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Abstract

The image-based lane detection algorithm is one of the
key technologies in autonomous vehicles. Modern deep
learning methods achieve high performance in lane detec-
tion, but it is still difficult to accurately detect lanes in
challenging situations such as congested roads and extreme
lighting conditions. To be robust on these challenging situ-
ations, it is important to extract global contextual informa-
tion even from limited visual cues. In this paper, we pro-
pose a simple but powerful self-attention mechanism opti-
mized for lane detection called the Expanded Self Attention
(ESA) module. Inspired by the simple geometric structure
of lanes, the proposed method predicts the confidence of a
lane along the vertical and horizontal directions in an im-
age. The prediction of the confidence enables estimating
occluded locations by extracting global contextual informa-
tion. ESA module can be easily implemented and applied to
any encoder-decoder-based model without increasing the
inference time. The performance of our method is evalu-
ated on three popular lane detection benchmarks (TuSim-
ple, CULane and BDD100K). We achieve state-of-the-art
performance in CULane and BDD100K and distinct im-
provement on TuSimple dataset. The experimental results
show that our approach is robust to occlusion and extreme
lighting conditions.

1. Introduction
Advanced Driver Assistance Systems (ADAS), which

are a key technology for autonomous driving, assists drivers
in a variety of driving scenarios owing to deep learning. For
ADAS, lane detection is an essential technology for vehi-
cles to stably follow lanes. However, lane detection tasks,
which rely on visual cues such as cameras, remain chal-
lenging owing to severe occlusions, extreme changes in the
lighting conditions, and poor pavement conditions. Even
in such difficult driving scenarios, humans can sensibly de-
termine the positions of lanes by recognizing the positional
relationship between the vehicles and surrounding environ-

Baseline Ours

Figure 1: Compare our method with the baseline model.
Our approach shows robustness in a variety of occlusion
and low-light conditions.

ment. This remains a difficult task in image-based deep
learning.

The most widely used lane detection approach in image-
based deep learning is segmentation-based lane detec-
tion [17, 18, 10, 7, 14, 15, 2, 16, 3]. These works learn
in an end-to-end manner whether each pixel of the image
represents the lane. However, it is very difficult to segment
lane areas that are not visible by occlusion. To solve this
problem, the network must capture the scene context with
sparse supervision. Therefore, some works [18, 10] also
introduce message passing or attention distillation. In [7],
adversarial learning was applied to generate lanes similar to
the real ones. These approaches can capture sparse super-
vision or sharpen blurry lanes. However, segmenting every
pixel to detect lanes can be computationally inefficient.

To simplify the lane detection process and increase ef-
ficiency, some works [20, 27, 4] consider the problem of
lane detection a relatively simple task and adopt the classi-
fication method. In [20], a very fast speed was achieved by
dividing the image into a grid of a certain size and deter-
mining the position of the lane with row-wise classification.
However, these methods do not represent lanes accurately,
nor do they detect relatively large numbers of lanes.

To address the shortcomings of the semantic segmenta-

533



tion and classification methods described earlier, we pro-
pose a novel self-attention module called the Expanded Self
Attention (ESA) module. Our modules are designed for
segmentation-based lane detection and can be attached to
any encoder-decoder-based model. Moreover, our method
does not increase the inference time because the ESA mod-
ule is removed in the testing phase. To make the model
robust to occlusion and difficult lighting conditions, ESA
module aims to extract important global contextual infor-
mation by predicting the occluded location in the image.
Inspired by the simple geometry of lanes, ESA modules are
divided into HESA (Horizontal Expanded Self Attention)
and VESA (Vertical Expanded Self Attention). HESA and
VESA extract the location of the occlusion by predicting
the confidence of the lane along the vertical and horizontal
directions, respectively. Since we do not provide additional
supervisory signals for occlusion, predicting occlusion lo-
cation by the ESA module is a powerful help for the model
to extract global contextual information. Details of the ESA
module will be presented in Section 3.2.

Our method is tested on three popular datasets (TuSim-
ple, CULane and BDD100K) containing a variety of chal-
lenging driving scenarios. Our approach achieves state-of-
the-art performance in the CULane and BDD100K datasets,
especially in CULane, surpassing the previous methods
with a F1 score of 74.2. We confirm the effectiveness of
the ESA module in various comparative experiments and
demonstrate that our method is robust under occlusion and
extreme lighting conditions. In particular, the results in Fig-
ure 1 show that our module shows impressive lane detection
performance in various challenging driving scenarios.

