the channels, we intro-
duce a fine-grained search space for efficient video mod-
els, by including more efficient operations. Unlike the con-
ventional differentiable NAS (e.g. DARTS [20]), which re-
peatedly stacks the cells of the same structure in the net-
work, our search allows independent blocks at different lay-
ers. In our fine-grained space, we jointly search for the
block types, filter numbers, expansion ratio, and attention
blocks, substantially surpassing those in previous work on
image NAS [20, 28, 47, 40] and video NAS [9, 30, 30, 29].
To support fast search, we adopt the probabilistic differen-
tiable NAS (PARSEC) [4] as the basic search algorithm,
which requires much less memory footprint than conven-
tional DNAS (e.g. DARTS [20]). Furthermore, we extend
it to support the joint search among different factors (depth,
channel, expansion ratio etc.). For better sample efficiency
in our search space, we introduce the fairness-aware chan-
nel selection strategy into the probabilistic search algo-
rithm, which enables a more stable, accurate, and scalable
search framework for our task.

To summarize, we view the contributions as following.

• A fine-grained design space for efficient video recogni-
tion is proposed, to jointly search the block types, filter
numbers, expansion ratio, and attention blocks.

• A family of efficient AutoX3D models, which are directly
searched without any architecture surrogate or the use of
hand-crafted image architecture, are presented. Their ar-
chitectures are distinctive from hand-crafted models, and
provide new insights of designing video architectures.

• Extensive evaluations on Kinetics [16] and Something-
Something [12] benchmarks confirm our AutoX3D mod-
els achieve significantly better accuracy-to-complexity
trade-off than other existing models.

2. Related Work

2.1. Video Architecture Design

Early video models are built on top of image ones. As the
name implies, Two-Stream Network [38] uses two streams
of image architectures to process single-frame and multi-
frame optical flow inputs, respectively. To capture tempo-
ral feature, R(2+1)D [36] adds 1D temporal convolution to
the 2D ResNet model while I3D [2] replaces 2D convolu-
tion with more expensive 3D convolution. To model long-
range temporal relations, [45, 8] runs LSTMs on top of im-
age features extracted from video frames, while [39] uses
non-local blocks. Those video architectures are computa-
tionally heavy, and not suitable to be deployed on devices
with limited computing power.

Due to the prevalence of mobile devices, designing ef-
ficient video architectures has become an increasingly im-
portant task. Efficient blocks, such as Temporal Shift mod-
ule [19] and Video Shuffling module [22], are proposed
to capture the temporal dynamics at low cost. More fine-
grained adaptation of 2D models is also proposed. For ex-
ample, in [42] it reports for I3D backbone, top-heavy mod-
eling achieves better ATC trade-off by placing expensive 3D
convolutions in the top layers only. However, such adapta-
tion is not effective for ResNet backbone [36], highlight-
ing the limitation of manually designed video architectures.
Recently, search-based video architecture design, such as
Tiny Video Network [25] and X3D [9], has made signifi-
cant progress towards efficient video architecture. In partic-
ular, X3D presents new insights for turning a 2D architec-
ture into 3D one by progressively expanding it along mul-
tiple axes, such as width, depth, and time. Different from
X3D, we completely search video architecture from scratch
in a more fine-grained space, and demonstrate the discov-
ered architectures can squeeze out more gain in terms of
efficiency and accuracy.

2.2. Neural Architecture Search Methods

Neural architecture search (NAS) aims to replace the la-
borious human design of network architectures, as well as
towards more efficient ones [32]. The conventional evo-
lution or reinforcement learning-based search methods are

2555

slow and take thousands of GPU days. For example, search-
ing an image model for CIFAR-10 and ImageNet required
2000 GPU days of reinforcement learning (RL) [46] or
3150 GPU days of evolution [28]. ENAS [24] introduced
a parameter-sharing strategy to reduce the search time. Re-
cent differentiable NAS (DNAS) methods [20] introduced
the softmax-based continuous relaxation of the architecture
representation, allowing efficient search using gradient de-
scent. However, they compute features for all layer choices,
and uses much more memory than standalone model train-
ing. The probabilistic version of DNAS, such as PAR-
SEC [4], describes the population of architectures in the
design space by a distribution, and only requires to sam-
ple one architecture at a time, which uses memory only as
much as in the standalone model training. In this work, we
employ PARSEC as the search procedure to search efficient
video architectures in our fine-grained search space due to
its low memory footprint and fast search efficiency.

