
edge–SR: Super–Resolution For The Masses

Pablo Navarrete Michelini, Yunhua Lu, Xingqun Jiang
BOE Technology Group Co., Ltd.

Abstract

Classic image scaling (e.g. bicubic) can be seen as one
convolutional layer and a single upscaling filter. Its im-
plementation is ubiquitous in all display devices and im-
age processing software. In the last decade deep learn-
ing systems have been introduced for the task of image
super–resolution (SR), using several convolutional layers
and numerous filters. These methods have taken over the
benchmarks of image quality for upscaling tasks. Would
it be possible to replace classic upscalers with deep learn-
ing architectures on edge devices such as display panels,
tablets, laptop computers, etc.? On one hand, the current
trend in Edge–AI chips shows a promising future in this di-
rection, with rapid development of hardware that can run
deep–learning tasks efficiently. On the other hand, in image
SR only few architectures have pushed the limit to extreme
small sizes that can actually run on edge devices at real–
time. We explore possible solutions to this problem with
the aim to fill the gap between classic upscalers and small
deep learning configurations. As a transition from classic
to deep–learning upscaling we propose edge–SR (eSR), a
set of one–layer architectures that use interpretable mech-
anisms to upscale images. Certainly, a one–layer archi-
tecture cannot reach the quality of deep learning systems.
Nevertheless, we find that for high speed requirements, eSR
becomes better at trading–off image quality and runtime
performance. Filling the gap between classic and deep–
learning architectures for image upscaling is critical for
massive adoption of this technology. It is equally impor-
tant to have an interpretable system that can reveal the in-
ner strategies to solve this problem and guide us to future
improvements and better understanding of larger networks.

1. Introduction

A market is growing rapidly and steadily to provide so–
called Edge–AI chips that will be able to spread the success
of deep–learning systems to edge devices [13, 17, 4]. This
is a massive market that includes phones, tablets and high
resolution TV displays, among others. For some applica-

BICUBIC

eSR-CNN

ESPCN

FSRCNN

eSR-TM

eSR-TR

1 Layer Architectures

Mul�layer CNNs

Quality

eSR-MAX

Sp
e

e
d

LR BICUBIC

edge-SR ESPCN

Quality

Speed

QUALITY

QUALITYQUALITY

Figure 1. Trade–off pattern observed in our experiments. A stan-
dard upscaler (e.g. bicubic) is fast and can be deployed in any
display hardware. Multilayer CNNs reach better quality but show
sharp loss in quality when their size is reduce to make them faster.
We propose edge–SR (eSR) one layer architectures that can adjust
the size to reach the best possible quality for a display hardware.

tions the success is guaranteed, such as image classification
or object detection, where input images are relatively small
(e.g. 256×256) and the output data is low dimensional (e.g.
labels or bounding boxes). For other applications such as re-
covering a high–resolution image from a small–resolution
image, also known as image super–resolution (SR), the fu-
ture is less certain since both input and output images can
contain a large amount of data. Consider upscaling images
from Full–HD to 4K resolution in TV displays for exam-
ple. The input layer needs to handle 2 megapixels and the
output layer needs to deliver 8 megapixels at a rate of at
least 24 frames per second. Interestingly, upscaling with
small factors (e.g. 2×) is both the easiest problem for net-
works to fix, typically requiring less number of parameters
to learn, and at the same time the most difficult solution to
deploy. The latter is due to the fact that display devices have
a fixed output resolution. For small upscaling factors the in-
put images are still large and demand higher input through-
put compared to higher upscaling factors, where input im-
ages get smaller and smaller. Small upscaling factors are
also of primary concern in applications since they are the
most critical technology for transitions between current and
new standards (e.g. FHD to 4K, 4K to 8K, etc). Thus, the

1078

problem of image SR becomes both more interesting and
more challenging given extreme performance constraints.

History of SR. Standard upscaler algorithms, such as
linear or bicubic upscalers, apply a low–pass filter on a high
resolution image created by inserting zeros between adja-
cent pixels in the low resolution [32, 23]. Modern tensor
processing frameworks (e.g. Pytorch, Tensorflow, etc.) im-
plement this process using a so–called strided transposed
convolutional layer with a single filter per input channel.
More advanced upscalers have followed geometric princi-
ples to improve image quality. For example, edge–directed
interpolation uses adaptive filters to improve edge smooth-
ness [2, 18], or bandlet methods use both adaptive upsam-
pling and filtering [24]. Later on, machine learning has
been able to use examples of pristine high–resolution im-
ages to learn a mapping from low–resolution [30]. The
rise of deep–learning and convolutional networks in image
classification tasks [15] quickly saw a series of important
improvements. Many of these improvements followed the
progress in network architectures for image classification,
as seen for example with CNNs applied in SRCNN [5],
ResNets [8] applied in EDSR [20], DenseNets [10] applied
in RDN [43], attention [9] applied in RCAN [41], non–local
attention [36] applied in RNAN [42], and swin transform-
ers [22] applied in SwinIR [19].

