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Abstract

In recent years, many works in the video action recog-
nition literature have shown that two stream models (com-
bining spatial and temporal input streams) are necessary
for achieving state-of-the-art performance. In this paper
we show the benefits of including yet another stream based
on human pose estimated from each frame — specifically by
rendering pose on input RGB frames. At first blush, this ad-
ditional stream may seem redundant given that human pose
is fully determined by RGB pixel values — however we show
(perhaps surprisingly) that this simple and flexible addition
can provide complementary gains. Using this insight, we
propose a new model, which we dub PERF-Net (short for
Pose Empowered RGB-Flow Net), which combines this new
pose stream with the standard RGB and flow based input
streams via distillation techniques and show that our model
outperforms the state-of-the-art by a large margin in a num-
ber of human action recognition datasets while not requir-
ing flow or pose to be explicitly computed at inference time.
The proposed pose stream is also part of the winner solution
of the ActivityNet Kinetics Challenge 2020 [1].

1. Introduction
Human pose is intuitively intimately linked to human

centric activity recognition. For example, by localizing the
two legs from a human in a collection of frames, one is of-
ten able to easily recognize actions such as jumping, walk-
ing or sitting. As such, the idea of using pose explicitly
as a cue for activity recognition tasks is one that has been
explored in a number of works in the computer vision liter-
ature, including [5, 6, 7, 31, 49]. In this paper we revisit this
conceptually simple idea of using pose as a cue for activity
recognition using modern large scale datasets and models.
Specifically, we exploit pose in activity recognition using
3D CNNs, which in recent years have been a dominant ar-
chitecture in the subfield due to the rise of massive scale
video datasets such as Kinetics [3, 4, 18].

To achieve state-of-the-art results on Kinetics, many re-
cent works that rely on 3D CNNs [39, 40] have found it
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Figure 1. Visualizations of models trained on RGB, Pose, and
Flow modalities. The top row shows input multi-modality data.
The middle row shows the response maps from the networks us-
ing Grad-CAM [33]. Note that the response maps are overlaid
on RGB and pose images for better visualization. The bottom
row shows the model predictions on each of the modalities. Our
proposed pose modality focuses the attention on the entire human
body, providing a useful complementary cue to the standard RGB
and Flow modalities, here allowing for our model to correctly pre-
dict the “sit-up” action.

necessary to rely on a “two-stream” approach [34] that com-
bines spatial and temporal input streams using late fusion.
Concretely, this has typically referred to models trained in-
dependently to do activity recognition on (1) a sequence of
RGB images and (2) a sequence of optical flow fields (or
other motion representation) and fusing the results of both
models via ensembling.

In addition to this two-stream framework, we propose
to add a third input stream based on human pose. Unlike
the two-stream approach which is (very) loosely based on
the two-stream hypothesis of the human visual system [13],
our approach takes no specific inspiration from biology —
instead we rely on the natural intuition that since action
datasets tend to be human centric, if we had explicit pose
cues, it would often be much more straightforward to infer
action from pose compared to directly from raw pixels or
flow. As an example, consider Figure 1 which visualizes
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our model’s results on a person performing a sit-up using
the three possible input “modalities”, RGB, pose and flow.
However, this sit-up is more specifically a “barbell sit-up on
a decline bench” which is easily confused for “bench press”
due to strong cues from the appearance and motion of the
barbell. With such, the pose modality offers a complemen-
tary signal allowing our model to infer the correct activity.

How to provide the pose cues properly requires care
however — using pose alone as an input stream is intuitively
not enough, as recognition often requires contextual cues
(e.g. from props, objects that the human is interacting with,
etc). Instead, as the “pose stream”, we render pose via ex-
aggerated colored lines on top of each corresponding RGB
frame, which allows us to benefit from both a clear pose
based signal as well as contextual cues from surrounding
appearance. We demonstrate via ablations that this choice
to superimpose pose with the corresponding RGB frame is
critical for good results.