Our main contributions can be summarized as follows:

• We propose a new Expanded Self Attention (ESA)
module. The ESA module remarkably improves the
segmentation-based lane detection performance by ex-
tracting global contextual information. Our module
can be attached to any encoder-decoder-based model
and does not increase inference time.

• Inspired by the simple lane geometry, we divide the
ESA module into HESA and VESA. Each module ex-
tracts the occlusion position by predicting the lane con-
fidence along the vertical and horizontal directions.
This makes the model robust in challenging driving
scenarios.

• The proposed network achieves state-of-the-art per-
formance for the CULane [18] and BDD100K [28]
datasets and outstanding performance gains under low-
light conditions.

2. Related Work
Lane Detection. The use of deep learning for lane detection
has been increasingly popular. Owing to the success of deep
learning in the computer vision field, many studies have
been proposed by adopting deep learning technique on lane
detection for advanced driving assistant system, particularly
for autonomous driving [17, 18, 10, 20, 27]. This approach
performs better than hand-crafted methods [5, 22, 25, 13].
There are two main deep-learning-based approaches: 1)
classification-based and 2) segmentation-based approaches.

The first approach considers lane detection a classifica-
tion task [20, 27, 4]. Some works [20, 27] applied row-wise
classification for the detection of lanes, thereby excluding
unnecessary post-processing. In particular, [20] achieved
high-speed performance by lightening the model. However,
in the classification method, the performance depends on
how many times the position of the lane is subdivided. In
addition, it is difficult to determine the shape of the lane
accurately.

Another approach to lane detection is to consider it a
semantic segmentation task [17, 18, 10, 9, 14]. Neven et
al. [17] performs instance segmentation by applying a clus-
tering method to line mark segmentation. Moreover, Lee et
al. [14] proposes multi-task learning that simultaneously
performs grid regression, object detection, and multi-label
classification guided by the vanishing point. Multi-task
learning provide additional supervisory signals. However,
the additional annotations required for multi-task learning
are expensive. Pan et al. [18] applies a message passing
mechanism between adjacent pixels. This method over-
comes lane occlusion caused by vehicles and obstacles on
the road and recognizes lanes in low-light environments.
However, this message passing method requires consider-
able computational cost. To solve the slow speed of the
method in [18], Hou et al. [10] proposes the Self Atten-
tion Distillation (SAD) module and achieve a significant im-
provement without additional supervision or labeling while
maintaining the number of parameters in the model. How-
ever, in the SAD module, knowledge distillation is con-
ducted from deep to shallow layers, which only enhances
the inter-layer information flow for the lane area and does
not provide an additional supervisory signal for occlusion.
Our work is similar to [10], in that it uses the self-attention
module. However, it adopts a new self-attention approach
in a completely different way. To overcome occlusion prob-
lems, the proposed ESA module calculates the confidence
of the lane that is deeply related to the occlusion. By us-
ing lane confidence, the model can reinforce the learning
performance for these areas by providing a new supervisory
signal for occlusion.
Self-attention. Self-attention has provided significant im-
provements in machine translation and natural language
processing. Recently, self-attention mechanisms are used
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Figure 2: (a) Structure of ESA encoder fesa. (b) Details of the Horizontal Expanded Self Attention (HESA) module (top) and
Vertical Expanded Self Attention (VESA) module (bottom). The only difference between the two modules is the expansion
direction of the ESA encoder output. Operator ⊙ is defined as an element-wise product.

in various computer vision fields. The non-local block [24]
learns the relationship between pixels at different locations.
For instance, Zhang et al. [29] introduces a better image
generator with non-local operations, and Fu et al. [6] im-
proves the semantic segmentation performance using two
types of non-local blocks. In addition, self-attention can
emphasize important spatial information of feature maps.
[19, 26] showed meaningful performance improvement in
classification by adding channel attention and spatial atten-
tion mechanisms to the model.

The proposed ESA module operates in a different way
than the previously presented module. The ESA module ex-
tracts the global context of congested roads to predict areas
with high lane uncertainty and to emphasize those lanes.