2.3. Neural Architecture Design Space

The success of searching efficient models depends not
only on the efficiency of the search method, but also on the
prescription of the architecture design space. In [26], a new
comparison paradigm is proposed to compare different de-
sign spaces. NASNet [47] proposed a design space of a cell
which is a directed acyclic graph. Only the connectivity
between graph nodes and the operator type on each graph
edge is searched. The final model is obtained by stacking
cells with the same architecture. Similarly, DARTS [20]
also only searches the cell architecture, and repeats cells to
obtain the final model. Although sharing the architectures
across cells can reduce the size of model design space and
simplify the search, it can be detrimental to video archi-
tecture design. Recent hand-crafted video models, such as
S3D [42] and SlowFast [10], only use expensive 3D con-
volution in the top layers to improve the ATC trade-offs,
while leaving convolutions in the bottom layers to be 2D.
Other design choices, such as the building block type and
filter number, are still manually chosen and often uniform.
To search for efficient video models, we relax such hard-
coded constraints, allow individual building blocks to have
separate architectures and filter numbers.

3. AutoX3D Design Space

In this section, we introduce the design space of Au-
toX3D architectures. We define a model as a stack of
building blocks, and choose to use the 3D version of Mo-
bile Inverted Bottleneck Conv block (MBConv) from Mo-
bileNetV2 [31] as our building block. The original MB-
Conv block is proven to be more efficient than the ResNet
building block [13] in prior work [31, 14] and its 3D version
is suitable for building efficient video architectures. Unlike

Type Kernel
t1 s3 1× 32

t1 s5 1× 52

t3 s3 3× 32

t3 s5 3× 52

t5 s3 5× 32

t5 s5 5× 52

Table 1: The choices of MBConv3D block micro archi-
tecture in our space.

X3D models [9], in our space, the design of the video archi-
tecture is more flexible in the following aspects.

3.1. Nonuniform Block Micro-Architecture

In X3D models, the 3D MBConv building block always
consists of a conv1 × 1 layer to expand the filter number,
a depthwise convolution layer of kernel size 3× 32 to con-
volve with spatial features, and another conv1 × 1 layer to
shrink the filter number in the final output feature. Depth-
wise convolution with kernel 3× 32 is more expensive than
that with a 2D kernel of size 1 × 32, and such choice of
uniform building block micro-architecture is sub-optimal to
achieve good ATC. Many prior works [36, 42] have exam-
ined the progressively varying temporal-spatial feature pat-
terns along with the model depth. For example, S3D [42]
work has shown employing 3D convolution at bottom lay-
ers (close to input) is less cost-effective than using it at top
layers (close to final prediction). On the other side, other
convolution kernel sizes, such as 1× 52 and 3× 52, are not
yet explored in hand-crafted models due to a large number
of different combinations of spatial-temporal kernel size.
In AutoX3D design space, we consider 3D MBConv block
with a different spatial-temporal kernel size in depthwise
convolution as a separate block micro-architecture.

In Table 1, we present the choices of the 3D MBConv
block micro-architectures in our design space.

3.2. Searchable Filter Number

The choices of the filter number in the building blocks of
the hand-crafted models often follow simple heuristics. For
example, in I3D [2], S3D [42], R(2+1)D [36], and X3D [9]
models, all of which have 4 stages and each stage has mul-
tiple building blocks, the filter number of the output feature
from the building blocks is fixed within the stage, and is
doubled in the next stage. The principle of this heuristic
choice is originally from 2D ResNet work [13], whereby
doubling the filter number when the spatial resolution of
the 2D feature map is reduced by half in the next stage,
all building blocks use a similar amount of FLOPS and the
compute of the overall model is evenly distributed to the
building blocks.

2556

𝛼N

𝛼1

𝛼N-1 ∑

Channel
Search

Expansion Ratio Search

Block-type
Search

MBConv
Block

MBConv
Block

MBConv
Block

Attention
Block

GloRe

Pass Through

𝛼1

𝛼N ∑

Attention-type
Search

Figure 2: The macro-architecture of AutoX3D design space.

However, this principle does not hold for 3D video mod-
els, as the 3D feature map has both temporal- and spatial-
resolution, and often only the spatial-resolution is reduced
by half in the next stage while the temporal resolution is not
reduced for achieving high recognition performance. For
example, in SlowFast [10] and X3D [9] models, the tempo-
ral resolution is not reduced in all 4 stages.

