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Abstract

Understanding the perceived scene during navigation
enables intelligent robot behaviors. Current vision-based
semantic SLAM (Simultaneous Localization and Mapping)
systems provide these capabilities. However, their perfor-
mance decreases in visually-degraded environments, that
are common places for critical robotic applications, such
as search and rescue missions. In this paper, we present
SIGNAV, a real-time semantic SLAM system to operate in
perceptually-challenging situations. To improve the robust-
ness for navigation in dark environments, SIGNAV lever-
ages a multi-sensor navigation architecture to fuse vision
with additional sensing modalities, including an inertial
measurement unit (IMU), LiDAR, and wheel odometry. A
new 2.5D semantic segmentation method is also developed
to combine both images and LiDAR depth maps to gener-
ate semantic labels of 3D mapped points in real time. We
demonstrate that the navigation accuracy from SIGNAV in
a variety of indoor environments under both normal light-
ing and dark conditions. SIGNAV also provides semantic
scene understanding capabilities in visually-degraded envi-
ronments. We also show the benefits of semantic informa-
tion to SIGNAV’s performance.

1. Introduction

Accurate navigation and scene understanding are key
capabilities for autonomous robots to a variety of critical
applications in unknown GPS-denied environments. Re-
cent vision-based semantic SLAM (simultaneous localiza-
tion and mapping) systems provide these capabilities, by
performing image-based semantic segmentation techniques
to assign class labels to 3D mapped points. The resulting
3D semantic map enables more intelligent robot behaviors,
such as finding doors to quickly move from one room to an-

*The first two authors contributed equally to this work. All authors are
with Center for Vision Technologies, SRI International, USA. The contact
author is Han-Pang Chiu {han-pang.chiu@sri.com).

Figure 1. An example of our SIGNAV system operating in dark
GPS-denied indoor environment: (a) the robot platform moves
from one dark room to another, and the only lighting source is
from its own LED, (b) input video frame, (c) 2.5D semantic seg-
mentation of the input video frame, (d) a 3D semantic map pro-
duced by SIGNAV in real time. Note different colors in (c) and (d)
represent different semantic classes (such as green color represents
door class).

other. It is also a more natural representation for humans to
understand the mapped environment.

However, performance of these systems degrades dra-
matically in perceptually-challenging environments such as
tunnels and mines, that are common places for robotic ap-
plications including infrastructure inspection [19], surveil-
lance [15], and indoor search and rescue missions [1, 12].
Vision-based navigation methods are unreliable in dark lo-
cations even in presence of on-board lights because far
scene regions are still poorly visible. The quality of
image-based semantic segmentation is also poor in visually-
degraded situations. While LiDAR-based SLAM algo-
rithms are more robust to illumination variations, they are
erroneous in places with geometrically self-similar patterns
such as long corridors.
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In this paper, we present SIGNAV (Semantically-
Informed Gps-denied NAVigation), a real-time semantic
SLAM system that enables robust navigation and scene un-
derstanding capabilities in visually-degraded environments
(Figure 1). To address navigation challenges in dark loca-
tions, SIGNAV leverages a multi-sensor navigation archi-
tecture [5] to fuse vision with additional sensing modali-
ties, including an inertial measurement unit (IMU), LiDAR,
and wheel odometry. This approach combines the strengths
of different sensors to improve navigation accuracy. It also
provides more robust estimation than using a single sensor,
by avoiding the single point of failure in navigation.

To generate a reasonable 3D semantic map in
perceptually-challenging situations, SIGNAV utilizes a
novel 2.5D semantic segmentation method that combines
both gray-scale camera images and LiDAR depth maps for
semantic labeling of 3D mapped points. SIGNAV also uses
the semantic labels to identify and remove features (also re-
lated 3D mapped points) from non-rigid classes (e.g. peo-
ple) and non-Lambertian surfaces. Focusing on static and
rigid classes improves the quality of loop detection process.

We verified and demonstrated SIGNAV using a ground
vehicle (GVR-bot) with a variety of scenarios in GPS-
denied indoor environments, under both normal lighting
and dark conditions. We compare SIGNAV’s performance
with several state-of-the-art SLAM methods using the data
acquired from these test scenarios. We also showed the
benefits of semantic information from SIGNAV in visually-
degraded environments.