3. Proposed Approach
3.1. Overview

Unlike general semantic segmentation, lane segmenta-
tion conducts segmentation by predicting the area in which
the lane is covered by objects. Therefore, lane segmentation
tasks must extract global contextual information and con-
sider the relationship between distant pixels. In fact, self-
attention modules with non-local operation [24] can be an
appropriate solution. Several works [30, 6, 11] prove that
non-local operations are effective in semantic partitioning
where global contextual information is important. However,
in contrast to the complex shape in general semantic seg-
mentation, the lane has a relatively simple geometric shape
in lane segmentation. This makes non-local operations in-

efficient.
If the network can extract occluded locations, lanes that

are invisible owing to occlusions are easier to segment. The
location information of occlusions becomes more important
than their shape owing to the simple lane shape. Therefore,
rather than extracting the high-level occlusion shape, it is
more effective to extract the low-level occlusion position.
By using this positional information, the ESA module can
extract the column or row-wise confidence of lanes by itself.
The confidence indicates that the model knows the location
of the occlusion based on the global contextual information
of the scene.

3.2. Expanded Self Attention

The ESA module aims to extract global contextual in-
formation by recognizing the occluded area. The structure
of the ESA module is inspired by the fact that the lane is a
line that spreads from the vanishing point. Due to the sim-
ple shape of the lane, it is efficient to predict the confidence
along the vertical or horizontal direction of the lane in or-
der to estimate the location of the occlusion. Therefore, we
divide the ESA module into HESA and VESA according to
the direction to extract the lane confidence. Furthermore,
all ESA modules are only used in the training phase and are
removed in the testing phase. Therefore, our method has
the same inference time and number of parameters as the
baseline model.

Figure 2 shows two types of ESA modules, HESA and
VESA. Both modules have an ESA encoder fesa consisting
of convolution layers and fully connected layers. The ESA
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Figure 3: (a) Graph of ESA encoder fh
esa output and (b) pre-

dicted lane probability map. The output of the ESA encoder
represents the lane confidence of each row. The graph and
lane are matched with the same color, and the graph shows
only the area in which the lane exists.

encoders of the HESA and VESA modules are defined as
fh
esa and fv

esa, respectively. The only difference between
the two encoders is the length of the output vector. For
the HESA modules, the output shape of fh

esa is RC×H×1,
where C is the maximum number of lanes, and H is the
height of the image. This output will be expanded hori-
zontally and will be equal to the original image size. More
specifically, as shown in Figure 2 (b) of the paper, this out-
put is duplicated with size W in the horizontal direction,
where W is the width of the input image. The expanded ma-
trix is ESA matrix, Mh

esa ∈ RC×H×W . It should be noted
that each row of Mh

esa has the same element value, as shown
in Figure 2 (b). Similarly, regarding the VESA module, the
output of fv

esa of size RC×1×W is vertically expanded to en-
sure that the ESA matrix is Mv

esa ∈ RC×H×W , where W is
the width of the image. Therefore, as illustrated in Figure 2
(b), each column of Mv

esa has the same value. The ESA
matrix has a value between 0 and 1 owing to the sigmoid
layer of fesa and highlights a part of the predicted probabil-
ity map via the element-wise product between the predicted
probability map and ESA matrix. If the predicted probabil-
ity map is Ppred ∈ R(C+1)×H×W , the weighted probability
map Epred is formulated as Epred = Ppred ⊙Mh

esa for the
HESA module and Epred = Ppred ⊙ Mv

esa for the VESA
moduel, where the operator ⊙ describes an a element-wise
product. The reason that the number of channels in Ppred is
C + 1 is that C lane classes and one background class are
included in the dataset. Therefore, element-wise product is
performed only on lane channels except for a background
channel, and the size of Epred is C ×H ×W .

The most important role of the ESA module is extracting
lane confidence. Figure 3 presents the predicted probabil-
ity map of the model and output of the ESA encoder fh

esa.
The colors in the graph match the colors of the lane. The

output of fh
esa is identical to the height of the image. How-

ever, in Figure 3, only the location in which the lane exists
is presented as a graph. If there is no occlusion on the road
as shown in the first figure in Figure 3, the output of fh

esa

is overall high. If occlusion occurs, such as the blue and
yellow lanes in the second figure, the measured fh

esa value
of the occluded area is small. This is how the ESA mod-
ule measures the confidence of the lane. If the visual cues
for the lane are abundant, the lane confidence at the loca-
tion increases, and a great weight is output. Conversely, if
there are few visual cues, the lane confidence decreases and
a small weight is output.

