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Abstract

This paper presents symmetric-light photometric stereo
for surface normal estimation, in which directional lights
are distributed symmetrically with respect to the optic cen-
ter. Unlike previous studies of ring-light settings that re-
quired the information of ring radius, we show that even
without the knowledge of the exact light source locations
or their distances from the optic center, the symmetric con-
figuration provides us sufficient information for recovering
unique surface normals without ambiguity. Specifically, un-
der the symmetric lights, measurements of a pair of scene
points having distinct surface normals but the same albedo
yield a system of constrained quadratic equations about the
surface normal, which has a unique solution. Experiments
demonstrate that the proposed method alleviates the need
for geometric light source calibration while maintaining the
accuracy of calibrated photometric stereo.

1. Introduction
Photometric stereo estimates surface normals from a

set of measurements captured under varying light direc-
tions [23, 21]. Because of its capability of estimating the
surface normal at each pixel, photometric stereo is use-
ful for recovering a detailed shape of real-world scenes.
Conventional photometric stereo methods [8, 17], including
recent learning-based methods [14, 12, 7], assume known
light directions obtained by geometric light source calibra-
tion [26, 15] for determining surface normals without ambi-
guity. To eliminate the need for the light source calibration,
uncalibrated photometric stereo [10, 5] has been studied.
However, their surface normal estimates generally suffer
from ambiguities [2] due to the lack of knowledge about the
light source directions. More recently, a ring-light configu-
ration [27, 20, 3], in which point light sources are located on
a circle centered at the camera, has been introduced by ex-
ploiting viable constraints in light configurations. While the
ring-light configuration is useful for better constraining the
problem, their estimates still suffer from ambiguities [27].

In this paper, we show that the subset of ring-light con-
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Figure 1. Symmetric- and ring-light configurations. The planes on
which point light sources are placed are parallel to the image plane
and aligned to the optic center.

figuration, namely, a symmetric-light configuration (Fig. 1),
can sufficiently constrain the problem by exploiting the
symmetry of the lights, yielding unique surface normal es-
timates without ambiguity. In the symmetric-light config-
uration, two sets of two point light sources are symmetri-
cally placed w.r.t. the x- and y- axes of the camera in the
same interval, respectively. We assume that these four point
light sources are placed infinitely far away from a scene, re-
sulting in symmetric directional lightings. The differences
of the symmetric measurements produce independent con-
straints over x-, y-, and z- components of surface normals.
By taking two scene points having distinct surface normals
but the same albedo, our method creates a system of con-
strained quadratic equations about the surface normals that
has a unique solution. The experiments demonstrate that
the proposed method achieves comparable accuracy to the
calibrated photometric stereo even without the need for di-
rectional light source calibration.

The chief contributions of this paper are twofold:

1. We introduce symmetric-light photometric stereo, in
which the light symmetry is exploited for constraining
the problem, for determining surface normals.

2. By being a subset of ring-light configuration, the
symmetric-light configuration is simple and easy to set
up and avoids explicit geometric light source calibra-
tion, while it achieves comparable accuracy to fully
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Table 1. Summary of (a) calibrated, (b) ring-light, (c) symmetric-light, and (d) uncalibrated photometric stereo.

(a) calibrated [23] (b) ring-light [27, 20] (c) symmetric-light (ours) (d) uncalibrated [10, 18]

Light sources

known
?

?
?

?

Unique solution
with -

radius of ring /
integrability

constant albedo
(two pixels)

constant albedo /
integrability

calibrated photometric stereo.

2. Related works
We briefly review previous photometric stereo methods

that do not require explicit geometric light source calibra-
tion. This direction has been studied as uncalibrated pho-
tometric stereo [10] (Table 1 (d)), which assumes unknown
light directions and aims at simultaneously estimating both
surface normals and light directions. Hayakawa [10] intro-
duced a method based on matrix factorization and showed
there existed a linear ambiguity in the surface normal es-
timates. Later, it is shown that surface integrability [11]
can reduce the linear ambiguity to a three-parameter lin-
ear transform, which is known as the generalized bas-
relief (GBR) ambiguity [2, 25]. To resolve the GBR am-
biguity, various external assumptions, such as albedo pri-
ors [18], specular spike [6], mutual reflections [4], a certain
type of parametric reflectance models [9], symmetry of re-
flectance [22, 24], have been exploited.

It has also been studied to constrain the problem of un-
calibrated photometric stereo by putting assumptions on
light source distributions. Zhou and Tan [27] have proposed
a ring-light configuration (Table 1 (b)), in which the point
light sources are located on a circle centered on the cam-
era. They show that the constraint from the ring lights can
reduce the ambiguity of uncalibrated photometric stereo up
to mirror transformation, rotation, and scaling ambiguities.
To resolve these ambiguities, they use (1) known rotation
and radius of ring lights with equal intensities or intervals,
(2) the assumption of surface integrability and scene points
with the same albedo, or (3) multi-view information. Shi-
radkar et al. [20] also show that ring lights that have an
equal interval and known radius but unknown rotation still
exhibit scaling and rotation ambiguities, which may be re-
solved by multi-view information. Chandraker et al. [3] use
denser ring lights realized by rotating a point light source
around the camera. From the differences of the measure-
ments when slightly rotating the light source, their method
can estimate the surface normals of a scene with unknown
but isotropic reflectances.

As summarized in Table 1, our method is in be-
tween calibrated and uncalibrated photometric stereo. The

symmetric-light setting (Table 1 (c)) can be regarded as a
subset of ring lights; thus the setup is simpler than the ring-
light setting. By exploiting the new constraints yielded from
the light symmetry, we show that the proposed method can
uniquely determine the surface normals without ambigu-
ity, even without the knowledge of the radius, assumption
of surface integrability, and multi-view information that is
needed in previous approaches.