The rest of the paper is organized as follows. In Section
II, we present the related work and highlight our contribu-
tions. In Section III, we describe SIGNAV, including the
details of each system module. In Section IV, we present
our experimental setup and results for different scenarios.
Conclusions and future work are presented in Section V.

2. Related Work
In this section, we provide a brief review on SLAM sys-

tems in perceptually-challenging environments. We refer
the readers to [3] for a broad survey on SLAM.

2.1. Navigation in Visually-Degraded Environments

Relying on single sensor modality is challenging for nav-
igation in visually-degraded environments. For example,
vision-based SLAM methods [3] work well under normal
lighting conditions. However, their performance degrades
in dark environments due to poor quality of image data.

Among all sensor choices, LiDAR provides long-range
3D measurements without external lighting sources. There-
fore, 3D LiDAR SLAM systems [10, 34, 16, 20, 45, 23,
37, 28, 42] have been popular for autonomous robots in
GPS-denied dark locations, such as subterranean environ-
ments. However, LiDAR-based systems tend to fail in en-

vironments with geometrically self-similar patterns such as
long hallways. The recent trend is to fuse LiDAR sensors
with different sensor modalities, such as inertial sensors
[30, 35, 41] or visual-inertial odometry [43, 36], to improve
its performance in perceptually-challenging environments.

Our work follows this trend to combine measurements
from a set of sensors to improve the quality of the solution
in perceptually-challenging environments. In addition, our
system is designed to provide scene understanding capabil-
ities under dark conditions.

2.2. Semantic SLAM

There has been a surge of interest towards real-time se-
mantic SLAM systems in recent years. Most of these works
[24, 40, 21, 33, 32, 39, 31, 25, 14, 22, 44, 9, 27] rely on
RGBD cameras or monocular cameras. The typical ap-
proach is to utilize pre-trained deep networks to assign se-
mantic labels to each imaged pixel on an input video frame.
It then associates these semantic labels between 2D imaged
pixels and correspondent 3D mapped points. However, 2D
semantic segmentation quality from these systems signifi-
cantly decreases in visually-degraded environments.

Recently, there are also LiDAR-based semantic SLAM
methods [2, 11] that use pre-trained deep networks to gen-
erate semantic labels on 2D range maps, which are pro-
jected from high-quality 3D LiDAR point clouds. These
methods utilize data from large and expensive LiDAR units
for outdoor self-driving car applications. In contrast, our
system is designed with low-cost sensors1 for smaller au-
tonomous robots operating in indoor and subterranean en-
vironments (such as mines). Since the quality (density, cov-
erage, and measurement accuracy) of our LiDAR sensor is
much lower, we need to fuse additional sensor modalities to
improve both SLAM accuracy and semantic labeling qual-
ity in perceptually-challenging environments.

2.3. Contribution

To the best of our knowledge, SIGNAV is the first real-
time semantic SLAM system designed for operating in
visually-degraded indoor and subterranean environments.
The highlights of SIGNAV are as follows:

• Multi-Sensor SLAM: SIGNAV starts with a tightly-
coupled visual-inertial SLAM system, and integrates
LiDAR odometry measurements and wheel odometry
readings in a loosely-coupled manner. It leverages a
flexible plug-and-play architecture [5] based on factor
graphs for multi-sensor navigation. The combination
of these sensing modalities improves the robustness
and accuracy for navigation in dark environments.

1LiDAR-based semantic SLAM systems use velodyne HDL-64E Li-
DAR, which costs around 75,000 dollars. In contrast, our total sensor cost
(inertial, camera, and two low-cost LiDAR units) is less than 6,500 dollars.
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Figure 2. SIGNAV’s system pipeline: three major system modules - multi-sensor odometry (Section 3.2), 3D Mapping (Section 3.3), and
2.5D semantic segmentation (Section 3.4) - that process sensor data (IMU, stereo cameras, LiDAR, wheel odometry) to generate real-time
output (from top to bottom: accumulated pose estimates, 3D mapped points, a 3D semantic map).