3.3. Network Architecture

Our network architecture is illustrated in Figure 4. Our
neural network starts with the baseline model, which con-
sists of encoder and decoder. In this paper, since inference
time is an important factor in lane detection, lightweight
baseline models such as ResNet-18 [8], ResNet-34 [8], and
ERFNet [21] are used. Inspired by the works [10, 15], we
add the existence branch to the baseline model. Existence
branch is designed for datasets in which lanes are classified
according to their relative position, such as TuSimple and
CULane. In the case of BDD100K, existence branch is not
used because we consider all lanes as one class. We extract
a total of four feature maps from the baseline model en-
coder. These feature maps are resized and concatenated to
become input to the ESA module. We will discuss in detail
how the ESA module output, baseline model output, and
ground truth labels interact with each other in Section 3.4.

3.4. Objective Functions

Segmentation and existence loss. First we reduce the dif-
ference between the predicted lane segmentation map Spred

and the ground truth segmentation map Sgt. The segmenta-
tion loss Lseg is used as follows:

Lseg = LCE (Spred, Sgt) , (1)

where LCE is the standard cross entropy loss. We apply
cross entropy loss to C lane classes and one background
class. In addition, the existence loss is proposed for the
TuSimple and CULane datasets because lanes are classified
by their relative positions. The existence loss Lexist is for-
mulated as follows:

Lexist = LBCE (lpred, lgt) , (2)

where LBCE is the binary cross entropy loss, lgt is a lane
existence label, and lpred is an output of the lane existence
branch.
ESA loss. The ESA module aims to predict the confidence
of the lane by recognizing occlusion with global contextual
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Figure 5: Comparison of low (top) and high (bottom) loss.
The mean square error is determined according to the loca-
tion in which the ESA matrix is active.

information. However, creating an annotation for the lo-
cation information of the occlusion is time-consuming and
expensive, and the consistency of the annotation cannot be
guaranteed. Therefore, our module learns the occlusion lo-
cation without additional annotations by reducing the mean
square error between the weighted probability map Epred

and the weighted ground truth segmentation map Egt. Fig-
ure 5 presents this process.

The predicted probability map of the lane is Ppred =
Φ(Spred), where Φ(.) is the softmax operator. In addition,
the ESA loss Lesa is formulated as follows:

Lesa = LMSE (Epred, Egt)

+ λ |Ψ(Epred)−ΥΨ(Sgt)| ,
(3)

where the ESA matrix is Mesa, the weighted probability
map Epred = Ppred ⊙ Mesa, the weighted ground truth
map Egt = Sgt ⊙Mesa, and LMSE is the mean square er-

ror loss. Moreover, the operator Ψ(.) calculates the average
of all values of the feature map, and λ is a regularization
coefficient. The coefficient Υ has an important effect on the
performance of the model, and it determines the proportion
of the weighted lane area. The first term on the right-hand
side of Equation (3) is visualized in Figure 5. In general,
the lane probability map is blurred in areas with sparse su-
pervisory signals. As shown in Figure 5, if a large weight
is given to the accurately predicted region in the probability
map, the mean square error is small. Conversely, when a
large weight is given to an uncertainly predicted area, the
mean square error is large. This is how to predict the confi-
dence of the lane without additional annotations.

In fact, if only the mean square error loss is used as the
ESA loss, the ESA module outputs are all zeros in the train-
ing. To solve this problem, a second term is added as a reg-
ularizer to the right-hand side of Equation (3). This regular-
ization term keeps the average pixel value of the weighted
probability map equal to a certain percentage of the average
pixel value of the ground truth map. This ratio is determined
by Υ, which has a value between 0 and 1.

