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Abstract

Polynomial radial lens distortion models are widely used
in image processing and computer vision applications to
compensate for when straight lines in the world appear
curved in an image. While polynomial models are used per-
vasively in software ranging from PhotoShop to OpenCV
to Blender, they have an often overlooked behavior: poly-
nomial models can fold back onto themselves. This prop-
erty often goes unnoticed when simply warping to undistort
an image. However, in applications such as augmented re-
ality where 3D scene geometry is projected and distorted
to overlay an image, this folding can result in a surprising
behavior. Points well outside the field of view can project
into the middle of the image. The domain of a radial dis-
tortion model is only valid up to some (possibly infinite)
maximum radius where this folding occurs. This paper de-
rives the closed form expression for the maximum valid ra-
dius and demonstrates how this value can be used to fil-
ter invalid projections or validate the range of an estimated
lens model. Experiments on the popular Lensfun database
demonstrate that this folding problem exists on 30% of lens
models used in the wild.

1. Introduction

The geometric computer vision literature is largely built
around the pinhole model of a camera. Projective geome-
try concepts like projection matrices, homographies, funda-
mental matrices, and so on are built upon the mathemati-
cal image formation model that ensures that straight lines
in the world coordinates project into straight lines in the
image plane. Yet, real world lenses often have distortion.
These distortion effects must be modeled in order to apply
the power of the pinhole model in many computer vision
applications without significant measurements errors [8].

The most common approaches for correcting distortion
are radial distortion models. Radial distortion assumes
that the distortion is radially symmetric about a center of

∗Contributed to this work while employed at Kitware, Inc.

Figure 1: Example of undistortion. Beyond the red circle
(maximum radius of distortion) the distortion folds back
on itself. Points outside the maximum radius may incor-
rectly project into the valid image bounds causing problems
in practical vision applications.

distortion—often the center of the image. Points along the
radial lines are scaled by a non-linear function of the radius.
While there are many variants of this distortion model that
have been explored, in practice a simple polynomial func-
tion is most often used. The Brown–Conrady [4] model
is commonly cited in the literature when referring to this
polynomial model. The Brown–Conrady model uses even
degree polynomial terms, but other variants exist using both
odd and even terms. The polynomial coefficients are typi-
cally estimated from image data in one of three ways: opti-
mizing the projection of known 3D points from calibration
target (like a checkerboard) [31, 3, 33], bundle adjustment
of points matched across multiple views [13, 2, 15, 22, 25],
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or by minimizing the curvature of lines that are known to be
straight [10, 5, 26, 1, 27, 30, 32]. While various alternative
models have been proposed in the literature, the majority
of production software applications use some variant of a
polynomial model to account or correct for radial distortion.

Most computer vision courses and textbooks [16, 28, 14]
teach polynomial lens distortion models but typically as a
side topic and not in much depth. Students of computer
vision commonly estimate and apply these models only to
warp an image to remove the distortion effects. As a result,
not much attention is given to how these models behave out-
side the bounds of the image. Polynomial lens distortion
models have an often overlooked property that may lead to
surprising results when using radial lens distortion in prac-
tical applications. Radial lens distortion models may fold
back on themselves allowing points in front of the image
plane but far outside the field of view to project back into
the image. Practically, applications in which 3D scene con-
tent is projected into an image and warped into the original
distorted image space, such as augmented reality, are likely
to encounter these invalid projections. In extreme cases,
where the model is poorly fit to the periphery of the im-
age, these folding artifact materialize in corners of images
when warping to undistorted coordinates. These folding ar-
tifacts are commonly encountered in practice and reported
in support forums [20, 23, 24] whose discussions lack theo-
retical explanation of the problem at hand. This paper aims
to provide that missing explanation along with an analysis
of when it occurs and an algorithm to detect it. Figures 1
and 2 illustrate this problem in different ways.