• 2.5D Semantic Segmentation: SIGNAV incorporates
a new 2.5D semantic segmentation technique, which
combines both gray-scale monocular images and Li-
DAR depth maps, to generate reasonable real-time se-
mantic labels in dark environments. This 2.5D seman-
tic segmentation technique utilizes a mixture-of-expert
architecture (UNO [38]) to fuse results from two pre-
trained deep learning networks: one network processes
images, and the other network handles depth maps.

• Semantically-Informed Mapping: SIGNAV refines
the 3D mapped points by identifying and removing
non-rigid classes (objects and people that are not part
of the static scene) as well as non-Lambertian surface
classes (since these areas are particularly challeng-
ing for computer vision processing). This allows the
SLAM process to use only features and mapped points
correspondent to static and rigid object classes. Such
an approach improves (1) the quality of loop detection
and (2) the pose estimation accuracy when matching
the new image to the 3D map.

• Optimized Computation: SIGNAV is highly opti-
mized with low SWAP (size, weight, and power) hard-
ware. The entire computation of SIGNAV (including
2.5D semantic segmentation) is enabled using one em-
bedded processor unit (NVIDIA Xavier).

3. SIGNAV
In this section, we describe SIGNAV’s system pipeline

(Figure 2) with details of each system module.

3.1. Sensing Modalities

SIGNAV is a multi-sensor semantic SLAM system de-
signed for operating in perceptually-challenging indoor and
subterranean environments. We utilize a sensor fusion
framework [5] based on factor graphs, which is capable

of incorporating multiple sensors with different rates, la-
tencies, and error characteristics. Factor graphs have been
used [8] for many applications related to robotic navigation.
They naturally encode the factored nature of the probability
density over the navigation states (3D position, 3D orienta-
tion, and 3D velocity at any given time in our case), clearly
separating the state representation from the constraints in-
duced by the sensor measurements. The connectivity of the
factor graph defines which state variables are affected by
which sensor measurements. This representation makes it
ideal for fusing multiple sensors for navigation.

SIGNAV currently integrates sensor measurements from
four sensor modalities (IMU, cameras, LiDAR, and wheel
odometry) using this plug-and-play factor graph frame-
work. Note for current hardware, we use two LiDAR
units: the forward-facing navigation 3D LiDAR contributes
to both multi-sensor odometry and 3D mapping, while the
upward-facing mapping 2D LiDAR is only used to increase
the coverage of 3D mapping of the perceived environment.

3.2. Multi-Sensor Odometry

SIGNAV utilizes a parallel architecture to simultane-
ously compute the robot’s motion over time (multi-sensor
odometry) and model its perceived environment (3D map-
ping and 2.5D semantic segmentation). SIGNAV’s multi-
sensor odometry module is essentially a multi-sensor fu-
sion process that starts with a tightly-coupled visual-inertial
odometry mechanism [13] to fuse IMU (Inertial Measure-
ment Units) data and camera feature track measurements.
Inertial measurements from IMU are produced at a much
higher rate than other sensors. Therefore, we summarize
multiple consecutive inertial readings between two naviga-
tion states created at the time when other sensor measure-
ments come (such as camera features from a video frame).
This IMU factor generates 6 degrees of freedom relative
pose and corresponding velocity change as the underlying
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motion model, that replaces traditional process models in
vision-based SLAM systems.

SIGNAV further integrates sensor measurements from
LiDAR and wheel odometry in a loosly-coupled manner.
For LiDAR, we use the Fast-GICP algorithm [17] to per-
form efficient voxel-based generalized ICP (Iterative Closet
Point) process to register 3D LiDAR points obtained from
sequential scans (scan-to-scan registration). A 3D related
pose measurement across sequential scans is then generated
and fused within our factor graph architecture.

SIGNAV integrates wheel odometry readings inside the
multi-sensor odometry module as 3D velocity measure-
ments, rather than relative pose constraints or simple speed.
While it is also capable to capture the rotation reading from
differential wheel motion, we found this information is un-
reliable from our experiments resulting in noticeably curv-
ing trajectories. Therefore, rather than using a speed scalar
constraint only, we formulate wheel odometry factor as a
3D velocity vector that constraints speed in a local direction
of the vehicle that naturally encompasses backward and for-
ward motions. We found this explicit velocity formulation
from wheel odometry is beneficial to typical visual-inertial
SLAM systems when used on our wheeled and tracked
robots. It improves the navigation accuracy when robot lo-
comotion has high-frequency vibrations, that reduce relia-
bility of the IMU estimates and affects the overall scale es-
timation of the reconstructed scene. Another important ca-
pability is to provide zero-velocity update (e.g. when robot
is stationary), that avoids potential drift especially in dark
environments where the amount of valid visual features de-
creases and temporal feature track length is short.