It should be noted that although one ESA module is an
HESA or a VESA module, both modules can be simulta-
neously attached to the model. In that case, the ESA loss
is Lesa = Lh

esa + Lv
esa, where Lh

esa is the ESA loss of the
HESA module, and Lv

esa is the ESA loss of the VESA mod-
ule. Finally, the above losses are combined to form the final
objective function:

L = αLseg + βLexist + γLesa. (4)

The parameters α, β and γ balance the segmentation loss,
existence loss, and ESA loss of the final objective function.
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Category R-34-H&VESA ERFNet-H&VESA SCNN [18] ENet-SAD [10] R-34-Ultra [20] ERFNet [21] ERFNet-E2E [27]
Normal 90.5 92.0 90.6 90.1 90.7 91.5 91.0

Crowded 68.3 73.1 69.7 68.8 70.2 71.6 73.1
Night 65.7 69.5 66.1 66.0 66.7 67.1 67.9

No line 42.2 45.8 43.4 41.6 44.4 45.1 46.6
Shadow 65.1 75.1 66.9 65.9 69.3 71.3 74.1
Arrow 85.4 88.1 84.1 84.0 85.7 87.2 85.8

Dazzle light 59.8 63.1 58.5 60.2 59.5 66.0 64.5
Curve 61.5 68.8 64.4 65.7 69.5 66.3 71.9

Crossroad 1675 2001 1990 1998 2037 2199 2022
Total 70.9 74.2 71.6 70.8 72.3 73.1 74.0

Runtime (ms) 4.7 8.1 133.5 13.4 5.7 8.1 -
Parameter (M) 2.44 2.68 20.72 0.98 - 2.68 -

Table 1: Comparison of F1-measures and runtimes for CULane test set. Only the FP is shown for crossroad. ”R-” denotes
”ResNet” and same abbreviation is used in the following sections.

4. Experiments

Datasets. We use three popular lane detection datasets
TuSimple [23], CULane [18], and BDD100K [28] for our
experiments. TuSimple datasets consist of images of high-
ways with constant illumination and good weather, and are
relatively simple datasets because the roads are not con-
gested. Therefore, various algorithms [18, 17, 7, 10, 12]
have been tested on TuSimple datasets since before 2018.
CULane is a very challenging dataset that contains crowded
environments with city roads and highways with varying
lighting conditions. The CULane dataset and TuSimple
dataset are officially labeled with up to four lanes and one
background excluding lanes. These datasets focus on the
detection of four lane markings, which are paid most atten-
tion to in real applications. The BDD100K dataset also con-
sists of images captured under various lighting and weather
conditions. In addition, the largest number of lanes among
the three datasets is labeled. However, because the number
of lanes is large and inconsistent, we detect lanes without
distinguishing instances of lanes.
Evaluation metrics.
1) TuSimple. In accordance with [23], the accuracy is ex-
pressed as Accuracy =

Npred

Ngt
, where Npred is the number

of predicted correct lane points and Ngt is the number of
ground truth lane points. Furthermore, false positives (FP)
and false negatives (FN) in the evaluation index.
2) CULane. In accordance with the evaluation metric
in [18], each lane is considered 30 pixel thick, and the
intersection-over-union (IoU) between the ground truth and
prediction is calculated. Predictions with IoUs greater than
0.5 are considered true positives (TP). In addition, the F1-
measure is used as an evaluation metric and is defined as
follows:

F1 =
2× Precision×Recall

Precision+Recall
, (5)

where Precision = TP
TP+FP , Recall = TP

TP+FN .

Algorithm Accuracy FP FN Runtime (ms)
ResNet-18 [8] 92.69% 0.0948 0.0822 3.4
ResNet-34 [8] 92.84% 0.0918 0.0796 4.7
LaneNet [17] 96.38% 0.0780 0.0244 19.0
EL-GAN [7] 96.39% 0.0412 0.0336 -

ENet-SAD [10] 96.64% 0.0602 0.0205 13.4
SCNN [18] 96.53% 0.0617 0.0180 133.5

R-18-H&VESA 95.70% 0.0588 0.0622 3.4
R-34-H&VESA 95.83% 0.0587 0.0599 4.7
ERFNet-HESA 96.01% 0.0329 0.0458 8.1
ERFNet-VESA 95.94% 0.0340 0.0451 8.1

ERFNet-H&VESA 96.12% 0.0331 0.0450 8.1

Table 2: Comparison of performance results of different al-
gorithms applied to TuSimple test set.