A reasonable question to ask is: why is pose not simply
a redundant input stream? After all, it is fully determined
by RGB values — and even more redundant given that we
render poses on top of the RGB frames. So even though
pose is intuitively connected to activity recognition, what
additional specific benefit is pose bringing in our setting?

We have a few answers. First, by using an off-the-shelf
pose estimation algorithm that was trained on the COCO
dataset [23], we are injecting additional semantic knowl-
edge that the model can leverage. Second, we note that op-
tical flow is also fully determined by the sequence of RGB
inputs. And as with flow, we show that models using the
pose stream are quantitatively different (better) than simply
ensembling with a second RGB-only model. In very recent
work, Stroud et al. [36] showed that the benefits of the tem-
poral stream could be captured by an “RGB-only” model
via distillation training, obviating the need for redundant
input streams at inference time.

Taking inspiration from Stroud et al. ’s flow based re-
sults [36], we similarly apply distillation techniques to our
problem with both pose and flow. Combining this with a
novel self-gating based architecture, we are able to obtain
a state-of-the-art RGB-only model that requires us to com-
pute neither flow nor pose. We dub this model the Pose
Empowered RGB-Flow Net (or PERF-Net).

To summarize, our contributions are as follows.

• We demonstrate strong evidence that pose is an im-
portant modality for video action recognition and can
provide a complementary input stream to the standard
RGB and Flow streams.

• We propose PERF-Net, an approach that leverages
RGB, Flow and Pose input streams in a multi-teacher
distillation setting to train an RGB-only model with
state of the art performance on the challenging Kinet-
ics dataset.

• We study the impact of using different representations
of the human pose input stream. We propose a context-
aware human pose rendering which can bridge the gap
between pose information and RGB within a collection
of frames.

• We perform detailed analysis on the response of net-
works from different input streams (RGB, Flow, and
Pose). Our qualitative results show that when trained
on our Pose stream, our model sometimes attends
to different regions of a frame compared to RGB or
Flow, allowing this third stream to offer complemen-
tary cues.

2. Related Work
2.1. Fusion of multiple modalities

In contrast to image data, videos are multi-modal. How
to best utilize this special characteristic of video data has
been a long-standing topic in the video understanding re-
search community. One of the standard approaches, intro-
duced by [34], captures complementary information from
appearance and motion by averaging predictions from two
separately trained 2D CNNs, one from RGB frames and the
other from stacked optical flow frames. Following [34], Fe-
ichtenhofer et al. [12] investigated the optimal locations
within CNNs to combine the two streams.

A more recent trend has been to train a 3D ConvNet
to directly model temporal patterns without relying explic-
itly on optical flow. This is easier said than done, as [4]
showed that performance (of their 3D convolutional archi-
tecture, I3D) could be greatly improved by including an op-
tical flow stream. However there have been some promis-
ing approaches; Feichtenhofer et al. [11] recently proposed
a two-stream architecture where both streams take RGB
frames as inputs, but extracted at different frame rates. Un-
like the late fusion approach taken by two-stream I3D mod-
els, the fusion in [11] is implemented as lateral connections
at different layers of the network. Ryoo et al. [32] adapted
the Evolution algorithm to search such lateral connections
in a multi-stream architecture. In addition to different frame
rates of RGB streams, they also include optical flow as an
additional stream of input.

In addition to optical flow, human pose is another in-
put modality that has been widely studied for understand-
ing videos involving human activities [46, 26, 17]. Chéron
et al. [5] showed that training RGB and flow streams on
the patches centered at human joint locations can improve
over the global approach. In addition to RGB and flow
frames, Zolfaghari et al. [51] proposed a new modality us-
ing human body part segmentation results from an existing
network. Another novelty from their work is that multi-
stream fusion is done sequentially through a Markov chain.
Choutas1 et al. [6] also proposed an representation to en-
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code pose information and use that as an additional stream,
but they used black background in the presentation, so on
Kinetics, the top-1 and top-5 accuracies decreased by 2%
and 1% respectively when using their representation with
I3D compared to I3D alone. Our study focuses on how to
best represent human pose as an input stream for a 3D CNN.
Our experiments highlight the importance of this issue, and
we show that a naive representation of human pose indeed
degrades the final ensemble performance. More generally
we run our experiments on the large scale Kinetics dataset
which are properly able to leverage the expressiveness of
3D CNNs leading to stronger results and “clearer” ablation
signals throughout the paper.