Moreover, the choice of evenly distributing computation
to all building blocks is quite ad-hoc. In our design space,
we do not manually prescribe the filter number for the build-
ing blocks. Instead, we design a separate range of filter
number choices for individual building blocks in the model,
and even allow building blocks in the same stage to have
different filter numbers. As the choices of filter number
have a large impact on both the recognition performance
and model computational cost, our flexible design and fine-
grained choices allow the search methods to discover archi-
tectures with a better ATC trade-off.

The choices of filter numbers for individual building
blocks are shown as part of the macro-architecture of our
design space in Table 2.

3.3. Nonuniform Expansion Rate

In MBConv block, a conv1 × 1 layer is used to expand
the filter number, and the expansion rate decides the chan-
nel number of the feature map where the following depth-
wise convolution will operate on. For simplicity, a uniform
choice of the expansion rate is often chosen by the hand-
crafted models. For example, in the original MobileNet
family of models [31, 14], all MBConv blocks use the ex-
pansion rate 6 while in X3D models [9], the expansion rate
is always 2.25. The uniform choice of the expansion rate

Max Input Block
Expansion Channel Number

Spatial Att.
C × T × S2 Type Stride Block

3×13×1602 data 1 24 1 1 -

3×13×802 1×32 1 24 1 2 -

28×13×402 TBS

1.5 ∼ 6.0, 0.75

12 ∼ 28, 4 1 2 TBS
28×13×402 TBS 12 ∼ 28, 4 2 1 TBS
64×13×202 TBS 24 ∼ 64, 8 2 2 TBS
64×13×202 TBS 24 ∼ 64, 8 3 1 TBS
132×13×102 TBS 48 ∼ 132, 12 2 2 TBS
132×13×102 TBS 48 ∼ 132, 12 3 1 TBS
132×13×102 TBS 48 ∼ 132, 12 3 1 TBS
132×13×102 TBS 48 ∼ 132, 12 3 1 TBS
264×13×52 TBS 96 ∼ 264, 24 2 2 TBS
264×13×52 TBS 96 ∼ 264, 24 2 1 TBS
264×13×52 TBS 96 ∼ 264, 24 3 1 TBS

432 pool - 432 1 - -
2048 fc - 2048 1 - -

Table 2: The macro-architecture of our AutoX3D de-
sign space. “TBS” means the operators that are to be
searched.

ignores the variations of feature representation needed at
different model depths, and we hypothesize it leads to sub-
optimal architectures.

In our AutoX3D design space, we predefine a wide range
of choices for the expansion ratio in individual building
blocks, and allow different choices are chosen by the build-
ing blocks. The choices of the expansion ratio can be seen
in the macro-architecture of our design space in Table 2.

3.4. Searchable Attention Block

Attention blocks, such as Nonlocal- [39] and GloRe
block [6], can be easily plugged into the backbone model
for improving the performance. One can choose to insert

2557

more than one such blocks at different layers of the back-
bone. For example, in the GloRe work [6], for ResNet-50
backbone, it chooses to insert 3 GloRe blocks at Res4 stage
for achieving a large gain in accuracy. Since modern deep
models often contain dozens of layers and we can insert the
attention block after any layer, a manual exhaustive explo-
ration for selecting the best subset of layers to insert atten-
tion blocks is almost intractable. In our design space, we
view the insertion of the attention block as a search prob-
lem, and define a set of choices of the attention block below
to search the inserted position.
Pass through. The feature will simply pass through the
block without any computation. In practice, it represents no
attention block placed here.
GloRe. The original GloRe block, which includes a fea-
ture projection module, a graph convolution network (GCN)
module, and an inverse feature projection module. The fea-
ture projection module projects spatial features from the co-
ordinate space to the interaction space by aggregating spa-
tial features with attention. The GCN module reasons over
the projected features nodes in the interaction space. Fi-
nally, the inverse projection module re-projects the feature
nodes back into the coordinate space.

3.5. Final AutoX3D Design Space

The final design space is illustrated in Figure 2. In
Table 2, we prescribe a video macro-architecture, which
mainly consists of a stack of 3D MBConv building blocks.
We organize the blocks by groups, and blocks in each group
share the same design choices. For each group, we search
the micro-architecture, filter number, the expansion rate,
and the type of attention block which will be inserted af-
ter each group. We allow the block groups to have differ-
ent choices along those design axes. In total, our design
space contains 2 × 1032 different video architectures, and
represents a fine-grained space at a scale that has not been
explored before.