Algorithm Accuracy IoU Runtime (ms)
ResNet-18 [8] 54.59% 44.63 2.7
ResNet-34 [8] 56.62% 46.00 4.1
ERFNet [21] 55.36% 47.04 7.3

ENet-SAD [10] 57.01% 47.72 12.1
SCNN [18] 56.83% 47.34 123.6

R-18-H&VESA 57.03% 46.50 2.7
R-34-H&VESA 59.93% 49.51 4.1
ERFNet-HESA 57.47% 48.97 7.3
ERFNet-VESA 57.51% 48.24 7.3

ERFNet-H&VESA 60.24% 51.77 7.3

Table 3: Comparison of results for BDD100K test set.

3) BDD100K. In general, since there are more than 8 lanes
in an image, following [10], we determine the pixel accu-
racy and IoU of the lane as evaluation metrics.

We used different evaluation method for fair compar-
isons with previous studies. We evaluated with the same
method as [7, 10, 17, 18] for TuSimple and [10, 18, 20, 27]
for CULane.
Implementation details. Following [18, 10], we resize the
images of TuSimple, CULane, and BDD100K to 368×640,
288 × 800, and 360 × 640, respectively. The original
BDD100K images label one lane with two lines. Because
this labeling method is difficult to learn, so we drew new 8
pixel thick ground truth labels that pass through the center
of the lane. The new ground truth labels are applied equally
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Input Ground Truth SCNN ENet-SAD ERFNetOurs

Figure 6: Comparison of the output probability maps of different algorithms applied to CULane test set. The third column
is the result of the proposed ERFNet-HESA. The probability maps of the four lane classes are displayed in blue, green, red,
and yellow, respectively.

to both train and test sets. Moreover, SGD [1] is used as
the optimizer, and the initial learning rate and batch size are
set to 0.1 and 12, respectively. The loss balance coefficients
α, β, and γ in Equation (4) are set to 1, 0.1, and 50, re-
spectively. The regularization coefficient λ in Equation (3)
is 1. It is experimentally verified whether the value of the
coefficient Υ in Equation (3) has a significant effect on the
performance of the model. In CULane and BDD100K, the
optimal Υ value is set to 0.8, and TuSimple is set to 0.9.
The effect of Υ on the performance is discussed in detail
in Section 4.2. Because the BDD100K experiment regards
all lanes as one class, the output of the original segmenta-
tion branch is replaced with a binary segmentation map. In
addition, the lane existence branch is removed for the eval-
uation. All models are trained and tested with PyTorch and
the Nvidia RTX 2080Ti GPU.

4.1. Results

Tables 1-3 compare the performance results of the pro-
posed method and previously presented state-of-the-art al-
gorithms for CULane, TuSimple, and BDD100K datasets.
The proposed method is evaluated with the baseline models
ResNet-18 [8], ResNet-34 [8], and ERFNet [21], and each
model is combined with either an HESA or a VESA. More-
over, the use of both HESA and VESA modules is denoted
as “H&VESA”. The effects of using both modules simulta-
neously are presented in Section 4.2.

The combination of the baseline model ERFNet and
ESA module outdoes the performance of the ERFNet
and achieves state-of-the-art performance for CULane and
BDD100K. In particular, ERFNet-H&VESA provides sig-
nificant performance gains for almost all driving scenarios
in the CULane dataset compared to ERFNet. However, the
runtime and number of parameters remain unchanged. In
addition, ERFNet-H&VESA surpasses the existing meth-
ods by achieving an F1-measure of 69.5 in the challeng-
ing low-light environment in the lane detection with the
CULane dataset. It has a fast runtime similar to those

Ground Truth ERFNet ERFNet-HESA ERFNet-H&VESA

(a)

(b)

Figure 7: Performance of different algorithms for (a)
TuSimple and (b) BDD100K test sets.

of the previous state-of-the-art methods in Table 1. Thus,
the proposed method is much more efficient than the pre-
viously proposed methods. As shown in Table 3, com-
pared to ERFNet, ERFNet-HESA increases accuracy from
55.36% to 57.47% with the BDD100K dataset. In addi-
tion, ERFNet-H&VESA achieves the highest accuracy of
60.24%. These results show that the HESA and VESA
modules work complementarily. The regarding details are
covered in Section 4.2. The results of the TuSimple dataset
in Table 2 show the effect of the ESA module, but it does
not achieve the highest performance. The TuSimple dataset
contains images of highways with bright light, and gen-
erally less occlusion. Because the ESA module extracts
global contextual information by predicting the occluded
location, our method is less effective for datasets with less
occlusion. Unlike our method, ENet-SAD [10] provides ad-
ditional supervision signals to lane areas and SCNN [18] ap-
plies a message passing mechanism between adjacent pix-
els in visible lanes. EL-GAN [7] uses adversarial learning
to capture sparse supervision from visible lanes or sharpen
blurry lanes. Therefore, these methods are effective in
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Baseline HESA VESA TuSimple CULane BDD100K
Accuracy FP FN F1 (total) Accuracy IoU