Figure 1 shows an example of what can happen when
warping an image to remove distortion if the range of the
output image is expanded. The red circle shows the max-
imum radius for which the distortion function is bijective.
Outside of this circle pixels may be erroneously sampled
from the middle of the image. In fact, there is a second
larger radius for which all points on this circle map to the
center of distortion in the middle of the image. If the max-
imum radius is far outside the image bounds these artifacts
will go unnoticed during warping. However, if this radius
falls within the image the artifacts cannot be avoided.

Figure 2 illustrates the problem geometrically and shows
how a single straight line is distorted to curve back into the
image. The camera effectively has a secondary invalid field
of view (FOV) lying outside of the true FOV. Any points
in the invalid FOV will incorrectly project into the image
after distortion. This is analogous to the pinhole camera
property that mathematically projects points both in front
and behind the camera into the image. Most students of
projective geometry will know to filter points that lie behind
the camera, but fewer are aware of the need to filter points
outside the maximum valid radius of distortion.

The contributions of this paper are three-fold. First,
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Figure 2: Top view cross section of a camera frustum show-
ing the projection of a straight line in the world into a curved
line in the distorted image. The green portion of the line
falls within the valid field of view (FOV) and maps cor-
rectly. The red portion of the line maps outside the image,
as expected. The yellow part of the line should project out-
side the image but incorrectly folds back into the image due
to the distortion function. Any points in the yellow invalid
FOV regions will incorrectly distort into the image.

this paper provides a public service announcement to raise
awareness of the types of invalid image projections that can
occur when using polynomial radial distortion models in
practical applications. Second, the paper describes the con-
ditions under which a distortion model will fold back on
itself and derives the closed-form expression for the maxi-
mum valid radius for polynomials up to third degree. The
maximum valid radius marks a circular domain such that the
distortion function is bijective in that domain. The solution
to the third degree case is nontrivial to derive as it requires
roots of a cubic polynomial. A simple algorithm is given to
compute the maximum radius of distortion to use as a filter
when projecting points or to check that an estimated model
is valid for the entire image domain. Third, experiments
with the Lensfun [9] database of distortion models, which
is used in many production software systems, demonstrate
how frequently the folding issue occurs in the wild. Open
source code for work in this paper is available online1.

2. Related Work
Radial lens distortion models have been studied for a

very long time. One of the most commonly cited polyno-
mial models, the Brown–Conrady model, was developed
over a half century ago by Brown [4] building on ini-
tial work by Conrady [7] another half century before that.

1https://github.com/Kitware/max-lens-radius
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While other types of lens distortion models exist in the liter-
ature, polynomial models are simple and commonly used in
practice. This section focuses on polynomial models, which
are relevant to this paper, but also briefly surveys other lens
distortion models.

2.1. Radial Polynomial Models

Radial distortion models compensate for lens distortion
by scaling the image radially about a center of distortion as
a function, F (r), of the radius, r. Distortion is most com-
monly applied in normalized image coordinates to an undis-
torted point, (xu, yu), where the center of the distortion is
at the origin and the radius is therefore ru =

√
x2
u + y2u.

The distorted point (xd, yd) is computed as

xd = xuF (ru),

yd = yuF (ru).
(1)

Likewise one can define the distorted radius as

rd = D(ru) = ruF (ru). (2)

There are several polynomial variations of F (r). The basic
third degree polynomial has the form

FP (r) = 1 + k1r + k2r
2 + k3r

3, (3)

with model coefficients {k1, k2, k3}. Equation (3) can be
viewed as a third order Taylor series expansion of the ideal
distortion function. While additional higher order terms can
be added as needed, the literature generally agrees that a
third order polynomial is sufficient for most real lenses [16,
28, 14]. Often only one or two coefficients are used in cases
with less severe distortion.

The Brown–Conrady model [4] is a variant of the form

FB(r) = 1 + k1r
2 + k2r

4 + k3r
6. (4)

Note that this sixth degree polynomial still has only three
coefficients since only the even powers of r appear. Using
only even powers avoids the need for a square root operation
as one can compute Equation (4) directly from r2. Conve-
niently, one can express the Brown–Conrady model in terms
of Equation (3) using the change of variables r̂ = r2 such
that FB(r) = FP (r̂).