4. Search Method
4.1. Probabilistic-based Architecture Search

As video models commonly require larger computation
resources than image, directly applying the original differ-
entiable NAS becomes unpractical. Here we adopt the PAR-
SEC [4] approach, a probabilistic version of the differen-
tiable NAS method, to guide our search procedure. Com-
pared to DARTS [20], it only requires much memory as is
needed to train a single architecture from our search space.
This is because of a memory-efficient sampling procedure
as we learn a probability distribution over high-performing
neural network architectures. Here we define a unique dis-
crete architecture as A, which is sampled from a prior distri-
bution P (A|ααα). Architecture parametersααα denote the prob-

abilities of choosing different operations. The goal of PAR-
SEC is to optimize the architecture parameter ααα, in order to
maximize the architecture accuracy. Concretely, for video
recognition where we have video samples X and labels y,
probabilistic NAS can be formulated as optimizing the con-
tinuous architecture parameters α via an empirical Bayes
Monte Carlo procedure [27]

P (y|X, ω, α) =

∫
P (y|X, ω,A)P (A|ααα)dA

≈ 1

K

∑
k

P (y|X, ω,Ak),
(1)

where ω denotes the model weights. The continu-
ous integral of data likelihood is approximated by sam-
pling K architectures and averaging the data likelihoods
from them. We can jointly optimize architecture pa-
rameters ααα and model weights ω by estimating gradients
∇α log P (y|X, ω,ααα) and ∇w log P (y|X, ω,ααα) through
the sampled architectures. Typically, the number of sam-
pled architecture K is set to 13, which is sufficient to search
for a good architecture empirically, according to our prelim-
inary experiments.

To target at efficient architecture discovering, we rebuild
PARSEC to support cost-aware search that aiming to not
only finding the best performance architecture but also un-
der determined FLOPs constraint. We achieve this goal by
adding another cost-aware hinge loss term to the original
loss function. Given an architecture Ak, the cost-aware loss
term c can be written as:

c(Ak) =
1

T
max(FLOPs(Ak)− T, 0), (2)

where T is our target FLOPs. All the search variables are
jointly searched.

4.2. Fair Channel Selection

An important pitfall we found during channel search is
the unfairness for the chances of candidate channels being
selected. We show an example in Figure 3: on the left, when
splitting the super kernel into N parts (N denotes the chan-
nel space size, with N = 5 in the figure just as an example)
in the default order, the bottom part will be shared with all
channel candidates and therefore always be updated. Mean-
while, the higher bottoms have fewer chances to be updated,
with the top one only receiving sparse updates of 1/N prob-
ability. That unfairness often leads to the supernet train-
ing collapsing onto the most frequently updated channel(s)
(e.g. the bottom one), and mislead the architecture selec-
tion to sub-optimal performance. To tackle this issue, we
propose to select channels with fairness, i.e., the assign-
ment of channel candidates shall ensure the chance of se-
lecting/updating each super kernel part to be as equal as

2558

*
g1

*
g2

*
g3

*
g4

*
g5

*
g1

*
g2

*
g3

*
g4

*
g5

𝓹1 = 1/n

𝓹2 = 1

𝓹1 = m/n

𝓹2 = m/n

 (a) Unfair Channel Selection (b) Fair Channel Selection

Figure 3: Illustration of fairness-aware channel search, using five channel parts for example. Where pi is the initial
probability of each filter and gi represent the architecture weight of each candidates. We only activate one candidates in the
forward pass. All channel candidates share weight from the original filters. For unfair channel selection, the small probability
one gets fewer chance to update the corresponding filter compared to large probability one.

possible. Figure 3 right displays the fairness-aware selec-
tion pattern for N = 5, where each part now has the equal
chance of 3/5 to be selected and updated. A more general
discussion on how to design such fair patterns for different
Ns can be found in the supplement.