Real–time SR. The first deep learning system proposed
for image SR, namely SRCNN [5], used a relatively small
number of parameters (60k) and became a suitable can-
didate for edge devices. Soon after, FSRCNN [6] real-
ized that significant improvements in quality and perfor-
mance can be achieved by performing computations at low
resolution. They proposed a short configuration using 4k
parameters in a sequence of 4 convolutional layers, plus
a final strided transposed convolution to perform upscal-
ing, reaching real–time performance for small resolutions.
The next major progress towards real–time applications was
made by ESPCN [33] that made popular the application
of pixel–shuffle layers, multiplexing several network chan-
nels to form higher resolution outputs [29, 27]. They pro-
posed a configuration using 20k parameters and 3 convolu-
tional layers with all computations performed at low reso-
lution. Both FSRCNN and ESPCN left a strong mark on
future image SR research that very often performs compu-
tations at low resolution and use pixel–shuffle layers. Nev-
ertheless, the research clearly shifted to networks of larger
sizes that can achieve much better quality. But large net-
works that contain several million parameters, for example
EDSR [20] (combining ResNets and pixel–shuffle), are cur-
rently unable to reach the throughput needed for real–time
applications on edge devices. Several so–called lightweight
networks have been proposed for middle ground applica-
tions [40, 16, 21, 37, 3, 12]. Typical lightweight networks
use hundred of thousands parameters and are still beyond

the capabilities of real–time applications on edge devices.
The Problem. Despite the promising advances in tech-

nology, the challenge of image SR for edge devices remains
largely unresolved. One might expect Edge–AI chips to get
faster and cheaper but standards also evolve to make prob-
lems more difficult (e.g. BT.2020 [34]) with more pixels,
higher bit depths, higher framerates, etc.. Thus, the success
of AI chips to deploy image SR technologies and reach mas-
sive markets strongly depends on better algorithm solutions.
The major challenge is how to simplify network structures
all the way down to reach performance levels comparable to
those of classic non–adaptive upscalers. A classic 2× bicu-
bic, doubling the horizontal and vertical resolution, can be
implemented using a transposed convolutional layer with a
single filter using 121 parameters. We can think of this as
the simplest possible network configuration for image SR.
A configuration that is interpretable in the sense that we un-
derstand what the interpolation filter values represent. Our
main task here is to explore the landscape between classic
upscaling on one hand, and small deep–learning systems on
the other hand, in order to provide practical solutions for the
current state of applications in edge devices.

Towards a solution. Exploring different configurations
for existing networks, such as FSRCNN and ESPCN, is a
straightforward and necessary task to undertake. But we
propose to move a step further, introducing a minimal set
of architectures, edge–SR (eSR), that can perform image
SR even with a single convolutional layer. We explore both
a straightforward 1–layer Maxout network (eSR-MAX) as
well as self–attention strategies (eSR-TM and eSR-TR)
that provide a semi–classical interpretation. The latter ap-
proaches use a single layer both to detect local patterns (e.g.
edges or textures) as well as to generate candidate upscale
solutions. Generally speaking, the detection mechanism es-
timates the probability of the best upscale solution and it is
used to compute a weighted average of the candidate out-
put images that gives the final output. We will show how
to implement this solution efficiently using standard deep
learning modules that can run on AI chips.

Contributions. Our major contributions include:

• The proposal of several one–layer architectures that
strive for simplicity to fill the gap between classic and
deep learning upscalers.

• An exhaustive search among 1, 185 network models, in-
cluding different configurations of eSR, FSRCNN, and
ESPCN. Each architecture was trained under identical
conditions and tested for speed, power consumption and
image quality. The results allows us to visualize the
trade–off between image quality and runtime perfor-
mance that is critical for our purpose. Figure 1 shows
the general pattern observed in our results. We found that
different architectures show very different balance in the

1079

TR
A

N
SP

O
SE

D
C

O
N

V
O

LU
TI

O
N

Stride

Kernel
Size

EFFICIENT IMPLEMENTATION

DEFINITION

0 0

0000

0 0 0 0

00

up-sampling

C
O

N
V

channel

PIXEL
SHUFFLE

C
O

N
V

channels

Figure 2. Classic s × s image upscaling is performed by a trans-
posed convolutional layer. An efficient implementation splits the
filter into s2 smaller filters that work at LR. The final output is ob-
tained by multiplexing the s2 channels using a pixel–shuffle layer.

trade–off between speed and image quality. Multi–layer
networks (deep learning) show a strong advantage at low
speed and high quality, and our proposed one–layer solu-
tions show a clear advantage at high speed requirements.

• The interpretation and analysis of strategies learned
by self–attention in one–layer architectures. We provide
a novel interpretation of the self–attention mechanism
based on the simple principles of template matching and
classic upscaling. Here, training results indicate that one–
layer networks do not use smooth upscaling kernels and
rely mostly on independent sub–pixel solutions.

These results may bring about the following future im-
pact: 1) the possibility of image SR systems that can be
massively deployed on edge devices, 2) a better understand-
ing of the internal learning mechanisms of small network
architectures, and 3) a better appreciation of the trade–off
between image quality and runtime performance for future
applications and research.