3.3. 3D Mapping

The 3D mapping module in SIGNAV is enabled by loop
detection and pose graph optimization. Loop detection
sub-module establishes associations (loops) across non-
consecutive video frames taken at different times (when a
robot revisits the same place). These associations are used
to optimize the past poses involved within the loops. Both
multi-sensor odometry poses and loop-closure optimized
poses are used to continuously integrate 3D mapped LiDAR
points accumulated from past scans during the run.

3.3.1 Loop Detection and Pose Graph Optimization

During navigation, SIGNAV selects key frames from input
video streams, and adds them into the database. Note that
database entry is essentially a video frame that holds the
collection of keypoints with their descriptors, image loca-
tions, and 3D world coordinates computed from triangula-
tion across matched stereo 2D points across video frames.
The selection is based on conditions between new frame
and past key frames, including the number of overlapped

Figure 3. Examples of LiDAR depth maps generated before (left)
and after (right) applying the depth completion algorithm [18].

features, the temporal difference, and the spatial difference
between poses associated with frames.

Loop detection is achieved by matching new image to
the database of key frames. If a frame is matched to
a keyframe that has been added before, it indicates the
matched keyframe is acquired when the vehicle previously
visited the same place. Therefore, these matches can be
treated as loop closures to optimize past poses involved
within the loop, which is the typical pose graph optimiza-
tion process. The optimized pose is then fed back to the
multi-sensor odometry module to correct the drift for real-
time navigation solution. This process is adapted from [6].

3.3.2 Point Integration and Depth Fusion

We use both real-time estimated pose solution (from multi-
sensor odometry module) and optimized poses (from pose
graph optimization) to iteratively re-integrate involved 3D
LiDAR points from past scans. First, appropriate LiDAR
poses are interpolated from the pose solution, since the fre-
quencies may not be the same. Individual LiDAR scans
are then transformed to these interpolated poses. Overlap-
ping points between consecutive LiDAR scans are removed.
Thus, this process continuously produces a 3D map of point
clouds during navigation.

The transformed points are then passed to the depth fu-
sion process. This process leverages the depth and range
information present in the LiDAR point cloud to better en-
able 2.5D semantic understanding of the scene, especially
in dark environments where 2D image quality is poor.

The low-cost Ouster OS1-16 LiDAR we use in our robot
only yields 16 vertical beams during scanning resulting in
a low vertical resolution 3D point cloud. To mitigate this
issue, we first temporally aggregate LiDAR scans over a
past 1-second window. This way produces a denser Li-
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DAR point cloud at frame t-1 (seconds). The aggregated
point cloud is then projected to the camera image plane
producing a depth map that can be used for segmentation.
The 1-second sliding window was determined experimen-
tally as the one producing adequate aggregated point clouds
at robot locomotion speeds without significant delay to the
navigation algorithm. Despite the temporal integration of
LiDAR scans, the projected depth image is often too sparse
for subsequent out-of-the box segmentation algorithms that
assume input depth images with all pixels defined. To over-
come this sparsity limitation, we use the IP-Basic depth
completion algorithm [18] to produce more convincing and
consistent dense depth maps that are used as subsequent in-
put to 2.5D semantic segmentation module. Figure 3 de-
picts two examples of 1-second integrated LiDAR point
clouds and corresponding depth completed results.

3.4. 2.5D Semantic Segmentation

SIGNAV introduces a novel 2.5D semantic segmenta-
tion method to combine both 2D image and LiDAR depth
maps for semantic labeling of 3D point clouds in visually-
degraded environments. Note there exist powerful deep
neural network models which can generate robust semantic
labels for RGB images. However, these segmentation net-
works are highly sensitive to lighting conditions and can fail
catastrophically in the visually degraded and dark environ-
ments. Semantic segmentation directly on 3D LiDAR point
cloud can help in these kinds of environments. However,
they typically require extensive computational resource and
cannot provide real time inference on small SWAP (size,
weight, and power) machines.