The model proposed by Brown also includes additional
non-radial terms called the tangential components. Tangen-
tial distortion compensates for manufacturing defects where
the lens is not parallel to the sensor plane. Since manu-
facturing quality of cameras is high, tangential distortion is
rarely used in practice and is ignored in the remainder of
this paper.

2.2. Other Lens Distortion Models

Other distortion models include the rational models of
Hartley and Saxena [17] or Claus and Fitzgibbon [6], the

Field of View model of Devernay and Faugeras [10], and the
division model of Fitzgibbon [13]. A more detailed review
and comparison of alternate radial distortion models can be
found in [29]. While these models offer some clear advan-
tages over the polynomial model, especially in very wide
angle and fish-eye lenses, the simple polynomial model re-
mains the most widely used in computer vision applica-
tions. The pervasiveness of polynomial models is likely due
to its simplicity and the availability of open source tools for
fitting these models, such as the OpenCV [21] implementa-
tion of Zhang’s method [33].

The purpose of this paper is not to propose a new math-
ematical model for lens distortion to address the shortcom-
ings of the popular polynomial model. Rather, the purpose
of this paper is to provide a deeper understanding of those
shortcomings so that applications committed to the use of
polynomial models may continue to use them while avoid-
ing the pitfalls of doing so. The remainder of this paper
focuses on polynomial distortion.

3. Computing the Maximum Valid Radius
Any radial distortion function, D(r), will either grow

monotonically to infinity or will reach a local maximum af-
ter which slope of D(r) becomes negative. If the slope is
negative then the distortion folds back on itself and D(r) is
no longer a bijection (not invertible). Thus, the maximum
valid radius, rmax, occurs at the smallest positive local max-
imum of D(r). If D(r) is monotonic then rmax = ∞. To
solve for rmax we need to find the smallest positive root of
D′(r), the derivative of D(r) with respect to r. Note that
D′(r) can have multiple positive roots, but we are only con-
cerned with the smallest root to find the maximum domain
of r ∈ (0, rmax) for which D(r) is monotonic.

The derivatives for the basic and Brown–Conrady dis-
torted radii set equal to zero are

D′
P (r) = 1 + 2k1r + 3k2r

2 + 4k3r
3 = 0 (5)

and D′
B(r) = 1 + 3k1r

2 + 5k2r
4 + 7k3r

6 = 0, (6)

respectively. Note that F (r) is a multiplicative factor ap-
plied to the undistorted radius as described by Equation (2).
Therefore, D′

P (r) (resp. D′
B(r)) is a polynomial of the

same degree as FP (r) (resp. FB(r)), just with different
coefficients. Both Equations (5) and (6) can be reduced to
the more general form

1 + aw + bw2 + cw3 = 0. (7)

In both cases, the constants ([2, 3, 4] or [3, 5, 7]) can be
folded into coefficients a, b, and c. Furthermore, for Equa-
tion (6), the substitution w = r2 reduces the problem to a
third degree polynomial. The final solution for Equation (6)
is then the square root of the solution to Equation (7).
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3.1. First and Second Degree Solutions

For a first degree polynomial, where b = c = 0, the
solution to Equation (7) is trivially w = 1

−a . The second
degree polynomial, with only c = 0, is also easily solved
by the quadratic equation where w = −a±

√
a2−4b

2b . Note
that the second degree solution is ill-defined when b = 0.
Using a lesser known form of the quadratic equation from
Muller’s method [19] there is a solution that covers both the
linear and quadratic cases consistently:

w =
2

−a+
√
a2 − 4b

. (8)

Only the positive square root is needed here since we seek
smallest positive real root. If the the discriminant, a2 − 4b,
is negative or if the denominator of Equation (8) is less than
or equal to zero, then there are no positive roots. In this
case, rmax =∞.