2. Super–Resolution for Edge Devices
Classical. Image upscaling and downscaling refer to the

conversion of low resolution (LR) images to high resolu-
tion (HR) and vice versa. These two processes are closely
related. The simplest way to downscale an image from HR
to LR is known as pooling or downsample. The process
of downsample uniformly drops pixels in both horizontal
and vertical directions. The problem with such downscalers
is that groups of high and low frequency components of the
HR image can end up in the same low frequency component
at LR, leading to well known aliasing artifacts [32, 23]. To
avoid this problem a classic linear downscaler first removes
high frequencies using an anti–aliasing low–pass filter and

input image

MAX

output image

PIXEL
SHUFFLE

CONV

eSR-MAX

Figure 3. Diagram of edge–SR Maximum. Uses one convolutional
layer followed by a pixel–shuffle multiplexer and a non–linear
module that chooses the maximum pixel value among all filters.

then downsamples the image. This process is implemented
in tensor processing frameworks with strided convolutional
layers where the kernel or weight parameters correspond to
the low–pass filter coefficients. The process of classic linear
upscaling corresponds to the transposed of the downscaling
linear transformation and it is illustrated in Figure 2. The
transposition reverts the ‘filter–then–downsampling’ oper-
ation into an ‘upsampling–then–filter’ operation where the
upsampling increases the resolution of an image by insert-
ing zeros between LR pixels. The upsampling introduces
high frequencies that are removed by a so–called interpo-
lation filter with coefficients w. The interpolation filter is
the transposed of the anti–aliasing filter, typically identi-
cal because most upscalers are symmetric. Tensor process-
ing frameworks implement this process using strided trans-
posed convolutional layers.

The upscaling definition in Figure 2 is clearly inefficient
as the upsampling introduces many zeros that will waste re-
sources when multiplied by filter coefficients. A very well
know optimization, widely used in practical implementa-
tions of classic upscalers is to split or demultiplex the in-
terpolation filter from size sk × sk in Figure 2 to s2 so–
called efficient filters of size k × k working at LR [32, 23].
The outputs of the s2 filters are then multiplexed by a pixel–
shuffle operation to obtain the upscaled image, as illustrated
in Figure 2. Let w̃i ∈ Rk×k, with i = 1, . . . , s2, be the co-
efficients of the efficient filters. The interpolation filter can
then be recovered by multiplexing the efficient coefficients
back to their original place. This is,

w = Pixel–Shuffles×s(w̃i, i = 1 . . . , s2) . (1)

In our experiments we will compare different architec-
tures including a bicubic upscaler. In order to remove im-
plementation advantages we implemented the upscaler us-
ing the efficient implementation in Figure 2. We used stan-
dard bicubic interpolation filter coefficients and verified that
we obtain the same outputs as other software implementa-
tions up to floating point precision.

Maxout. Our first proposal is edge–SR Maximum (eSR–
MAX). This is an attempt to obtain the fastest solution from
a single convolutional layer that outputs several upscaled
candidates. A quick decision is made by choosing the max-
imum value across all channels as shown in Figure 3. This

1080

input image

SOFTMAX

×

×

+

output image

PIXEL

SHUFFLE

×

input image

SOFTMAX

×

×

+

output image

PIXEL

SHUFFLE

input image

SOFTMAX

×

×

+

output image

PIXEL

SHUFFLE

CONV CONV CONV

D
channels

S
channels channels

Ta
n
h

Ta
n
h

CONV CONV

eSR-TM eSR-TR eSR-CNN

Figure 4. Diagrams of edge–SR architectures using self–attention: a) edge–SR Template Matching (esR–TM) runs both template matching
(K filters) and upscaling modules (V filters) using a single convolutional layer (see Figures 5 and 10 for details on this interpretation), b)
edge–SR TRansformer (eSR–TR) uses two sets of query (Q) and key (K) filters to estimate the best upscaler model, and c) edge–SR CNN
(eSR–CNN) starts with a multilayer network following ESPCN and ends with a eSR–TM module.

Algorithm 1 edge Super–Resolution (eSR). Input : y (1–channel). Output : Y (1–channel).
eSR–MAX(y, C, k, s): eSR–TM(y, C, k, s):
Parameters: Integer C > 1, k > 1, s > 1.

1: Y = Max1→C Pixel–Shuffles×s

(
Convk×k(y)

) Parameters: Integer C > 1, k > 1, s > 1.
1: f = Pixel–Shuffles×s

(
Convk×k(y)

)
2: Y =

∑
1→C

(
fC+1 → 2·C ⊗ SoftMax(f1 → C)

)
eSR–TR(y, C, k, s): eSR–CNN(y, C,D, S, s):
Parameters: Integer C > 1, k > 1, s > 1.

1: f = Pixel–Shuffles×s

(
Convk×k(y)

)
2: p = SoftMax(f1 → C ⊗ fC+1 → 2·C)
3: Y =

∑
1→C

(
f2·C+1 → 3·C ⊗ p

)
Parameters: Integer C > 1, D > 1, S > 1, s > 1.

1: f = Pixel–Shuffles×s ◦ Conv5×5 ◦ Tanh ◦ Conv3×3 ◦
Tanh ◦ Conv3×3(y)

2: Y =
∑

1→C

(
fC+1 → 2·C ⊗ SoftMax(f1 → C)

)

corresponds to a particular case of a Maxout network [7].

Self–Attention. Our second proposal is edge–SR Tem-
plate Matching (eSR–TM) that follows a semi–classical
strategy. The basic idea is explained in Figure 5. First, a
template matching module detects patterns (e.g. edge di-
rections) and gives us the probability for each pattern. This
is achieved by: first, use matching filter coefficients that
resemble the pattern, and second, normalize pixel values
across channels to represent the probability of each tem-
plate. A set of upscale images are computed at the same
time for each one of the patterns. Since both the matching
and the upscaling filters follow the same patterns, we expect
the filter coefficients to look similar as displayed in Figure
5 for the case of edge patters. Thus, we can verify if an
eSR–TM configuration learned to perform template match-
ing by checking the correlations between filter coefficients.
The optimal prediction for the output image is the expected
value over all templates. Thus, the probabilities are used to
compute the expected value by weighing the solution of dif-
ferent upscalers that when combined give the final output.