2.2. Distillation between modalities

While achieving state-of-the-art performance, multi-
stream models are computationally more expensive. For
example, the computation of optical flow could be more ex-
pensive than ConvNet inference. Distillation [2, 15] is a
technique to transfer the knowledge of a complex teacher
model to a smaller student model by optimizing the stu-
dent model to mimic the behavior of the teacher. Recently,
researchers have adapted this idea to multi-modal model
training. Zhang et al. [50] used a teacher model trained
on optical flow to guide a student CNN whose input is
motion vectors, which can be directly obtained from com-
pressed videos. Luo et al. [25] proposed a graph distilla-
tion approach to address the modality discrepancy between
the source and target domain. Our study is most similar
to recent works [36, 7] which distill the flow stream into
the RGB stream (e.g. flow stream is the teacher while RGB
stream is the student). Besides the flow stream, our experi-
ments show the benefits of using multiple teachers, e.g. flow
and human pose.

3. Pose Empowered RGB-Flow Nets

In this section we describe our main contribution, the
Pose Empowered RGB-Flow Nets (or PERF-Net) approach.
We begin by constructing a model that predicts actions
based on pose information. Specifically we describe how
we represent pose and how our pose representations can
be fed to a 3D CNN. The final goal is to fuse the predic-
tions that we can obtain via this pose stream with predic-
tions from RGB and flow streams. The standard approach
of applying “late fusion” to combine disparate input streams
is accurate but very slow since it requires multiple runs
through the 3d convnet architecture. Instead, in the PERF-
Net setting, we propose to use multi-teacher distillation to
train a final model that takes RGB inputs at test time, but
can benefit all three modalities (RGB, Flow, Pose) at train-
ing time.

3.1. Pose representation

By pose information we refer to human body joint po-
sitions (as is typical in the literature) which we first esti-
mate from each RGB frame using an off-the-shelf pose es-
timation model and then feed to a 3D CNN as a sequence
of frames. For pose estimation we use the PoseNet ap-
proach [19, 27] with ResNet backbones which is pre-trained
on the COCO dataset [23] and produces 17 estimated pose
keypoints for each detected human in a frame. We note that
the success of our model does not depend on our specific
choice of pose estimation approach. Additionally, we have
not specifically tuned the pose model with respect to the
final performance of PERF-Net. We also note that in our
datasets, such as Kinetics-600, human poses are not avail-
able in many samples.

How specifically to render pose as a frame (which can
then be sent as input to a convolutional network) is a
more important design decision. Our approach is to ren-
der pose via colored lines (using a different color for each
limb to allow the model to more easily distinguish between
the limbs). The simplest approach (similar to that taken
by [51]) is to simply render the estimated pose on a black
background. However using pose information alone in this
way is intuitively not enough, as activity recognition often
requires contextual cues — for example, having a golf club
in the frame is highly indicative of the action. So instead we
render the pose of each human on top of each corresponding
RGB frame, which as we show in experiments, can have a
sizeable impact on performance. We experiment with three
additional variations of the rendering scheme:

• Dots vs bars: we render joint locations with filled cir-
cles instead of limbs with line segments.

• Fine vs coarse-grained coloring: in our coarse-grained
setting we use 6 colors for the joints, assigning a
unique color to the left arm, right arm, body, head, left
leg, and right leg. In our fine-grained setting, each limb
gets its own color (e.g., left forearm vs left upper arm).

• Uniform vs ratio-aware line thickness: in the former
setting, we render lines with a uniform width; whereas
in the latter setting, we set line thickness proportional
to the size of the corresponding person detection’s
bounding box.

Figure 2 shows example of these pose rendering vari-
ants. As we show in the next section, using the fine-grained
coloring scheme and using ratio-aware line thicknesses can
lead to improved results.