3.2. Third Degree Solution

The cubic formula for the roots of Equation (7) in the
general case has been known for centuries [11], but it is
considerably more complicated to express in closed form in
terms of a, b, and c. We can, however, write the solution
more compactly by defining several intermediate variables:

β = 2b3 − 9abc+ 27c2 (9)

γ = b2 − 3ac (10)

∆ = β2 − 4γ3 (11)

U = ◁
3

√
β +
√
∆

2
(12)

◁ ∈

{
1,
−1 +

√
3i

2
,
−1−

√
3i

2

}
(13)

Given the above definitions, the solution takes the form

w =
−1
3c

( γ

U
+ U + b

)
(14)

with the three solutions determined by the three possible
values of ◁ in Equation (13). Here the discriminant is ∆. If
∆ ≥ 0 then the square root in Equation (12) is real valued
and there is only one real valued cubic root corresponding
to the ◁ = 1 case.

If ∆ < 0 then there are three real valued solutions, but
the computation of those real values involves the cube root
of a complex number, and it is not at all obvious how to
evaluate it. In this case, it is easier to write Equation (12)
in polar coordinates. For a complex number of the form
z = x + iy, the polar coordinates are z = reiθ with radius

r =
√
x2 + y2 and angle θ = atan2(y, x). Using these

identities

U = ◁
3

√
β + i

√
−∆

2
(15)

= ◁
3

√
1

2

√
β2 +

√
−β2 + 4γ3

2
eiθ (16)

= ◁ 3

√
1

2

√
4γ3eiθ (17)

= ◁
√
γeiθ/3 (18)

where θ = atan2(
√
−∆, β). Note that ∆ < 0 also im-

plies γ > 0, so the square root above is real valued. In
polar coordinates ◁ = {1, ei2π/3, e−i2π/3} which we can
write as ◁ = ei2πt/3 for t ∈ {−1, 0, 1}. Substituting into
equation (14), the solution becomes

w =
−1
3c

(
γ

√
γei(θ+2πt)/3

+
√
γei(θ+2πt)/3 + b

)
(19)

= −−1
3c

(√
γe−i(θ+2πt)/3 +

√
γei(θ+2πt)/3 + b

)
(20)

= −−1
3c

(√
γ
(
e−i(θ+2πt)/3 + ei(θ+2πt)/3

)
+ b

)
(21)

= −−1
3c

(
2
√
γ cos

(
θ + 2πt

3

)
+ b

)
. (22)

3.3. The Algorithm

The derivation of the general solution to Equation (7)
is somewhat complex, but the final solution is easy to im-
plement in code and is efficient to compute. Algorithm 1
provides the pseudo code for a function that computes the
smallest positive solution to Equation (7) or∞ if there is no
real-valued positive root. The general solver in Algorithm 1
is easily reused to compute the maximum radius for the ac-
tual distortion models of interest. For example, Algorithm 2
uses Algorithm 1 to compute the maximum valid radius for
the Brown–Conrady model. A similar approach is possible
for other polynomial variants up to third degree.

These algorithms allow efficient computation of the
maximum valid radius of distortion given the polynomial
coefficients. Knowledge of this maximum radius enables
two important validation tests in practical applications.
First, when estimating a distortion model one can quickly
check that the model is bijective for the entire image by
simply comparing the maximum radius to the distance to
the furthest image corner. This test makes it easy to deter-
mine if undistorting the image will produce mirroring arti-
facts in the corners. Second, for image overlay applications,
like augmented reality, the maximum radius can serve as a
threshold in the normalized projection space to ensure that
scene geometry outside the valid FOV does not erroneously
project into the image.
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Figure 3: Brown–Conrady maximum valid radius as a function of k1 and k2 shown for different values of k3.