Figure 4.a shows the diagram of the efficient implemen-
tation of this idea using C ∈ N+ templates. In this efficient
implementation of a transposed convolution the C matching
filters K split into Cs2 efficient filters K̃, before multiplex-
ing with pixel–shuffle. We can always get the interpolation
filters K from K̃ using equation (1). The outputs of the

×

×

+

output image

input image

UPSCALING

FILTER

TEMPLATE

MATCHING

eSR-TM Interpreta�on

Figure 5. Interpretation of edge–SR Template Matching. A tem-
plate matching module computes the probability of finding one
of the template image features learned from examples. The input
image is upscaled using a set of different upscalers also learned
by examples. The output is the expected value computed by the
weighted average of upscale images and template probabilities.

filters are then normalized among all the channels using a
softmax module. This gives us the pixel–wise probabilities:

pi = eKi⊛(y ↑ s)/

C∑
j=1

eKj⊛(y ↑ s) , (2)

where i = 1, . . . , C, ⊛ is the convolution operator, ↑ refers
to the upsampling operation defined in Figure 2. The same
convolutional layer in Figure 4.a runs Cs2 efficient filters Ṽ

1081

P
R
e
LU

C
O
N
V

P
R
e
LU

P
R
e
LU

P
R
e
LU

TR
A
N
SP
O
SE
D

C
O
N
V
O
LU

TI
O
N

C
O
N
V

C
O
N
V

C
O
N
V

D
channels

S
channels

S
channels

D
channels

P
R
e
LU

C
O
N
V

M
�mes

D
channels

S
channels channels

C
O
N
V

PIXEL
SHUFFLE

C
O
N
VTa
n
h

C
O
N
VTa
n
h

Si
gm

o
id

FSRCNN ESPCN

Figure 6. Deep–learning architectures selected for experiments: a)
FSRCNN from [6], and b) ESPCN from [33].

to get C high resolution candidates after pixel–suffle. The
final luminance HR output image Y is given by:

Y = E [Vi ⊛ (y ↑ s)] =

C∑
i=1

pi ⊗ (Vi ⊛ (y ↑ s)) , (3)

where ⊗ represent a Hadamard (or pixel–wise) product.
The eSR–TM system is essentially a self–attention mod-

ule, except for the pixel–shuffle layer and the sum over all
channels in the last stage. These two differences are signif-
icant since: first, they embed the upscaling process within
the attention module, and second, they make explicit use of
probabilities to compute an expected value thus providing a
clear interpretation of this module.

Our third proposal is edge–SR TRansformer (eSR–TR)
that uses the popular transformer self–attention module
from [35]. Figure 4.b shows the efficient implementation
of this system. Here, the matching filters from eSR–TM are
replaced by two sets of query (Q) and key (K) filters to esti-
mate the probabilities. This changes the template matching
interpretation of eSR-TM, using a rank–1 quadratic form
with Q and K filters instead of a single template matching
filter. The purpose of this arquitecture is to test any ad-
vantage that this change could bring given the increasing
popularity and success of this module in recent research.

The code for all eSR systems is given in Algorithm 1.
Deep–Learning. We consider FSRCNN [6] and ES-

PCN [33] as candidate deep learning architectures for im-
age SR on edge devices. Figure 6 shows the detail struc-
ture of FSRCNN and ESPCN network architectures. In
comparison, FSRCNN uses more layers (at least 5) and
smaller number of channels per layer than ESPCN. Another
difference is the upscaling strategy, with FSRCNN using
a strided transposed convolution and ESPCN using pixel–
shuffle. According to classic interpolation theory these two
approaches are equivalent as shown in Figure 2 (see also
[32, 23]), but implementations can be different. Tensor pro-
cessing frameworks typically implement transposed convo-
lution using the gradient of a convolutional layer[31], based
on the vector calculus property for gradients of linear trans-
formations: ∇x(Ax + b)y = AT y. This very different ap-
proach might lead to differences in performance.

Finally, we also propose the edge–SR CNN (eSR–CNN)
architecture in Figure 4.c and Algorithm 1. This is sim-

Table 1. Set of hyper–parameters used to create a pool of 1, 185
models that were trained and tested in our experiments.

Bicubic Total : 1 model per scale factor.

eSR

C : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.
k : 3, 5, 7.

Type : Maximum (MAX), Template Matching (TM), Transformer (TR).
Total : 144 models per scale factor.

eSR-CNN

C : 2, 4, 6, 8.
D : 1, 3, 5, 7, 9.
S : 3, 6, 9, 12, 15.

Total : 100 models per scale factor.

FSRCNN

D : 6, 19, 32, 44, 56.
S : 1, 3, 6, 9, 12.
M : 1, 4

Total : 50 models per scale factor.

ESPCN
D : 0, 4, 6, 10, 12, 16, 28, 40, 52, 64.
S : 3, 6, 9, 12, 15, 18, 21, 24, 27, 32.

Total : 100 models per scale factor.
Factors : 2×, 3×, 4×.

Total : 1,185 models.

ply an extension of the single convolutional layer in eSR–
TM into a multi–layer structure identical to ESPCN. Here,
the purpose is to test if ESPCN, that achieves better results
compared to FSRCNN in our tests, can be improved by us-
ing a self–attention module to upscale.