ResNet-18 [8]

92.69% 0.0948 0.0822 67.8 54.59% 44.63
✓ 95.73% 0.0590 0.0643 70.4 56.68% 46.11

✓ 95.70% 0.0598 0.0615 70.3 56.70% 46.08
✓ ✓ 95.70% 0.0588 0.0622 70.7 57.03% 46.50

ResNet-34 [8]

92.84% 0.0918 0.0796 68.4 56.62% 46.00
✓ 95.68% 0.0584 0.0634 70.7 58.36% 47.29

✓ 95.70% 0.0533 0.0681 70.7 58.11% 47.30
✓ ✓ 95.83% 0.0587 0.0599 70.9 59.93% 49.51

ERFNet [21]

94.90% 0.0379 0.0563 73.1 55.36% 47.04
✓ 96.01% 0.0329 0.0458 74.2 57.47% 48.97

✓ 95.94% 0.0340 0.0451 74.1 57.51% 48.24
✓ ✓ 96.12% 0.0331 0.0450 74.2 60.24% 51.77

Table 4: Performance comparison of various combinations of HESA and VESA modules with TuSimple, CULane, and
BDD100K test sets

datasets with less occlusion.
We provide qualitative results of our algorithm for var-

ious driving scenarios in three benchmarks. In particular,
the first and second rows of Figure 6 show that our method
can detect sharp lanes even under extreme lighting condi-
tions and in situations in which the lanes are barely visi-
ble owing to other vehicles. Figure 7 (a) shows that the
ESA module can connect the lanes occluded by vehicles
without interruption. According to Figure 7 (b), the ap-
proach achieves more accurate lane detection in low-light
environments. Thus, compared to the baseline model, the
ESA module can improve performance in challenging driv-
ing scenarios with extreme occlusion and lighting condi-
tions.

4.2. Ablation Study

Combination of HESA and VESA. Table 4 summarizes
the performance characteristics of different combinations
of HESA and VESA. The following observations can be
made. (1) The performance characteristics of the HESA and
VESA modules are similar. (2) In general, the performance
of H&VESA with HESA and VESA modules applied si-
multaneously is better. In addition, H&VESA results in a
remarkable performance improvement for BDD100K. The
reason why the HESA and VESA modules lead to similar
performance characteristics is that the predicted direction of
the lane confidence is not important for extracting the low-
level occlusion location because the lane has a simple geo-
metric shape. Because the HESA and VESA modules com-
plement each other to extract more abundant global con-
textual information, it is not surprising that H&VESA gen-
erally achieves the highest performance. Therefore, global
contextual information is more important for the BDD100K
dataset, which includes many lanes.
Value of Υ. Figure 8 compares the total F1-score of the
CULane validation set with respect to Υ in Equation (3). As
shown in Figure 8, the model shows the best performance at
Υ = 0.8 in ERFNet-HESA. It is important to find a suitable
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Figure 8: Comparison of performance characteristics with
respect to Υ for the CULane validation set.

Υ value because it determines the ratio of occluded and nor-
mal areas. When the Υ is small (i.e., when the predicted oc-
clusion area is wide), the sensitivity to occlusion decreases,
which makes it difficult to determine the occluded location
accurately. Conversely, when Υ is large, the detected occlu-
sion area becomes narrow, which makes it difficult for the
network to reinforce learning for the entire occluded area.

5. Conclusion

This paper proposes ESA module, a novel self-attention
module for robust lane detection in occluded and low-light
environments. The ESA module extracts global contextual
information by predicting the confidence of the lane. The
performance of the model is evaluated on the datasets con-
taining a variety of challenging driving scenarios. Accord-
ing to the results, our method outperforms previous meth-
ods. We confirm the effectiveness of the ESA module in
various comparative experiments and demonstrate that our
method is robust in challenging driving scenarios.
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