3.2. Backbone architecture

We now describe our backbone architecture which is
based on a 3D version of ResNet50 where some of the con-
volution kernels have been “inflated” (specifically described
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Figure 2. A few different human pose rendering effects that
have been explored. Column A uses 6 different colors to repre-
sent poses, where the top row is rendered using the same thickness
of the segments and bottom row uses ratio-aware thickness of the
segments. Column B and C explore two different rendering mark-
ers, points and segments with 13 different colors. The top row in
column B and C uses a black background. Both column B and C
also add ratio-aware radius or thickness while rendering the poses.

Block Output sizes T × S2 × C
input 64× 2242 × 3

conv1
5× 72

64× 1122 × 64stride 1× 22

pool1
1× 32

64× 562 × 64stride 1× 22

res2

 3× 12

1× 32

1× 12

× 3 64× 562 × 256

feature gating

res3

 ti × 12

1× 32

1× 12

× 4 64× 282 × 512

feature gating

res4

 ti × 12

1× 32

1× 12

× 6 64× 142 × 1024

feature gating

res5

 ti × 12

1× 32

1× 12

× 3 64× 72 × 2048

feature gating

Table 1. R3D50-G architecture used in our experiments. The
kernel dimensions are T × S2 where T is the temporal ker-
nel size and S is the spatial size. The strides are denoted as
temporal stride× spatial stride2. For res3, res4, and res5 blocks
the temporal convolution only applies at every other cell. E.g.,
ti = 3 when i is an odd number and ti = 1 when i is even.

by [45] with a few key modifications). First, we remove all
max pooling operations in the temporal dimension. We find
that applying temporal downsampling in any layer degrades
the performance. Second, we add a feature gating mod-
ule [47] after each residual block. Feature gating is a self-
attention mechanism that re-weights the channels based on
context (i.e., the feature map averaged over time and space).
We also explored adding feature gating modules after every

residual cell which achieved similar results, so we decided
to keep the former configuration given that it is more com-
putationally efficient. These two modifications (no tempo-
ral downsampling, feature gating) can significantly improve
the final performance and ablation studies can be found in
the supplementary materials. In our experiments, we denote
this modified ResNet50 as R3D50-G (see Table 1). Note
that our methodology for using pose as an input stream does
not depend specifically on the choice of backbone, and in-
deed we also demonstrate results using the recent S3D-G
backbone [47].

3.3. Multi-stream fusion via distillation

Much as flow is used as a complementary signal to RGB
input streams in typical action recognition papers, the in-
tention of our pose model is to be used as a complemen-
tary signal to both RGB and flow. We now turn to how
to combine these multiple streams (RGB, flow, pose) into
a single model that takes RGB as its only input. Specifi-
cally we assume now that we have trained 3 models based
on RGB, flow and pose respectively. The goal of our distil-
lation approach will be to train an RGB-only model that
requires much less computation compared to running all
three models separately while capturing their complemen-
tary strengths.

Our approach is inspired by the D3D model [36], an
RGB-only model which captures the benefits of having a
temporal stream by using distillation techniques. Specifi-
cally, Stroud et al. [36] trained a student model which takes
a spatial (RGB-only) stream as input to do action recogni-
tion, adding an additional distillation loss which compares
against the output of a teacher model that was trained on
temporal stream inputs.

We apply a natural extension of the D3D approach to
allow it to handle multiple distillation losses (corresponding
to multiple non-spatial input streams). The total loss that
we jointly minimize encourages our PERF-Net RGB-only
student model to mimic logits from each teacher network
while simultaneously minimizing the loss from groundtruth
labels via backpropagation, and can be written as follows:

L = Lc(S`) +
N∑
i

MSE(T `
i , S

`) (1)

where S` denotes logits from student network and T `
i de-

notes the logits from the ith teacher network. We use mean
squared loss (applied to logits of student and teacher mod-
els) as the distillation loss. Figure 3 shows the structure of
our multi-teacher distillation framework.