5. Experiments
5.1. Implementation Details

5.1.1 Datasets

We adopt two benchmarks of video action recognition in
the experiments, including Kinetics [16] and Something-
Something-V2 [12].
Kinetics [16]. Kinetics-400 is a large-scale dataset that con-
tains 400 action classes with 240K training examples and
20K validation examples. To accelerate searching, we adopt
Mini-Kinetic200 [43] as our searching dataset, which is a
subset of Kinetics-400 containing 200 classes of videos. As
for the evaluation of the searched architecture, we use the
full standard Kinetics-400 dataset for training and testing.
Something-Something-V2. Something-something-V2
dataset contains 108k videos with 174 classes of diverse ac-
tions, while each video lasting between 2 to 6 seconds. Dif-
ferent from Kinetics[16], the video sequence in something-
something is more temporal related, as it focuses on humans
performing predefined basic actions with different objects.
Therefore, this dataset serves as a suitable benchmark to
evaluate the effectiveness of temporal modeling.

5.1.2 Search and Derivation Setting

Architecture Search We implement PARSEC [4] in Py-
Torch, and use 64 Nvidia V100 GPUs to search architec-
tures on Mini-Kinetics-200. By default, we use the input
video clip of size T × S2 = 13× 1602 with a spatial scale
jittering range of [182, 228], and set the target FLOPS to 2G
FLOPS, which is on par with the FLOPS of X3D-S model.

We adopt Adam with 0.02 learning rate and 0 weight decay
to optimize the architecture weights. SGD is adopted to up-
date the supernet’s parameters with a learning rate of 0.6,
0.9 momentum, and 5e-5 weight decay. The total search
process takes 600 epoches with 3 days.
Architecture Training We evaluate the searched architec-
tures by using the open-source ClassyVision [1] framework
to train them from scratch on the benchmarks. We use 64
Nvidia V100 GPUs in the experiments. We adopt SGD with
0.9 momentum and 5e-5 weight decay. The learning rate is
set to 0.4 following the half-period cosine decaying strategy
and mini-batch size is 8 clips per GPU. The whole training
process takes 300 epochs while we use linear warm-up strat-
egy [11] for the first 34 epochs. Dropout is adopted at the
head of the network with the probability of 0.5. We also
apply AutoAugment [7] on each frame of input video clip.
The data pre-processing part is the same as the searching
part. More training detials are illustrated in the supplement.

5.1.3 Architecture Evaluation

To be comparable with previous work, we mainly follow
the evaluation setting of X3D [9]. We evaluate the searched
architecture on the validation set. We by default adopt 30-
views evaluation, unless specifically stated. Concretely, in
30-views evaluation, 10 clips are uniformly sampled tem-
porally from each video first. Each clip is cropped out us-
ing LeftCenterRight cropping strategy [9], which covers the
longer axis of the original clip. The final prediction of a
video is obtained by averaging the predictions for all corps
of each clip. More details can be found in our supplement.

5.2. Ablation Study

5.2.1 Searching for Attention Block

To ablate the importance of attention block search, we con-
duct an ablation study based on the original X3D-S [9]
backbone by 1) Manually insert attention block in each

2559

Model Attention location Params FLOPS Accuracy (%)
S1 S2 S3 S4 (M) (G) Top-1

X3D-S - - - - 3.4 1.96 72.9

Manual

2 - - - 3.5 2.33 72.6 (−0.3)
- 2 - - 3.6 2.56 73.0 (+0.1)
- - 2 - 3.7 2.39 72.8 (−0.1)
- - 2 3 5.4 2.92 73.0 (+0.1)

Automatic Searched 4.1 2.44 73.3 (+0.4)

Table 3: Ablation in attention block insertion location.
The number k under column Sn denotes k attention blocks
are uniformly placed in stage n.

stage; 2) Automatically search the suitable position of atten-
tion block through probabilistic search algorithm [4]. We
then compare them with the original baseline (X3D-S) on
Kinetics-400 testbed.

As shown in Table 3, the first row represents the X3D-S
baseline, reaching 72.9% top-1 accuracy with 1.96 GFLOPs
cost. The second row includes four different architectures,
where the attention blocks are inserted to different posi-
tions, ranging from the shallow layer (stage 1) to the deep
layer (stage 4). These limited manual attempts bring minor
improvement (+0.1%) based on the X3D-S backbone and
sometimes even hurt the performance (−0.3%), motivating
us to apply the automatic tools (e.g., NAS) to reap the per-
formance benefits of various position choices. We finally
adopted the probabilistic-based architecture search on dis-
covering the suitable position of attention blocks, where a
block-wise position search is conducted with the rest of the
backbone being fixed. To this end, the searched architecture
reaches 73.3% top-1 accuracy, surpassing the original X3D-
S baseline by a notable margin (+0.4%) with a comparable
FLOPs cost.