Algorithm 1: Calculate minimum positive root
Input: coefficients {a, b, c}
Output: smallest positive root of 1 + ar + br2 + cr3

or∞ if no positive root
Function MinPosRoot(a, b, c):

r ←∞
if c ̸= 0 then

β ← 2b3 − 9abc+ 27c2

γ ← b2 − 3ac
∆← β2 − 4γ3

if ∆ > 0 then

U ← 3

√
(β +

√
∆)/2

r ← ((γ/U) + U + b)/(−3c)
else

θ ← atan2(
√
−∆, β)

for t ∈ {−1, 0, 1} do
s←

(
2
√
γ cos

(
θ+2πt

3

)
+ b

)
/(−3c)

if s < r and s > 0 then
r ← s

else if b ̸= 0 then
∆← a2 − 4b
if ∆ ≥ 0 then

∆←
√
∆− a

if ∆ > 0 then
r ← 2

∆

else if a < 0 then
r ← 1

−a

return r

4. Experiments

In this section we summarize how the maximum radius
of distortion varies as a function of the polynomial coef-
ficients. We provide an example of how the behaviour of
this function can vary when polynomials are fitted to real

Algorithm 2: Brown–Conrady maximum radius
Input: coefficients {k1, k2, k3}
Output: maximum valid radius under distortion

Equation (4)
return

√
MinPosRoot(3k1, 5k2, 7k3)

data. Then we evaluate the impact of the maximum radius
of distortion on real camera calibration models used in the
wild.

4.1. Properties of the Maximum Radius

Figure 3 plots the maximum radius of the Brown–
Conrady model as a function of the polynomial coefficients.
The basic third order model produces a similar plot. Green
regions of the parameter space have rmax = ∞ and no
folding occurs. Blue regions have large but finite radii.
Red/orange regions have radii close to zero with danger of
folding within the image. As long as all coefficients are
positive then we are guaranteed that rmax = ∞. Like-
wise, since the k3 term dominates, we are guaranteed that
rmax ̸= ∞ if k3 < 0. Notice the sharp transitions between
rmax = ∞ and rmax ≈ 0, for positive k3. This means
that small perturbations to the estimates of polynomial co-
efficients can abruptly transition to from bijective to folded
solutions as demonstrated next.

4.2. Effects of Different Order Polynomials

Using the calibrateCamera function in
OpenCV [21] we fit first, second, and third degree
polynomial models to the same calibration data. A Re-
olink RLC-410S security camera captured the calibration
data, a sequence of 35 different images of a circle grid
calibration target in different poses and positions within
the image. OpenCV uses the Brown–Conrady model.
We then deployed this camera in a surveillance setting
to capture a stairwell, which conveniently contains many
long straight line segments. Figure 4 shows how the best
fit model distorts lines for increasing degree polynomials
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Figure 4: First through third degree Brown–Conrady distortion functions fit with OpenCV to the same data. Top: plots of
D(r) and D′(r) for each case with the maximum valid radius marked in red. Bottom: multiple straight world lines distorted
under each model. These fold at the maximum valid radius (red circle) in the first and third but not second degree case. All
radius units are reported in the undistorted space.

and where the maximum radius of distortion lies. Notice
that the solid colored curves (yellow, blue, green, magenta)
align with straight objects in each case, but they curve back
into the image (dashed lines) in the first and third degree
models at the maximum radius (red circle). The same
curves extend to infinity in the second degree model even
though coefficients have similar values in each case. The
first and third degree cases have the maximum valid radius
inside the image meaning that the corners are not modeled
correctly.

4.3. Maximum Radii of Lenses in the Wild

To study how widespread these issues are in lens mod-
els used in production, we used Lensfun [9]. Lensfun is an
open source library and database of over 5000 photographic
lenses and their properties. Lensfun was developed for pho-
tographers to correct image distortions and is used in pro-
duction software such as Darktable, Rawstudio, ImageMag-
ick, and more. The Lensfun database has also been used, as
in this paper, to study lens models in the academic litera-
ture [29]. Specifically, we accessed radial distortion mod-
els across various consumer lenses to determine how many
lenses “in the wild” exhibit this folding problem and how
many have folding that occurs within the image bounds.