In this regard, we present a 2.5D semantic segmentation
method to SIGNAV, which is robust to varying lighting con-
ditions and can run using GPUs from an embedded proces-
sor. We use this 2.5D semantic segmentation module to la-
bel selected video frames (key frames) with correspondent
depth maps (from point integration and depth fusion sub-
module), for real-time 3D semantic mapping during navi-
gation. Our method has two networks operating indepen-
dently on gray-scale image and depth data. For the two
networks, we choose a pre-trained DeepLab based network
[4] (originally for RGB semantic segmentation) trained with
the backbone of Xception65 [7] on ADE20K dataset.

For our image segmentation network, we converted
ADE20K dataset to gray-scale and fine-tuned the model
with those images. However, for our depth semantic seg-
mentation network, we do not have this kind of pre-trained
network that generalizes reasonably to our target environ-
ments. Therefore, we train the depth segmentation net-
work using a weakly-supervised learning approach based
on cross-modal supervision inspired from [26], as visual-
ized in Figure 4. Specifically, we collected RGB+Depth
(RGBD) data in various well-lit environments to get the

Figure 4. The concept of our weakly-supervised approach to train
depth segmentation network using semantic outputs (as pseudo
ground truth) from pre-trained image segmentation network on
paired RGB and Depth data.

best-possible RGB segmentation output. Then, the output
of the pre-trained RGB segmentation network is considered
as a pseudo-ground truth for the depth segmentation net-
work (ideally, these two network should produce the same
segmentation results). In turn, this pseudo-ground truth is
used to provide weak supervision for training the depth seg-
mentation network. Note this supervision only happens in
the training stage. The trained depth segmentation network
can generate its own semantic segmentation results without
any information from the image segmentation network.

During navigation, the 2.5D semantic segmentation
module fuses the semantic segmentation results from these
two trained networks (grayscale and depth) using a fusion
algorithm adapted from UNO [38]. UNO is an uncertainty-
aware fusion scheme to effectively fuse inputs that might
suffer from a range of known and unknown degradation and
compensate for errors caused by out-of-distribution condi-
tions. At training time, we compute the entropy of each
network over our training dataset by tracking the class label
probabilities of each network. This establishes the base-
line performance of each network, and determines whether
inference results lie within the expected distribution. At
inference-time (during navigation), each network produces
the probabilities for each label (per pixel) – then these prob-
abilities are re-balanced and re-scaled based on how likely
they are to be the part of the training distribution, that tracks
whether the new input is too degraded for a network to accu-
rately make a prediction. Finally, these re-balanced outputs
of each network are combined to produce the final semantic
label probabilities for each pixel using a Noisy-Or operation
as follows.

I(y = c) = 1−Πi(1− pi (y = c|xi, θi)) (1)

p(y = c) =
Ic

ΣjIj
, j = 1, 2, ..., C (2)

where pi(y = c|xi, θi) is the predictive probability of net-
work i (image or depth) for class c (total of C classes), xi
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and θi are the input and parameters of network i and pc is
the final probability for class c.

The semantically labeled image is then back-projected
onto its parent 3D map to label individual points of the Li-
DAR point cloud. The annotated 3D points are then accu-
mulated to produce a semantically labeled 3D map. SIG-
NAV also refines the 3D mapped points based on the 2.5D
semantic segmentation results by identifying and remov-
ing non-rigid classes (objects that are not part of the static
scene) and non-Lambertian surfaces. Only mapped points
belonging to static and rigid classes will be used in subse-
quent visual matching for loop closure detection.

4. Experimental Evaluation
In this section, we present the experimental results ob-

tained from tests in a variety of GPS-denied indoor envi-
ronments under normal lighting or dark conditions. We also
collected the data from four test scenarios to compare SIG-
NAV with state-of-the-art SLAM solutions, and perform an
analysis of SIGNAV capabilities.