3. Experiments

Models. Candidate models for test evaluations in-
clude: bicubic, FSRCNN, ESPCN and eSR. From these,
the bicubic classic upscaler is the only one without hyper–
parameters and fixed configuration that do not require train-
ing. For other architectures we need to train a model for
each set of hyper–parameters. Table 1 shows the list of
hyper–parameters chosen for our experiments. These in-
clude default settings of FSRCNN and ESPCN as well as
configurations with very small number of parameters. Our
model pool includes a total of 1, 185 models to evaluate.

Training. We need to train a total of 1, 185 mod-
els that include different scaling factors, network architec-
tures and model hyper–parameters. We trained all these
models independently using an identical procedure. We
used the General–100 dataset [6] combined with 91–image
dataset [38] to extract training patches. For each image in
the dataset we randomly cut a HR patch of size 78× 78 for
2× and 3× upscaling factors, and 76×76 for 4× factor. The
images were converted to grayscale using BT.609 color ma-
trix and downscaled using a standard Bicubic algorithm. We
used minibatch size 16 and trained each model for 25, 000
epochs using a standard mean–square–error (MSE) loss.
We started with a learning rate of 10−3 and reduce it to half
once every 3, 000 epochs. We used Adam optimizer [14]
with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We used seven
Tesla M40 GPUs for training with the whole process com-
pleted in about two months.

Measurements. To test our final models we consid-
ered two inference devices: 1) Nvidia Jetson AGX Xavier,
an embedded system–on–module (SoM) from the Nvidia

1082

Raspberry Pi 400

eSR-MAX eSR-CNN ESPCN FSRCNNeSR-TReSR-TM

Jetson AGX Xavier

PSNR [dB] PSNR [dB] PSNR [dB]

BICUBIC

HD@30fps

FHD@24fps

FHD@30fps

FHD@24fps

FHD@30fps

FHD@50fps

BICUBIC

FHD@30fps

FHD@50fps

4K@24fps

BICUBIC

FHD@24fps

HD@30fps

HD@24fps

FHD@30fps

FHD@24fps

HD@30fps

SD@50fps

HD@24fps

HD@30fps

PSNR [dB]
PSNR [dB] PSNR [dB]

BICUBIC
BICUBIC

BICUBIC

be�er

be�er

be�er

be�er

be�er

be�er

Figure 7. Scatter plot to compare speed, in number of Full–HD pixels per second, with respect to quality, measured as PSNR for the BSDS–
100 dataset. A total of 1, 185 models were identically trained considering different upscaling factors (2×, 3× and 4×) and architectures
(eSR, ESPCN and FSRCNN). We run all models on edge devices: Jetson AGX Xavier (GPU with 16–bit floating point precision) and
Raspberry Pi 400 (CPU with 32–bit floating point precision). Magnified plots with model annotations are provided in the Appendix.

AGX Systems family, including an integrated Volta GPU
with tensor cores, and 2) a Raspberry Pi 400, an embedded
device featuring a quad–core 1.8GHz, 64–bit ARM Cortex
CPU processor. The power consumption of the Jetson AGX
is set to a 30 Watt profile, while the Raspberry Pi 400 nom-
inal consumption is 15 Watt.

We run each model to output a set of 14 Full–HD images,
downscaling appropriately from randomly selected images
of the DIV2K dataset [1]. We use 16–bit floating point pre-
cision during inference. For each image we run the model
10 times to avoid warm–up effects, measuring the minimum
CPU and GPU processing time from profiler’s data. We
computed the speed of a model using the total number of
pixels processed (considering only one run per image) di-
vided by the processing time (using the minimum time over
each one of the 10 runs). To make the measurement of speed
easier to read we use units of [FHD/s], this is, number of
Full–HD pixels (1920× 1080) per second.

Image quality was measured separately using the stan-
dard datasets: Set–5, Set–14[39], BSDS–100[25], Urban–
100[11] and Manga–109[26]. We also measured maximum
power consumption for the Jetson AGX and CPU usage for
the Raspberry Pi that does not include power sensors.

Results. Figure 7 shows scatter plots to compare speed
with respect to image quality, measured as PSNR for the

BSDS–100 dataset. Results for other datasets, metrics
(SSIM) and devices (GTX 1080 Max–Q) are shown in the
Appendix with similar conclusions. The size of the circles
are proportional to the power consumption and CPU usage
for the AGX and Raspberry Pi devices, respectively. Fi-
nally, Table 2 shows detailed results per dataset for a subset
of the models selected according to different criteria.

4. Analysis
Trade-off. The results displayed in Figure 7 allow us

to fully appreciate the trade–off between image quality and
runtime performance. The bicubic upscaler sets the target
as we know that it can be massively deployed in display de-
vices at large scale. Between the bicubic upscaler and deep–
learning configurations using FSRCNN, ESPCN or eSR–
CNN we observe a large empty region. Our proposed edge–
SR (eSR) architectures succeeds to fill this gap in edge GPU
devices (AGX and also GTX 1080 MaxQ available in the
Appendix) and improve bicubic upscaler both in speed and
image quality. In the Raspberry Pi CPU device edge–SR
partially succeeds to fill this gap for 2× and 3× upscaling
factor and fails at 4× factor where bicubic reaches a better
performance. The best results of edge–SR is observed for
2× upscaling factor. The distribution of scatter points in
Figure 7 for 2× upscaling shows that deep–learning meth-

1083

Table 2. Image quality and performance metrics for selected methods among all 1, 185 models trained in our experiments. Values of speed,
measured in number of Full–HD pixels per second, and power, in units of Milliwatts, are specific of a Jetson AGX Xavier GPU. Methods
are selected based on best speed, PSNR in BSDS–100 dataset, and default configurations. Best results are shown in bold (ignoring bicubic).