The Lensfun database contains three different radial lens
distortion functions named ptlens, poly3, and poly5 defined
as

Fptlens(r) = (1− a− b− c) + cr + br2 + ar3, (23)

Fpoly3(r) = (1− k1) + k1r
2, (24)

Fpoly5(r) = 1 + k1r
2 + k2r

4. (25)

The derivative of the distorted radius for each of these
models can be converted to the form of either Equation (3)
or (4) by change of variables. For ptlens and poly3, one
must also divide by the constant terms, 1 − a − b − c and
1−k1 respectively, to match the scale of Equation (3), where
F (0) = 1. Scaling does not change the polynomial roots.
Thus we seek the roots of

D′
ptlens(r) ∝ 1 +

(
2c

d

)
r +

(
3b

d

)
r2 +

(
4a

d

)
r3, (26)

D′
poly3(r) ∝ 1 +

(
3k1

1− k1

)
r2, (27)

D′
poly5(r) = 1 + 3k1r

2 + 5k2r
4, (28)

where d = 1 − a − b − c. In these forms one can easily
call MinPosRoot (Algorithm 1) to solve for the maximum
valid radius for each case.
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4.4. Quantitative Results

Our theoretical analysis demonstrates that given certain
coefficients of the distortion models, lens folding can occur.
Our quantitative experiments seek to explore the prevalence
of these phenomena in practice. We apply our algorithm to
each model in the Lensfun database and compute rmax for
each case.

There are several questions we wish to address with this
data. The first is how frequently rmax ̸= ∞, meaning that
D(r) is not a bijection for these given parameters and it
maps multiple radii in the undistorted space into the same
point in the distorted image space. Table 1 shows the num-
ber of models with finite rmax, broken down by the type
of lens model. The primary insight here is that 30.63% of
models have rmax ̸=∞, leading to non-bijective distortion
functions. The low degree poly3 model is especially prone
to this issue.

Model Finite Infinite %Finite Total
ptlens 1141 3055 27.19% 4196
poly3 411 461 47.13% 872
poly5 2 3 40.00% 5
Total 1554 3519 30.63% 5073

Table 1: Number of lens models with a finite maximum
valid radius.

Second, for the cases with a finite rmax, we further ex-
plore whether the distorted radius function, D(r), tends to-
ward negative or positive infinity. If D(r) tends toward neg-
ative infinity, it will eventually pass back through the image,
and there will be parts of the world that are outside the cam-
era frustum that incorrectly project back into the image as
in Figure 2. Table 2 shows that 98% of finite cases (30% of
all Lensfun models) have this issue with distorted radii that
tend toward negative infinity. In order to tend toward posi-
tive infinity, the remaining 2% must be third degree polyno-
mials (i.e. ptlens) with an inflection point greater than rmax.

Model Positive Negative %Negative Total

ptlens 27 1114 97.63% 1141
poly3 0 411 100.00% 411
poly5 0 2 100.00% 2
Total 27 1527 98.26% 1554

Table 2: Fraction of models with a finite max radius that
have reprojection functions tending to negative infinity.

Third, For the cases with a finite rmax, we compared the
finite maximum radii to the image sizes to validate that the
Lensfun models are at least valid for the entire image do-
main. Otherwise, these models would fail at their intended

application of undistorting images. The MinPosRoot al-
gorithm returns the maximum valid radius in the normalized
undistorted image space. We map rmax to the normalized
distorted image space, D(rmax), and compare to the image
corner radius after normalizing for focal length and image
scaling. In these experiments, we only use the lens mod-
els marked as rectilinear in the Lensfun database, ignoring
fisheye and other projections. Rectilinear covers 1532 out
of the 1554 models that have a finite maximum radius.

To obtain the normalized radius of the image corners, we
need the focal length, f , and the scale of the crop relative to
the reference sensor, sc. Both of these parameters are taken
directly from the Lensfun database. Lensfun uses a refer-
ence sensor size of 36mm × 24mm. To obtain the distance
to the corner in the image space, the distance from the cen-
ter of the sensor to the corner is computed and divided by
the focal length and crop scale as follows

rcorner =

√
182 + 122

scf
. (29)

We now define a normalized radius representing how
large the max radius is relative to the corner of the image

rnormalized =
D(rmax)

rcorner
(30)

10 1 100 101 102 103 104 105

Normalized max radius (log)

100

101

102

Fr
eq

ue
nc

y 
(lo

g)

Figure 5: Histogram of normalized finite maximum radii,
rnormalized, on a log-log plot. Only one model, corresponding
to Figure 6b, has rnormalized < 1, meaning folding occurs
within the bounds of the input distorted image. Note that
most other models still have problematic distortion in the
case of forward projection, as shown in Figure 2.