4.1. Experimental Setup

Each dataset includes data from four sensor modalities:
Electro-Optical (EO) stereo cameras, inertial sensing, Li-
DAR, and wheel odometry. All sensors are installed on
a GVR-bot platform (Figure 2) for experiments and data
collection. The GVR-bot platform has fast moving speed
- around 1 meter per second for our experiments. Wheel
odometry is directly retrieved from ROS topics provided
by the GVR-bot. We used an Intel Realsense T-265 unit,
which is equipped with fisheye 170 degree field-of-view
gray-scale stereo camera and an IMU. We operated the cam-
era with 848x800 resolution at global shutter, and recorded
video data at 15Hz. The IMU is recorded at 200Hz. The
camera and IMU readings are synchronized with the exact
time offset being determined during the initial calibration
process. The camera is mounted forward-facing, and also
equipped with 2 LED lights to help navigating in the dark
environments.

We installed two low-cost LiDAR sensors1, which are
more affordable for indoor robots. The navigation LiDAR
(Ouster OS1 3D LiDAR) is mounted as a standard horizon-
tal setup to contribute to both navigation and 3D mapping.
We operated and recorded it at 5Hz. The mapping LiDAR
(Hokuyo UST-20LX 2D LiDAR) is recorded at 20Hz fre-
quency. This sensor is oriented vertically perpendicular to
the optical axis of the front-facing camera, (a.k.a coronal)
in order to capture slices of ceiling, walls and floor during
robot navigation. This setup increases the coverage for 3D
mapping of the perceived environment. However, this map-
ping LiDAR does not contribute to navigation estimation,
since scans always cover different portion of surfaces while
robot is moving.

We conducted each of four scenarios for around 5 min-
utes at its respective indoor environments. The first two
scenarios are under normal lighting conditions. Scenario 1
is for the robot to operate two full loops inside a building
including long hallways, while Scenario 2 is inside a cubi-
cle office environment to conduct three loops with different
route variations (some portions of the route are repeated,
some are not). We set up perceptually-challenging environ-
ments for the final two scenarios. Scenario 3 is to navigate
across two conference rooms (conduct two loops - with par-
tially different routes - in each room): one room is totally
dark, while the other room has little light from outside. Sce-
nario 4 is to operate inside a dark auditorium with three re-
peated loops. Note that for both scenarios, we started and
ended at an entrance with normal lighting, and turned off all
external lighting sources in the navigated rooms and audito-
rium. All SIGNAV computation (including 2.5D semantic
segmentation on GPUs) are enabled using one embedded
processor (Nvidia Xavier) on the GVR-bot in real-time. The
2.5D semantic segmentation module runs at 1.7Hz to label
the selected video frames (key frames) during navigation.

We marked a set of surveyed points (as ground truth)
along the path on the ground in each test environment. The
positions of these marked points are measured using state-
of-the-art indoor land surveying techniques from civil en-
gineering industry. Note that we measured our platform
height beforehand, so we can compute 3D navigation error
using surveyed points on the ground.

4.2. Evaluation

We compare SIGNAV with several state-of-the-art 3D
SLAM systems, which are used for large-scale GPS-denied
navigation applications, on these datasets. LeGO-LOAM
[34] is a state-of-the-art LiDAR-based SLAM system. LIO-
SAM [35] augments LeoGO-LOAM with IMU measure-
ments in a smoothing-and-mapping framework, and has re-
cently demonstrated impressive results in visually-degraded
environments. Cam-SLAM [29] is a representative tightly-
coupled visual-inertial SLAM system for large-scale appli-
cations. There are also SLAM systems [43, 36], which fuse
both visual-inertial odometry and LiDAR measurements.
However, these systems do not have open source implemen-
tations available for us to conduct the comparison.

Each system is evaluated on all four datasets, with only
input sensor adjustment. Wheel odometry is the odome-
try input, if used. Both LeGO-LOAM and LIO-SAM use
the navigation LiDAR (Ouster OS1 3D LiDAR) and the
IMU, while Cam-SLAM incorporates the stereo cameras
and IMU. SIGNAV can use two LiDAR units, but only the
front-facing navigation LiDAR (Ouster OS1 3D LiDAR)
contributes to the navigation estimation. Loop detection ca-
pabilities are enabled in all systems.