Algorithm s Selection Configuration Speed Power Set5 Set14 BSDS100 Urban100 Manga109
[FHD/s] [mWatts] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 – – 19 1550 33.73 0.928 30.29 0.869 29.57 0.842 26.89 0.841 30.85 0.934
eSR 2 PSNR CNN: C = 6, D = 3, S = 15 8 3868 36.58 0.953 32.38 0.905 31.25 0.885 29.26 0.891 35.33 0.965
eSR 2 speed MAX: k = 3, C = 1 34 1859 33.15 0.928 30.16 0.882 29.66 0.862 26.94 0.857 30.46 0.937
ESPCN 2 default [33] D = 64, S = 32 6 6800 36.64 0.953 32.46 0.907 31.32 0.887 29.37 0.893 35.76 0.967
ESPCN 2 PSNR D = 22, S = 32 8 4945 36.70 0.953 32.47 0.907 31.35 0.887 29.44 0.894 35.79 0.967
ESPCN 2 speed D = 0, S = 3 17 2324 29.76 0.919 28.96 0.881 28.69 0.865 26.38 0.853 27.66 0.938
FSRCNN 2 default [6] D = 32, S = 6, M = 1 4 4793 36.29 0.951 32.20 0.904 31.10 0.884 28.91 0.886 35.03 0.963
FSRCNN 2 PSNR D = 56, S = 12, M = 4 2 5566 36.74 0.954 32.45 0.907 31.34 0.887 29.42 0.895 35.87 0.967
FSRCNN 2 speed D = 6, S = 3, M = 1 5 3560 35.36 0.943 31.52 0.898 30.64 0.878 28.01 0.870 33.13 0.951

Bicubic 3 – – 38 1705 29.24 0.849 26.73 0.757 26.64 0.720 23.84 0.717 25.87 0.838
eSR 3 PSNR CNN: C = 8, D = 3, S = 15 11 5873 32.75 0.906 29.27 0.820 28.36 0.782 26.14 0.796 30.16 0.907
eSR 3 speed TM: k = 3, C = 1 60 2632 29.77 0.853 27.31 0.780 27.08 0.748 24.31 0.742 26.56 0.851
ESPCN 3 default [33] D = 64, S = 32 13 6027 32.73 0.905 29.26 0.821 28.36 0.783 26.12 0.795 30.36 0.908
ESPCN 3 PSNR D = 22, S = 32 16 4945 32.77 0.906 29.30 0.821 28.38 0.784 26.15 0.797 30.37 0.909
ESPCN 3 speed D = 0, S = 21 26 4176 31.30 0.889 28.51 0.808 27.82 0.772 25.41 0.774 28.29 0.887
FSRCNN 3 default [6] D = 32, S = 6, M = 1 8 4640 32.43 0.901 29.07 0.816 28.22 0.780 25.82 0.787 29.61 0.899
FSRCNN 3 PSNR D = 56, S = 12, M = 4 5 5566 32.74 0.906 29.25 0.820 28.35 0.784 26.10 0.797 30.13 0.907
FSRCNN 3 speed D = 6, S = 1, M = 1 9 3560 31.30 0.879 28.31 0.803 27.75 0.768 25.06 0.761 27.98 0.870

Bicubic 4 – – 74 2170 28.60 0.808 26.09 0.705 26.02 0.672 23.17 0.660 24.96 0.787
eSR 4 PSNR CNN: C = 8, D = 9, S = 6 13 7100 30.62 0.860 27.48 0.751 26.93 0.714 24.42 0.718 27.27 0.845
eSR 4 speed MAX: k = 3, C = 2 94 3867 28.64 0.806 26.12 0.712 26.13 0.684 23.28 0.668 25.08 0.789
ESPCN 4 default [33] D = 64, S = 32 23 6952 30.57 0.858 27.50 0.752 26.92 0.715 24.42 0.718 27.44 0.848
ESPCN 4 PSNR D = 16, S = 32 29 4640 30.59 0.859 27.53 0.753 26.95 0.715 24.43 0.719 27.46 0.849
ESPCN 4 speed D = 1, S = 3 45 3096 28.93 0.820 26.49 0.725 26.25 0.694 23.56 0.680 25.49 0.804
FSRCNN 4 default [6] D = 32, S = 6, M = 1 12 4795 30.16 0.845 27.19 0.742 26.74 0.707 24.09 0.702 26.63 0.826
FSRCNN 4 PSNR D = 44, S = 12, M = 4 9 5257 30.61 0.861 27.52 0.753 26.94 0.716 24.44 0.721 27.40 0.849
FSRCNN 4 speed D = 6, S = 1, M = 1 14 3715 29.31 0.823 26.62 0.730 26.41 0.699 23.62 0.683 25.72 0.802

ods are better at image quality, with ESPCN achieving the
best speed in the high quality range. Interestingly, eSR–
CNN does not improve ESPCN at high quality and barely
improves it at high speed, despite using the same multi–
layer configuration. eSR–MAX shows the best performance
at high speeds but it is unable to make significant improve-
ments in image quality. eSR–TM and eSR–TR show the
best performance at intermediate speed and image quality.
They perform very similar with a slight but not conclusive
advantage of eSR–TR on GPU devices. FSRCNN shows
the worst performance at 2× factor with no improvements
in speed as image quality decreases. One possible reason
for this result is that the higher network depth of FSRCNN
might become a disadvantage at 2× where large receptive
fields are unnecessary.