If the value of rnormalized exceeds one then the maximum
valid radius lies outside of the image bounds and the model
is valid for the entire image. If less than one, the model
is not a bijection over the image domain and warping to
remove distortion will have artifacts. Figure 5 plots a his-
togram showing the distribution of rnormalized values across
the 30% of the Lensfun database with finite values. Only
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(a) Input checkerboard used to visualize
undistortion functions.

(b) Undistortion for a Tokina AF AT-X
Pro DX, at a focal length of 11mm.
rnormalized = 0.858 is shown in green.

(c) Undistortion for a Sigma 14mm f/1.8
DG HSM | A. rnormalized = 1.478 is

shown in green.

Figure 6: Visualizations of undistorting a synthetic colorized checkerboard using problematic models from the Lensfun
database. Since we do not have access to captured images from these lenses, we use a checkerboard pattern (a) simply for
visualization. The one case where rnormalized < 1 is in (b). An example where rnormalized > 1 is in (c).

one camera model has rnormalized < 1. In this case it is im-
possible to undistort that image and capture all the corners
without including problematic regions as shown in Figure
6b. It is unsurprising that nearly all of the Lensfun models
are free from this issue because they are generally manu-
ally vetted by visualizing undistorted images before models
are added to the database. It is expected that the occurrence
of estimated models with this issue is much higher before
manual vetting.

In general, these folding artifacts occur after a gap out-
side the image, which can still cause erroneous projections
when overlaying projected 3D geometry onto the distorted
image. An example with the maximum valid radius just
outside the image can be seen in 6c where a spurious ring
occurs around the correctly undistorted internal image. This
problem is especially severe because, as shown in Table 2,
the vast majority of distortion functions with a finite max-
imum radius tend to negative infinity. All functions with
the property and rnormalized > 1 will project all points in the
distorted image into three points in the undistorted image
as seen in Figure 6c, once in the correct location, once fur-
ther out, and once even further from the image center on the
opposite side.

5. Conclusion

This paper has documented some of the often overlooked
challenges of working with polynomial radial distortion that
are prevalent in computer vision applications. Specifically,
we showed that these models can, in some cases, fold back
on themselves erroneously mapping points from outside the
field of view into the image bounds. Distortion models do
not always fold, but folding is far from a rare occurrence
with 30% of models in the Lensfun database observed to
have this issue. We derived a closed form solution for deter-
mining the maximum valid radius. This maximum radius is
easily computed and can serve as a threshold in augmented

reality applications to filter invalid points during rendering.
The algorithm has been contributed to KWIVER [12, 18], a
large open source C++ computer vision code base, to serve
exactly this purpose. Furthermore, the maximum distor-
tion radius can be compared to image maximum radius as a
validation test to ensure that estimate distortion models are
valid for the entire image.

It is possible to use other heuristic thresholds to avoid
invalid projections. For example, one can map the cor-
ner radius of the image into the undistorted space and use
this as the threshold. However, this will also filter many
other points that fall outside the image and will not properly
represent the case where folding happens within the image
bounds. In some applications the projection of content that
lies outside the image can provide additional context. Us-
ing the maximum radius of distortion allows for the most
context possible across the domain where the lens model is
valid.

There are other applications of the maximum distortion
radius to explore in future work. Most notably we will ex-
plore the use of the maximum distortion radius as a con-
straint in the optimization of polynomial coefficients. It
should be possible to estimate polynomial coefficients un-
der the constraint that the maximum distortion radius is in-
finite, or that it is greater than a selected target radius.
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