Note that our loss function is distinct from the natural al-
ternative of training the student to directly mimic the stan-
dard late fusion model (by regression towards the sum of
all teacher-produced logits, referred as unified loss). In ex-
periments we show that our approach achieves significantly
better performance (See Table 4).
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Figure 3. The distillation framework is composed of two pieces:
student network and teacher network(s). The input modality can
be any representations, such as RGB, flow, or pose. The losses are
computed on each of the logits from the corresponding teacher net-
works (separate loss). Additionally, we experimented with the loss
computed on the summation of logits (1, 2, ... N) from all teacher
networks and added to the regression loss (unified loss). We show
separate loss outperforms unified loss in the experimental section.

4. Experiments
Training details Our R3D50-G models are trained on
Google TPUs (v3) [21] using Momentum SGD with weight
decay 0.0001 and momentum 0.9. We construct each batch
using 2048 clips on 256 TPU cores, yielding a per-core
batch size of 8. In order to fit 8 clips in TPU memory, we
use mixed precision training with bfloat16 type in all our
TPU training runs [44]. We train our R3D50-G models on
Kinetics-600 with random initialization (“from scratch”).
We also experimented with initializing from an inflated [4]
ImageNet [8] pre-trained model but this turns out to be un-
necessary in our setup. We train using a linear learning rate
warm-up for the first 2k steps increasing from 0 to a base
learning rate of 1.6, then use a cosine annealed learning
rate [24] for 20K steps.

Our S3D-G models are trained on 51 GPUs with a per-
core batch size of 6 clips (so the total mini-batch size is
306). All S3D-G models are initialized using inflation [4]
with a pre-trained Inception [37] model on ImageNet [8].

All models are trained on 64 consecutive frames (at 25
FPS) from the original videos and those clips are randomly
cropped from the original sequence. For each frame in the
clip, we first resize the video to have a shorter side equaling
to 256, and randomly crop a 224×224 region as the input to
the networks. For UCF-101 and HMDB-51, we use random
crops of 224 × 298 as inputs. Random mirroring, contrast,
and brightness are also applied as data augmentation. Fi-
nally, to extract flow, we use the TV-L1 approach [38].

Inference. Unlike previous work [45, 11], we use a sin-
gle central crop of the video to evaluate our models’ per-
formance. The crop size is set to 250 × 256 × 256 × 3

for Kinetics-600, 128 × 224 × 298 × 3 for UCF-101, and
64 × 224 × 298 × 3 for HMDB-51, (input shapes follow
the frames× height× width×channels convention). For se-
quences that do not have sufficiently many frames, we pad
by duplicating the first or the last frame.

4.1. What is the best representation for pose?

Our first question is which pose rendering methods
achieve the best performance (Figure 2)? We first take the
approach of rendering pose on a black background, which
as shown in Table 2 yields an accuracy much lower than
the other approaches. We argue that the reason is because
there are quite a few action training examples that are miss-
ing more than 50% of the human body; thus pose cannot be
determined in such frames. Instead, pose rendered on top
of the RGB frames not only provides rich context beyond
the pose itself, but also learns useful signals on the frames
without pose.

We also experiment with dot and bar rendering markers
and notice that bars yield slightly better results. We believe
that this is because bars provides more geometric informa-
tion about joint connections.

We also see that the fine-grained coloring scheme with
ratio-aware rendering achieves the highest accuracy. This
outcome is intuitive for the following reasons. First, fine-
grained pose rendering can provide detailed body joint rela-
tions such as fore-arm vs. upper-arm. Actions like pull-ups,
hug, and throw can benefit from such joint relations. Sec-
ond, with the ratio-aware line thickness, the pose itself pro-
vides information about relative distances which can serve
as useful hints about group actions, e.g. playing games. Fig-
ure 4 shows a few such rendered examples used in the pose
stream for the training.

Figure 4. Samples of fine-grained, ratio-aware rendering of
PoseNet detection results.