5.2.2 Evaluation of Fairness-Aware Search

The default channel search simply split the super kernel into
N splits and sample the candidate by default order. As we
discussed in Sec. 4.2, this naive selecting strategy will make
some parts of the super kernel to be over-sampled and up-
dated unfairly. Thus the discovered model will easily col-
lapse to the candidate which is updated more frequently.

To better understand the effectiveness of the proposed
fairness-aware sample strategy, we conduct experiments
that only search for the output channel and expansion ra-
tio by separately using these two sampling strategies, while
other factors are fixed. As shown in Figure 4, the blue
curve represents the FLOPs cost of discovered architectures
during the search process by using the naive channel se-
lection strategy, and the red curve represents the fairness-
aware one. Given a target FLOPs, the naive channel selec-
tion strategy easily collapses to the smaller subnets, due to
the smaller channel candidates are updated more frequently
than others in each super kernel. In contrast, the fairness-

0 100 200 300 400
Epoch

0.0

0.2

0.4

0.6

0.8

FL
O

Ps
 C

os
t T

er
m

Naive channel selection
Fair channel selection

Figure 4: FLOPs during searching. For each epoch (x-
axis), we derive the most probable architecture and measure
its FLOPs (y-axis). The target FLOPs T (Equation 2) is set
to 2.0 GFLOPs.

Search Strategy Target Discovered Accuracy (%)
FLOPs (G) FLOPs (G) Top-1

Naive Channel Selection 2.0 1.7(−0.3) 70.5 (−2.6)
Fair Channel Selection (ours) 2.0 73.1

Table 4: Architecture search with different channel se-
lection mechanisms.

aware strategy can discover a more suitable subnet that is
closer to the target FLOPs cost. The collapsed discov-
ered architecture, shows poor performance after evaluation,
with a large margin (−2.6%) behind the well-discovered
fairness-based one. Details are shown in Table 4.

5.3. Comparing AutoX3D Models with Others

In this section, we compare our searched AutoX3D mod-
els with other SOTA models.

5.3.1 Results on Kinetics

We mainly follow the comparison convention of X3D [9]
on popular large-scale benchmarks, and compare the per-
formance of our AutoX3D with current state-of-the-art ef-
ficient architectures. The Top-1 accuracy as well as the
FLOPS cost are reported on Kinetics-400 dataset. We
divide the models into four categories according to their
FLOPs cost, shown in Table 5. The first group includes
previous high-performance yet inefficient methods. Those
methods either cost more FLOPs and parameters com-
pared to ours, or get worse performance. In the sec-
ond group, the proposed AutoX3D-S architecture achieves
74.7% accuracy, better than TSM with mobilenet backbone
(+5.2%), VoV3D-M (+0.8%), and X3D-S (+1.4%). Re-
garding FLOPs, AutoX3D-S costs ×2 smaller FLOPs than
TSM with mobilnet backbone, ×1.5 smaller FLOPs than

2560

Model Pretrain Top-1 Frames GFLOPs×Views Param.

I3D [3] ImgNet 71.1 64 108 × N/A 12.0
2-Stream I3D [3] ImgNet 75.7 64 216 × N/A 25.0
MF-Net [5] ImgNet 72.8 16 11.1 × 50 8.0
TSM R50 [19] ImgNet 74.7 16 65.0 × 10 24.3
S3D-G [43] - 74.7 64 71.0 × N/A N/A
2-Stream I3D [3] - 71.6 64 216 × N/A 25.0
R(2+1)D [37] - 72.0 32 152 × 115 63.6
2-Stream R(2+1)D [37] - 73.9 32 304 × 115 127
ip-CSN-50 [35] - 70.8 8 11.9 × 30 14.3
ip-CSN-101 [35] - 71.8 8 15.9 × 30 24.5

TSM Mb-V2 [19] ImgNet 69.5 16 6.0 × N/A 3.9
VoV3D-M [17] - 73.9 16 4.4 × 30 3.8
X3D-S [9] - 73.3 13 2.7 × 30 3.8
AutoX3D-S - 74.7 13 2.9 × 30 3.5

MobileNetV2-3D (impl.) - 71.2 16 6.5 × 30 4.4
SlowFast 4×16, R50 [10] - 75.6 16 36.1 × 30 34.4
VoV3D-L [17] - 76.3 16 9.3 × 30 6.2
X3D-M [9] - 76.0 16 6.2 × 30 3.8
AutoX3D-M - 76.7 16 6.8 × 30 3.5

SlowFast 8×8, R101 [10] - 77.9 8 106 × 30 53.7
X3D-L - 77.5 16 24.8 × 30 6.1
X3D-XL - 79.1 16 48.4 × 30 11.1
AutoX3D-L - 78.8 16 27.8 × 30 6.2

Table 5: Comparison with the state-of-the-art methods
on Kinetics-400 dataset. We use (GFLOPs × views) to
represents inference cost × number of views).