We have also tried Kimera [31], a representative open-
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Table 1. The comparison of navigation accuracy (absolute position error in meters) on four datasets.
(1) Long Hallway (2) Cubicle Office (3) Conference Rooms (4) Large Auditorium

mean max std mean max std mean max std mean max std
SIGNAV 0.5946 1.6592 0.3970 0.3436 0.9735 0.2528 0.3004 0.9365 0.1918 0.2647 1.3068 0.2562

CamSLAM 0.8254 2.5700 0.6281 0.2751 1.0863 0.2406 1.6998 4.7151 0.9204 2.3373 9.3099 2.3741
LeGO-LOAM 0.9599 3.0776 0.9155 0.8209 2.6214 0.9078 1.2785 5.9764 1.5722 0.2357 1.0017 0.2137

LIO-SAM 0.6214 1.7039 0.3876 0.3978 1.5559 0.2733 0.3166 0.9211 0.1974 0.4159 0.8361 0.2251
SIGNAV (no LiDAR) 0.7487 2.8474 0.7170 0.3791 0.9454 0.2802 0.3401 1.2092 0.2487 0.3368 1.4336 0.2902

*Top two methods for each metric are highlighted in blue and green colors.

source semantic SLAM system. However, the estimated
navigation trajectory diverges significantly, even under nor-
mal lighting situations, on our datasets. It is possibly that
many parameters (such as sensor noise model) have to be
re-tuned for our used cameras and inertial sensors. Seman-
tic segmentation from Kimera does not work for images un-
der dark conditions either. Therefore, we omit Kimera from
our evaluation.

Table 1 summarizes the navigation accuracy for all eval-
uated methods on the four datasets. The results show that
SIGNAV is comparable (top two in most metrics) to state-
of-the-art SLAM systems, with best results at long hall-
ways (normal lighting) and conference rooms (dark con-
ditions). The geometrically self-similar patterns in long
hallways (Scenario 1) degrades the performance of LeGO-
LOAM. LIO-SAM incorporates IMU measurements in the
tightly-coupled manner to improve accuracy for this situ-
ation. CamSLAM also exhibits inferior performance due
to lower number of camera feature tracks in the presence
of texturless walls and shiny floor. SIGNAV achieves best
accuracy, by leveraging the combination of visual-inertial
odometry and LiDAR measurements.

With lots of textures in the cubicle office space (Scenario
2) under normal light conditions, both CamSLAM and SIG-
NAV leverage vision-based loop detection capabilities to
optimize multiple repeated loops to achieve better results
than LiDAR-based SLAM systems.

LIO-SAM performs well in scenarios under dark con-
ditions (Scenario 3 and Scenario 4), while the overall per-
formance of CamSLAM decreases dramatically as expected
in these visually-degraded environments even if we use on-
board lights. Specifically, CamSLAM becomes prone to
occasional but very noticeable trajectory drifts when num-
ber of tracked camera features becomes critically low in
dark locations. LiDAR-based systems are better suited for
loop detection in dark environments - both LIO-SAM and
LeGO-LOAM performs well in Scenario 4 (multiple loops
in dark auditorium). SIGNAV combines strengths from
multiple sensing modalities to achieve comparable accuracy
to LIO-SAM in Scenario 3 under visually-degraded condi-
tions. However, the reliance on camera-only loop detection
limits its performance in Scenario 4.

Figure 5. Two examples of 2.5D semantic segmentation from SIG-
NAV in darkness: (from left to right): input video frame, fused
depth map, image segmentation, depth segmentation, and fused
2.5D segmentation. Note the noise from segmentation using single
modality is removed in fused 2.5D semantic segmentation. Differ-
ent colors represent different semantic classes. The palette for se-
mantic segmentation includes: Ceiling , Wall , Floor , Door ,

Chair , Window .

Figure 6. The 3D maps generated from SIGNAV in Scenario 1:
(left) the 3D map, and (right) the 3D semantic map. Different
colors in the 3D semantic map represent different semantic classes.

4.3. Impact from LiDAR and Semantic Information

We further analyze the influence of LiDAR fusion from
SIGNAV to navigation accuracy in Table 1. SIGNAV (no
LiDAR) demonstrates SIGNAV accuracy without LiDAR
sensors. It clearly shows that the incorporation of LiDAR
measurements (SIGNAV) improves accuracy for all scenar-
ios, compared to its visual-inertial SLAM version. Note
even without LiDAR sensors, the performance of SIGNAV
(no LiDAR) is still comparable to other state-of-the-art
SLAM systems in Table 1.