The bold values in Table 2 highlight the best metrics
for different columns, ignoring bicubic. edge–SR systems
reach the best speed and lowest power consumption except
for 4× where ESPCN gets better. They also succeed to im-
prove bicubic’s image quality for small upscaling factors.

Filters. In Figure 10 we display the step by step process-
ing of 2× upscaling using eSR–TM with kernel size k = 7
and C = 4 number of matching/upscaling filters. Here, we
used equation (1) to reconstruct the 4 matching/upsampling
filters from the efficient implementation containing 4 · 22 =
16 filters. In addition to the filter coefficients we also dis-
play the FFT computed using a Kaiser–Bessel window for

U
P

SC
A

LI
N

G
 F

IL
TE

R
S

MATCHING FILTERS

Figure 8. Correlations between upscaling and matching filters in
eSR–TM k = 7, C = 16. Higher correlations along the diag-
onal mean that the model is performing template matching, with
upscaling and matching filters that resemble a common template.

better frequency visualization [32]. The output for this par-
ticular image is about 1.5 dB better than the bicubic output
and it is displayed next to the outputs of ESPCN and FS-
RCNN models with similar image quality. Here, eSR–TM
achieves roughly the same speed of bicubic upscaler.

The efficient filters use kernel size k × k, and after mul-
tiplexing them with a pixel–shuffle layer we can recover the
original filters of size sk × sk. Thus, the filter sizes of eSR
models grows with the upscaling factors as seen in Figure 9.
The filter coefficients in frequency domain show that each
filter is processing different frequency bands. Although the
filters are not smooth, they do show a level of discrimination
between different directions.

1084

FrequencySpace

MATCHING FILTERS UPSCALING FILTERS

FrequencySpace

Figure 9. Matching and upscaling filters obtained after training a one–layer architecture eSR–TM with kernel size k = 7 and C = 18
number of filters for 2×, 3× and 4× upscaling factors. Filters are displayed in the original spatial format as well as in frequency domain
by using FFT visualization. The filters do not change smoothly within a single filter but show diverse directionality among different filters.

×

+

TEMPLATE

MATCHING

FrequencySpace

UPSCALING

FILTERS

FrequencySpace

×

×

×

BICUBIC

PSNR : 34.10 dB

Speed : 18.72 FHD/s
SSIM : 0.948

Power : 1.55 W

FSRCNN

PSNR : 35.47 dB

Speed : 3.67 FHD/s
SSIM : 0.959

Power : 2.48 W

ESPCN

PSNR : 35.48 dB

Speed : 9.20 FHD/s
SSIM : 0.958

Power : 2.17 W

eSR-TM PSNR : 35.63 dB

Speed : 19.04 FHD/s
SSIM : 0.960

Power : 3.87 W

INPUT (LR) INPUT (LR)

Figure 10. Inspection of all intermediate outputs and filter coefficients for the eSR–TM 2× architecture with kernel size k = 7 and C = 4
number of matching/upscaling filters. The diagram follows the interpretation in Figure 5. Filters are displayed both in the original spatial
format as well as in frequency domain by using FFT visualization. Each of the 4 branches is focusing on a particular sub–pixel array.

Now, moving one step inside the network from the out-
put in Figure 10, we observe that the 4 components of
the sum are clearly focusing on different sub–pixel images.
This pattern is also visible in the outputs of upscaling fil-
ters and template matching modules. Both matching and
upscaling filters are not smooth and also show signs of dif-
ferent sub–pixel processing with some degree of direction-
ality. This indicates that the different branches of the sin-
gle convolutional layer used in eSR–TM are solving the up-
scaling problem independently for each sub–pixel image.
This is in contrast with the smooth scaling filters used in the
classical edge–directed interpolation[2, 18] and also com-
pared to smooth directional filters observed in CNNs super–
resolution interpretations in [28]. Next, in Figure 8 we com-
pute the Pearson correlation between upscaling and match-
ing filters for eSR–TM with k = 7 and C = 16. The results
show dominant correlations along the diagonal, stronger for
2× factor and reducing strength towards 4× factor. Strong
correlations along the diagonal indicate a template match-
ing strategy where upscaling and matching filters are simi-

lar for the same pattern and different to other patterns (see
Figure 5). Thus, we confirm that the training process has a
tendency to converge towards a template matching strategy
that is particularly strong for small upscaling factors.

5. Conclusions

The current trend in Edge–AI chips offers the chance to
deploy efficient AI solutions at massive scale. But there is a
vast range of performance requirements for which these so-
lutions are unavailable for image SR. We propose the edge–
SR architectures with the aim to fill the gap between classic
and deep learning upscalers. We performed an exhaustive
search among more than a thousand different models iden-
tically trained, revealing the gap between classic upscalers
and deep–learning solutions. Our edge–SR configurations
using a single convolutional layer showed promising results
to fill this gap for small upscaling factors. The simplicity of
the model also makes it interpretable and allows to visualize
and understand all the intermediate steps of the process.

1085

References
[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

[2] V. R. Algazi, G. E. Ford, and R. Potharlanka. Directional
interpolation of images based on visual properties and rank
order filtering. In Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, volume 4, page 3005–3008, Toronto, ON,
May 1991. IEEE Signal Processing Society.

[3] Mustafa Ayazoglu. Extremely lightweight quantization ro-
bust real-time single-image super resolution for mobile de-
vices. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2472–2479,
2021.