VoV3D-M, and comparable FLOPs compared to X3D-S. In
the third group, we evaluate a larger architecture, named
AutoX3D-M, which is derived from AutoX3D-S by in-
crease the input frame number to 16 and input video spatial
resolution to 256. It achieves 76.7% accuracy, largely out-
performs our implemented MobileNetV2-3D (+5.5%) and
SlowFast 4x16 (+1.1%), respectively. Compared to X3D-
M, AutoX3D-M obtains +0.7% higher accuracy with simi-
lar FLOPS cost. In the fourth group, we present our biggest
architecture AutoX3D-L by scaling the network depth of
AutoX3D-M to ×2 deeper and increasing the input video
spatial resolution to 356. AutoX3D-L surpasses X3D-L
by 1.3% accuracy with similar FLOPs cost, and reaches
comparable performance compared to X3D-XL with much
smaller (×1.74) FLOPs cost.

5.3.2 Results on Something-Something-V2

In addition, we directly transfer the discovered architec-
tures on Something-something v2 dataset. We include cur-
rent state-of-the-art methods in Table 6, where AutoX3D
model family achieves competitive performance without
the necessity of pre-training. For example, AutoX3D-S
achieves similar accuracy (62.1% vs 62.3%) with STM8F

while the FLOPs cost is ×15 smaller. The Top-1 accuracy
of AutoX3D-M is on par with SmallBigNet16F (63.4% vs
63.8%), while the FLOPs cost is ×20 fewer.

5.4. Understanding AutoX3D Architectures

Our searched AutoX3D architectures are visualized in
Figure 5. Regarding to the design of the backbone network,

Model Pretrain Top-1 Frames GFLOPs Param. (M)

TSM8F [19]

Im
ag

eN
et

59.1 8 32.9 23.9
TSM16F [19] 63.4 16 65.8 23.9
STM8F [15] 62.3 8 33.3 24.0
STM16F [15] 64.2 16 66.5 24.0
GST8F [21] 61.6 8 35.4 -
GST16F [21] 62.6 16 35.4 -
I3D + STIN + OIE [23] 60.2 - - -
Dynamic Inference [41] 58.2 - 35.4 -
SmallBigNet8F [18] 61.6 8 52 -
SmallBigNet16F [18] 63.8 16 105 -
X3D-S

-

61.3 13 2.0 3.8
X3D-M 62.7 16 4.7 3.8
AutoX3D-S 62.1 13 2.2 3.5
AutoX3D-M 63.4 16 5.3 3.5

Table 6: Comparison with the state-of-the-art methods
on Something-Something-V2 dataset.

1x3x3 1x5x5

3x5x5

3x3x3

1616 16 48 48 48 48 72 72 72 72 88 88 88 88 88 88 88 14
4

14
4

14
4

14
4

19
2

19
2

19
2

5x3x3

Stage 1 Stage 2 Stage 3 Stage 4

48

Attention
48

Figure 5: Visualization of the searched architecture. The
number in each block represents the base channel of 3D
MBConv block. The wider width of the block denotes the
higher expansion ratio.

we find that 3 × 32 convolution is widely adopted, while
temporal kernel size 5 is hardly used. We also observe that
5 × 52 convolution is never used in our network, due to
its high complexity. Interestingly, We also find that the ex-
pansion ratio is often higher at the first block of each stage
(except stage 1).

6. Conclusions and Future Work
In this paper, we introduce a family of efficient AutoX3D

models, by directly searching without using any architec-
ture surrogate nor hand-crafted image architecture. The
proposed efficient architectures are discovered through a
finer-grained search space, where block type, filter num-
ber, expansion ratio and attention block are jointly searched.
In addition, a fairness-aware search strategy is adopted to
avoid collapse issue. Our best architecture achieves state-
of-the-art performance both on Kinetics-400 dataset and
Something-something-V2 dataset, e.g., +1.3% accuracy
compared to X3D-L, and ×1.74 lower computational cost
compared to X3D-XL, on Kinetics-400 validation set.