4.2. Is pose complementary to RGB?

We demonstrate that pose offers a complementary signal
to the RGB (and Flow) streams. In order to demonstrate the
value-add of Pose, we use the standard late-fusion approach
to combining multiple streams (so as to not have potential
confounding effects from distillation, which requires a more
complex training setup).
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Background Marker Color Ratio Top1 Top5

RGB Frame bar 6 × 77.8 93.9
RGB Frame bar 6 X 78.1 93.9
RGB Frame bar 13 × 77.9 93.8

Black dot 13 X 33.7 52.5
Black bar 13 X 34.0 52.9

RGB Frame dot 13 X 78.0 93.6
RGB Frame bar 13 X 79.3 94.3

Table 2. Pose stream results using R3D50-G on Kinetics-600
dataset with markers: dot or bar, and ratio-aware marker size. The
pose model is trained to validate performance. We also evalu-
ate the approach of rendering on a black background, but since
many training frames have no detected pose the performance of
this naı̈ve approach tends to be very low.

Backbone Modalities/Net Top-1 Top-5 pretrain

S3D-G

RGB 77.8 93.9 Imagenet
Flow 68.3 88.4 Imagenet
Pose 76.8 93.4 Imagenet
RGB+Flow 79.2 94.5 -
RGB+Pose 79.2 94.6 -
RGB+Flow+Pose 80.3 95.4 -

R3D50-G

RGB 80.4 95.2 -
Flow 69.5 89.2 -
Pose 79.3 94.5 -
RGB+RGB 80.4 95.6 -
RGB+Flow 81.4 95.6 -
RGB+Pose(BB) 79.9 94.2 -
RGB+Pose 81.1 95.9 -
RGB+Flow+Pose 82.0 96.5 -

Table 3. Late Multi-Stream Fusion Results on Kinetics-600. To
test our multi-fusion framework, we employ S3D-G and R3D50-G
backbones. Here, the “G” refers to the usage of self-gating. The
first block shows results using S3D-G (pretrained with Imagenet)
as the backbone. The second block shows results on R3D50-G as
the backbone. Pose(BB) refers to the model trained with pose ren-
dered on black background in Table 2. Among all settings, com-
bination of all three modalities outperform other combinations.

4.2.1 Kinetics datasets

In this section we focus on the the Kinetics-600 dataset [4],
a large-scale, high-quality dataset containing YouTube
video URLs with a diverse range of human focused actions.
The dataset consists of approximately 500k video clips, and
covers 600 human action classes with at least 600 video
clips for each type of action. Each clip is at least 10 seconds
and is labeled with one single class. The actions cover a
broad range of classes including human-object interactions
such as playing instruments, working out, as well as human-
human interactions such as sword fighting and hugging.

4.2.2 Late multi-stream fusion

In the standard “late-fusion” approach, we run models in-
dependently on multiple streams, combining their predicted

logits at the end through simple addition (see [12] for de-
tails). Table 3 shows a comparison of standard late-fusion
(across different combinations of the three streams, RGB,
Flow and Pose) among our two backbone models (R3D50-
G and S3D-G).

For both S3D-G and R3D50-G backbones, we can see
that by incorporating additional modalities, we can always
achieve performance gains. Adding flow or pose to the ex-
isting RGB stream yields similar improvements. Since flow
and pose are somewhat independent modalities, by adding
both of them to the RGB stream, we also observe “stack-
ing” of the performance gains. Most importantly, we see
that adding the pose stream always yields benefits (inde-
pendent of backbone network and independent of whether
we are already using a flow stream).

One might wonder if the benefits of adding a pose stream
come simply from the ensembling effect of two models —
to show that this is not the case, we show that ensembling
two RGB-only models (RGB+RGB in Table 3) does not
lead to measurable improvements. Additionally, we show
that adding pose stream always introduces complementary
gain to RGB or RGB+Flow modalities.