Here we also show the impact of 2.5D semantic segmen-
tation from SIGNAV. Note the evaluation of semantic seg-
mentation accuracy with RGBD data in visually-degraded
environment is challenging, since ground truth (semantic
labels) in such situations is difficult to be obtained. How-
ever, from visualization (Figure 5), we can see the fusion of
both images and depth maps clearly improves the seman-
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Table 2. The influence of 2.5D semantic segmentation to SIGNAV’s navigation performance on four datasets: quality (the average percent-
age of inlier feature points from loop detection) and accuracy (the mean absolute position error in meters for the overall scenario).

(1) Long Hallway (2) Cubicle Office (3) Conference Rooms (4) Auditorium
quality accuracy quality accuracy quality accuracy quality accuracy

SIGNAV 59.1% 0.5946 59.8% 0.3436 51.5% 0.3004 52.0% 0.2647
SIGNAV (no segmentation) 55.2% 0.7487 57.2% 0.3791 46.0% 0.3401 46.0% 0.3368

Figure 7. The 3D maps generated from SIGNAV in Scenario 2:
(left) the 3D map, and (right) the 3D semantic map. Different
colors in the 3D semantic map represent different semantic classes.

Figure 8. The 3D maps generated from SIGNAV in Scenario 4:
(left) the 3D map, and (right) the 3D semantic map. Different
colors in the 3D semantic map represent different semantic classes.

tic segmentation quality (noise removal), comparing to re-
sults using only one modality (image or depth), in visually-
degraded environments.

We also show the 3D maps (both with and without se-
mantic labels) generated from SIGNAV under normal light-
ing (Figure 6 and Figure 7) and inside dark environments
(Figure 8). Note that the 2D LiDAR we used is upward
facing, and it maps the structure such as ceiling and floor.
Therefore, for better visualization inside the environment,
we reduce the sampled 3D LiDAR points from both Li-
DARs. For Figure 6, there are many offices (green color
- office doors, some doors are open) on both sides along the
long hall way. For Figure 7, the cubicle arrangement can
be seem in the middle. There are also personal offices (out-
side of the middle cubicle) on the top side, left side, and
the bottom side. If the office door is open, SIGNAV also
maps the inside structure. We can see the doors for all eight
offices on the top side are open. In Figure 8, we remove
the 2D LiDAR in visualization to show more details inside
the auditorium. There are many chairs (red color) inside the
auditorium, and the structure for those chairs are preserved.

The use of 2.5D semantic segmentation also makes the
loop detection process more accurate. As shown in table 2,
it improves loop detection quality by focusing only static
and rigid classes from the 3D semantic map during naviga-
tion. For all four scenarios, the percentage of inlier feature

points from loop detection increases. The navigation ac-
curacy is also slightly improved (position error decreases),
because the quality of loop detection (features from non-
rigid classes and non-Lambertian surfaces are removed) is
increased. Most of our scenarios is conducted in static en-
vironments. We expect this approach can further improve
navigation accuracy in more dynamic environments.

5. Conclusions

We present a new real-time semantic SLAM system,
SIGNAV, that provides robust navigation and scene under-
standing capabilities within a variety of GPS-denied indoor
environments, including dark places. SIGNAV incorporates
LiDAR odometry and wheel odometry measurements on
top of a tightly-coupled visual-inertial SLAM system. It
also utilizes a new 2.5D semantic segmentation technique
to combine both gray-scale monocular images and LiDAR
depth maps, to generate reasonable real-time semantic la-
bels in dark environments. SIGNAV also refines 3D mapped
points based on semantic labels to improve the loop detec-
tion quality. The entire SIGNAV computation is enabled
using an embedded processor unit (Nvidia Xavier).

We show the navigation accuracy of SIGNAV is com-
parable (or better) to other state-of-the-art SLAM systems
under both normal lighting situations and visually-degraded
environments. We also show the improvements from Li-
DAR fusion and semantic information to our performance.

Future work is to tightly integrate LiDAR measurements
(instead of loosely-coupled fusion) to further improve navi-
gation accuracy. Combining LiDAR and vision for loop de-
tection shall also improve the performance. We expect both
extensions will make SIGNAV more robust to perceptually-
challenging situations and dynamic environments.
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