2561

References
[1] A. Adcock, V. Reis, M. Singh, Z. Yan, van der Maaten L.,

K. Zhang, S. Motwani, J. Guerin, N. Goyal, I. Misra, L.
Gustafson, C. Changhan, and P. Goyal. Classy vision. 2019.
6

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 1, 2, 3

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 8

[4] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019. 2, 3, 5, 6, 7

[5] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Multi-fiber networks for video recogni-
tion. In Proceedings of the european conference on computer
vision (ECCV), pages 352–367, 2018. 8

[6] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan
Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based
global reasoning networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
433–442, 2019. 4, 5

[7] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
6

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634, 2015. 2

[9] Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 203–213, 2020. 1, 2, 3, 4, 6, 7, 8

[10] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE international conference on com-
puter vision, pages 6202–6211, 2019. 3, 4, 8

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 6

[12] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common sense.
In ICCV, volume 1, page 5, 2017. 2, 6

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019. 3, 4

[15] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and
Junjie Yan. Stm: Spatiotemporal and motion encoding for
action recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2000–2009, 2019. 8

[16] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2, 6

[17] Youngwan Lee, Hyung-Il Kim, Kimin Yun, and Jinyoung
Moon. Diverse temporal aggregation and depthwise spa-
tiotemporal factorization for efficient video classification.
arXiv preprint arXiv:2012.00317, 2020. 8

[18] Xianhang Li, Yali Wang, Zhipeng Zhou, and Yu Qiao. Small-
bignet: Integrating core and contextual views for video clas-
sification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1092–
1101, 2020. 8

[19] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7083–7093, 2019. 2, 8

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 2, 3, 5

[21] Chenxu Luo and Alan L Yuille. Grouped spatial-temporal
aggregation for efficient action recognition. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 5512–5521, 2019. 8

[22] Pingchuan Ma, Yao Zhou, Yu Lu, and Wei Zhang. Learning
efficient video representation with video shuffle networks.
arXiv preprint arXiv:1911.11319, 2019. 2

[23] Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu,
Xiaolong Wang, and Trevor Darrell. Something-else: Com-
positional action recognition with spatial-temporal interac-
tion networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1049–
1059, 2020. 8

[24] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018. 1, 3

[25] AJ Piergiovanni, Anelia Angelova, and Michael S Ryoo.
Tiny video networks. arXiv preprint arXiv:1910.06961,
2019. 2

[26] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dollár. On network design spaces for visual recog-
nition. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1882–1890, 2019. 3

[27] Carl Edward Rasmussen and Zoubin Ghahramani. Bayesian
monte carlo. Advances in neural information processing sys-
tems, pages 505–512, 2003. 5

2562

[28] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 1, 2, 3

[29] Michael S Ryoo, AJ Piergiovanni, Juhana Kangaspunta, and
Anelia Angelova. Assemblenet++: Assembling modality
representations via attention connections. arXiv preprint
arXiv:2008.08072, 2020. 2

[30] Michael S Ryoo, AJ Piergiovanni, Mingxing Tan, and Anelia
Angelova. Assemblenet: Searching for multi-stream neu-
ral connectivity in video architectures. arXiv preprint
arXiv:1905.13209, 2019. 2

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2, 3, 4

[32] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019. 2

[33] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 1

[34] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 1

[35] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feis-
zli. Video classification with channel-separated convolu-
tional networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5552–5561, 2019. 1,
8

[36] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459, 2018. 1, 2, 3

[37] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459, 2018. 8

[38] Xuanhan Wang, Lianli Gao, Peng Wang, Xiaoshuai Sun, and
Xianglong Liu. Two-stream 3-d convnet fusion for action
recognition in videos with arbitrary size and length. IEEE
Transactions on Multimedia, 20(3):634–644, 2017. 1, 2

[39] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 2, 4

[40] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019. 2

[41] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, Yi
Yang, and Shilei Wen. Dynamic inference: A new approach
toward efficient video action recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 676–677, 2020. 8

[42] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 305–321, 2018. 1, 2, 3

[43] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 305–321, 2018. 6, 8

[44] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
arXiv preprint arXiv:2003.11142, 2020. 1

[45] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-
jayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4694–4702,
2015. 2

[46] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 3

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 2, 3

2563