Backbone Student Teacher(s) Top-1 Top-5 pretrain

S3D-G
RGB - 77.8 93.9 -
RGB Flow 78.3 94.3 -
RGB Pose 78.4 94.2 -
RGB Flow+Pose (SL) 78.9 94.6 -

R3D50-G

RGB - 80.4 95.2 -
RGB Flow 80.6 94.6 -
RGB Pose 80.4 94.7 -
RGB Flow+Pose (UL) 80.7 95.3 -
RGB Flow+Pose (SL) 82.0 95.7 -

Table 4. Results on Kinetics-600 distillation. SL stands for sepa-
rate loss, and UL stands for unified loss. The last row (SL) is the
PERF-Net results.

4.2.3 Visualization and explanation

Figure 5 shows 9 examples of RGB, pose, and flow, as
well as the corresponding response map from a layer from
block5 in R3D50-G. The main purpose of this figure is to
show the performance of the individual models trained on
each modality.

The first row shows three sets of examples where the
pose model is correct, and the RGB and Flow models are
incorrect. For example, the leftmost example depicts an arm
wrestling action. The pose response map responds most on
the hands region of the frame where the wrestling happens.
The response heatmap can be treated as an attention area
in a tube of action sequences. For such actions, flow is not
informative as there is little motion. Moveover, the RGB re-
sponse could be distracted by elements in the background.
However, pose can provide clear signal to the hand-to-hand
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Figure 5. Nine Grad-CAM visualizations [33] of our R3D50-G model. Each row contains three examples. For each example, the top
row contains the original RGB, pose overlay, and Flow frames and the bottom row are the normalized response maps from RGB, pose,
and flow streams, respectively. ROW1: arm wrestling, situp action, ladder climbing. ROW2: playing polo, pillow fight, swording. ROW3:
unboxing, weaving basket, napkin folding. The top two rows show examples with pose detected. The bottom row shows three actions
without any pose.

interaction. The middle example shows a person perform-
ing a situp at a gym. It is difficult to classify this action
correctly by focusing on the barbell regions of the image,
as the RGB and flow model do. Instead, pose drives the
model to “look at” the entire body configuration which al-
lows the model to decide that it is a situp and not bench
press, etc. The rightmost example shows a baby climbing
a ladder. The pose stream focuses the attention on the legs
where the climbing action happens, providing a useful com-
plementary cue to the standard RGB and Flow modalities.

The second row comprises three examples where all
modalities make the prediction correctly. From the response
map, we can tell the three modalities mostly focus on sim-
ilar locations among the video frames. For the leftmost ex-
ample (playing polo), pose helps to focus more on the entire
group of players, where the other two modalities put more
weight on the right-most player. By looking at the original
video clip, the motion of the right-most player is the largest,
which is likely why RGB and flow give more weight to this
player. The middle example shows a pillow fight where the
pose modality response is greater on the pillow region. The

pose model may learn additional information from the in-
teraction of the two persons by looking at the pose and arm
orientation, etc. The rightmost example shows swording
where the pose stream focus more on the left-side acting
player.

The third row shows three examples without any pose
detected. There are quite a few frames in Kinetics-600 and
other datasets where no pose is available. In such cases,
since the RGB is still available via the pose stream, our pose
based model can still learn reasonably good responses.

4.3. Distilling down to PERF-Net

As discussed in Section 3.3, distillation can effectively
incorporate multiple modalities with no additional cost to
the complexity of the final model. In Table 4, we show
the results of multi-teacher distillation using Kinetics-600
dataset, which can jointly optimize over multiple input
modalities. The advantage of the distillation is that our
model size can remain the same while leveraging knowl-
edge distilled from other modalities. Taking RGB as an
example, after distilling on flow and pose using separate
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Model Backbone Top-1 Top-5 GFLOPs

I3D [4] Inception 71.9 90.1 544
StNet-IRv2 RGB [14] InceptionResNet-V2 79.0 - 440
P3D two-stream [30] ResNet152 80.9 94.9 -
SlowFast R101+NL [11] ResNet101 81.8 95.1 7020
LGD-3D RGB [31] ResNet101 81.5 95.6 -
X3D-XL [10] Custom 81.9 95.5 1452

PERF-Net (ours) ResNet50-G 82.0 95.7 3666

Table 5. Comparison with the state-of-the-art on Kinetics-600.