[4] Jiasi Chen and Xukan Ran. Deep learning with edge com-
puting: A review. Proc. IEEE, 107(8):1655–1674, 2019.

[5] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super–resolution. In in Proceedings of European Conference
on Computer Vision (ECCV), 2014.

[6] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-
ating the super–resolution convolutional neural network. In
in Proceedings of European Conference on Computer Vision
(ECCV), 2016.

[7] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio. Maxout networks. In Inter-
national conference on machine learning, pages 1319–1327.
PMLR, 2013.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7132–7141, 2018.

[10] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[11] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Sin-
gle image super-resolution from transformed self-exemplars.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5197–5206, 2015.

[12] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Ab-
del Younes. Real–time quantized image super–resolution on
mobile NPUs, Mobile AI 2021 challenge: Report. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2525–2534, 2021.

[13] Alex James. The why, what and how of artificial general
intelligence chip development. IEEE Transactions on Cog-
nitive and Developmental Systems, 2021.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 2015.

[15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[16] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav
Bhattacharya, and Nicholas D Lane. Mobisr: Efficient on-
device super-resolution through heterogeneous mobile pro-
cessors. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[17] Bingzhen Li, Jiaojiao Gu, and Wenzhi Jiang. Artificial intel-
ligence (AI) chip technology review. In 2019 International
Conference on Machine Learning, Big Data and Business
Intelligence (MLBDBI), pages 114–117. IEEE, 2019.

[18] Xin Li and Michael T. Orchard. New edge–directed
interpolation. IEEE Transactions on Image Processing,
10(10):1521–1527, October 2001.

[19] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image restoration
using swin transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1833–
1844, 2021.

[20] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super–resolution. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
July 2017.

[21] Xin Liu, Yuang Li, Josh Fromm, Yuntao Wang, Ziheng
Jiang, Alex Mariakakis, and Shwetak Patel. Splitsr: An end-
to-end approach to super-resolution on mobile devices. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 5(1):1–20, 2021.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In-
ternational Conference on Computer Vision (ICCV), 2021.

[23] S. Mallat. A Wavelet Tour of Signal Processing. Academic
Press, 1998.

[24] S. Mallat and G. Peyre. A review of bandlet methods for
geometrical image representation. Numerical Algorithms,
44(3):205–234, March 2007.

[25] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
volume 2, pages 416–423. IEEE, 2001.

[26] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,
Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.
Sketch-based manga retrieval using manga109 dataset. Mul-
timedia Tools and Applications, 76(20):21811–21838, 2017.

[27] P. Navarrete and H. Liu. Upscaling beyond super–resolution
using novel a deep–learning system. In GPU Technology
Conference 2017, Talk S7231, San Jose, CA, USA, May
2017.

[28] Pablo Navarrete Michelini, Hanwen Liu, Yunhua Lu, and
Xingqun Jiang. A tour of convolutional networks guided by
linear interpreters. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4753–4762,
2019.

[29] P. Navarrete Michelini, L. Zhang, and J. He. Upscaling with
deep convolutional networks and MuxOut layers. In GPU

1086

https://on-demand.gputechconf.com/gtc/2017/presentation/s7231-pablo-navarrete-michelini-upscaling-beyond-super-resolution-using-a-novel-deep-learning-system.pdf

Technology Conference 2016, Poster P6324, San Jose, CA,
USA, May 2016.

[30] S.C. Park, M.K. Park, and M.G. Kang. Super–resolution im-
age reconstruction: a technical overview. Signal Processing
Magazine, IEEE, 20(3):21–36, May 2003.

[31] Terence Parr and Jeremy Howard. The matrix calculus you
need for deep learning. arXiv preprint arXiv:1802.01528,
2018.

[32] J.G. Proakis and D.G. Manolakis. Digital Signal Processing.
Prentice Hall international editions. Pearson Prentice Hall,
2007.

[33] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1874–1883, 2016.

[34] M. Sugawara, Choi S-Y, and D. Wood. Ultra–high–definition
television (Rec. ITU-R BT.2020): A generational leap in the
evolution of television. Signal Processing Magazine, IEEE,
31(3):170–174, May 2014.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[36] Xiaolong Wang, Ross B Girshick, Abhinav Gupta, and
Kaiming He. Non-local neural networks. computer vision
and pattern recognition, pages 7794–7803, 2018.

[37] Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Suk-
thanker, Radu Timofte, and Luc Van Gool. Trilevel neural ar-
chitecture search for efficient single image super-resolution.
arXiv preprint arXiv:2101.06658, 2021.

[38] Jianchao Yang, John Wright, Thomas S Huang, and Yi
Ma. Image super-resolution via sparse representation.
IEEE Transactions on Image Processing, 19(11):2861–2873,
2010.

[39] Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Interna-
tional conference on curves and surfaces, pages 711–730.
Springer, 2010.

[40] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie
Liu, Jie Tang, Gangshan Wu, Yu Zhu, Xiangyu He, Wenjie
Xu, et al. Aim 2020 challenge on efficient super-resolution:
Methods and results. In European Conference on Computer
Vision, pages 5–40. Springer, 2020.

[41] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
286–301, 2018.

[42] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun
Fu. Residual non–local attention networks for image restora-
tion. International Conference on Learning Representations,
2019.

[43] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472–2481, 2018.

1087

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=p6324-upscaling+with+deep+convolutional+networks+and+muxout+layers