Backbone Student Teacher(s) Top-1 Top-5 pretrain

S3D-G

RGB - 63.5 85.1 -
Flow - 51.0 75.8 -
Pose - 61.3 83.5 -
RGB Flow+Pose 67.9 87.9 -

Table 6. Results on Kinetics-700 distillation. The first three rows
are single stream results. The last row is the PERF-Net results.

losses, the performance can be improved beyond single
modality training — thus our final RGB-only model (a.k.a.
PERF-Net) achieves 82.0 top-1 accuracy on Kinetics-600,
which outperforms the state-of-the-art work.

Table 5 shows a comparison between PERF-Nets and
other state-of-the-art single-stream works. Note that PERF-
Net can easily achieve state-of-the-art performance by using
a shallower ResNet50-G network. One can apply PERF-Net
on stronger backbones to further boost the performance.

Table 6 shows the three single stream results, along with
the distillation on RGB stream with flow and pose streams
as the teacher models on the Kinects-700 dataset [3]. With
700 classes, the training tasks become considerably more
challenging. In this setting, PERF-Net results show even
more gain from distillation compared to the model trained
on Kinectics-600, as shown in Table 4.

4.4. Will distilled checkpoint transfer well?

We select two human action datasets for transfer learn-
ing experiments initialized using checkpoints on Kinetics-
600 or Kinetics-700 with distillation. The Kinetics-700
dataset has 100 more classes with more video clips, which
is harder to learn. During fine-tuning, we use only the clas-
sification loss, but not distillation. For both of the datasets,
we show that PERF-Net achieves the state-of-the-art perfor-
mance among single stream models. The results also indi-
cate that PERF-Net generalizes well given a harder dataset
for pre-training.

4.4.1 HMDB-51

HMDB-51 [20] contains 6849 clips divided into 51 action
categories, each containing a minimum of 101 clips for each
category. We apply the same pose detection and render-
ing method to the HMDB-51 dataset. We finetune S3D-
G model pre-trained on Kinetics-600 or Kinetics-700 for
30 epochs and report the accuracy by averaging the results

Model UCF-101 HMDB-51

P3D [30] 88.6 -
C3D [40] 82.3 51.6
Res3D [41] 85.8 54.9
TSM [22] 95.9 73.5
I3D [4] 95.6 74.8
R(2+1)D [42] 96.8 74.5
S3D-G [47] 96.8 75.9
HATNet [9] 97.7 76.2
MARS+RGB+Flow [7] 97.8 80.9
Two-stream I3D [4] 98.0 80.9
RepFlow-50 [29] - 81.1
EvaNet-top individual [28] - 81.3
PA3D+I3D [48] - 82.1
EvaNet-ensemble [28] - 82.3

PERF-Net (ours, Kinetics-600 pretrain) 98.2 82.0
PERF-Net (ours, Kinetics-700 pretrain) 98.6 83.2

Table 7. Comparison with state-of-the-art on UCF-101 and
HMDB-51. The backbone of the PERF-Net here is S3D-G.

from 3 splits. Table 7 shows the averaged performance of
our PERF-Net models. Our PERF-Net with backbone S3D-
G, outperforms the current best on the leaderboard using
single stream model [16]. Note that it also outperforms two
ensemble models.

4.4.2 UCF-101

UCF-101 [35] is an action recognition data set of 13,320
realistic action videos, collected from YouTube, with 101
action categories. Similar to HMDB51, in Table 7, we also
report the accuracy by averaging over the 3 dataset splits.
Similarly, for both Kinetics-600 and Kinetics-700 pretrain-
ings, our PERF-Net model achieves the state-of-the-art at
time of submission on the leaderboard [43].

5. Conclusions
We have presented an empirical study of the effects of

different pose rendering methods and how to effectively in-
corporate it into a video recognition model to benefit human
action recognition. We have shown strong evidence that,
with the human pose modality and the proposed rendering
method, by using distillation, the model can outperform the
state-of-the-art performance. We hope such pose modality
can be further studied to extend to other domains.
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