3. Proposed method
From four images captured under symmetric lights, our

photometric stereo uses a pixel pair having the same albedo
to estimate the surface normals for these pixels. In what fol-
lows, we describe our formulation and the solution method
starting from the image formation model. We here assume
the appropriate pixel pairs are given, while we later intro-
duce a practical method to select reasonable pixel pairs.
Figure 2 shows the overview of the proposed symmetric-
light photometric stereo.

3.1. Image formation model

Suppose that a Lambertian surface is illuminated by di-
rectional lights and observed by a fixed camera. The mea-
surement at a pixel m(s) ∈ R+ under s-th light source can
be described by

m(s) = ρn⊤ls, (1)

where n ∈ S2 ⊂ R3 and ρ ∈ R+ are the surface normal
and albedo, and ls ∈ S2 is the s-th light direction.

The proposed method uses four light sources
that are symmetrically placed and have a uni-
form intensity. The light directions are written as

x
y

z

𝐥𝐥1

𝐥𝐥0𝐥𝐥2
𝐥𝐥3

l0 = [lx, 0, lz]
⊤,

l1 = [0, ly, lz]
⊤,

l2 = [−lx, 0, lz]
⊤,

l3 = [0,−ly, lz]
⊤,

(2)

where lx, ly, lz > 0 are unknown. The light sources can
rotate around the z-axis; however, for the simplicity of no-
tation, we explain the method under this setting. The mea-
surements under these four light directions are described by
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Figure 2. Overview of the proposed method. We capture four images under the symmetric-light configuration and extract features using the
symmetry of the measurements. We construct a linear system from the features and constraints and solve it to estimate the surface normals.

Eq. (1) using the unit surface normal n = [nx, ny, nz]
⊤ as

m(0) = ρn⊤l0 = ρnxlx + nzlz,

m(1) = ρn⊤l1 = ρnyly + nzlz,

m(2) = ρn⊤l2 = −ρnxlx + nzlz,

m(3) = ρn⊤l3 = −ρnyly + nzlz.

(3)

3.2. Solution method

From the symmetry of the light directions, we obtain the
features a, b, and c by linearly combining the measurements
in Eq. (3) as:

m(0) −m(2)

2
= ρnxlx ≡ a,

m(1) −m(3)

2
= ρnyly ≡ b,

m(0) +m(1) +m(2) +m(3)

4
= ρnzlz ≡ c.

(4)

These features represent the relative magnitudes for each
component of the surface normals, nx, ny , and nz , as illus-
trated in Fig. 2.

Our method uses a pair of scene points (pixels) having
distinct surface normals but the same albedo. Under the
assumption of directional lights, all the scene points share
the same light directions. We compute the ratios of features
in Eq. (4) from a pixel pair with the same albedo ρ = ρ′:(

a

a′
,
b

b′
,
c

c′

)
=

(
ρnxlx
ρ′n′

xlx
,
ρnyly
ρ′n′

yly
,
ρnzlz
ρ′n′

zlz

)
=

(
nx

n′
x

,
ny

n′
y

,
nz

n′
z

)
,

(5)

where prime indicates the quantities of the other pixel in the
pair. Additionally, by assuming that light sources are placed

on a circle, i.e., lx = ly , we obtain the following constraints:

(
b

a
,
b′

a′

)
=

(
nyly
nxlx

,
n′
yly

n′
xlx

)
=

(
ny

nx
,
n′
y

n′
x

)
. (6)

By squaring both sides of Eqs. (5) and (6) and plugging
in the unit norm constraints, ||n||22 = 1 and ||n′||22 = 1, we
have a system of quadratic equations as

a′2 0 0 −a2 0 0
0 b′2 0 0 −b2 0
0 0 c′2 0 0 −c2

b2 −a2 0 0 0 0
0 0 0 b′2 −a′2 0
1 1 1 0 0 0
0 0 0 1 1 1


︸ ︷︷ ︸

A


n2
x

n2
y

n2
z

n′2
x

n′2
y

n′2
z


︸ ︷︷ ︸

x

=



0
0
0
0
0
1
1


︸︷︷︸
b

.

(7)
Our method treats the squares of unknowns

[n2
x, n

2
y, ..., n

′2
z ]

⊤ as a new variable x (≥ 0). The
least squares approximate solution x∗ can be derived by
minimizing the objective function:

x∗ = argmin
x

∥Ax− b∥22 s.t. x ≥ 0. (8)

We use a method of non-negative least squares [13] for ob-
taining the approximate solution x∗.

Because lx, ly, lz, ρ, c, c′ > 0 for any pixel in Eq. (4), the
following conditions should also be satisfied:{
nx ≥ 0 (if a ≥ 0)

nx < 0 (otherwise)
,

{
ny ≥ 0 (if b ≥ 0)

ny < 0 (otherwise)
, nz ≥ 0

(9)
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Using the constraints in Eq. (9), we can uniquely de-
termine the surface normals n = [nx, ny, nz]

⊤ and
n′ = [n′

x, n
′
y, n

′
z]

⊤ from the estimated x.

3.3. Solvability condition

For ensuring that the objective Eq. (8) has a unique solu-
tion, the coefficient matrix A in Eq. (7) should be full rank.
This implies that the two pixels should have distinct surface
normals in terms of the elevation angles.

Let θ and ϕ as the elevation and azimuth angles
of a surface normal, respectively, and suppose that
the two pixels have the same elevation angle, i.e.,
θ = θ′. With the angular expression of surface nor-
mals n = [nx, ny, nz]

⊤ = [sin θ cosϕ, sin θ sinϕ, cos θ]⊤,
Eqs. (5) and (6) are written as

a

a′
=

cosϕ

cosϕ′

b

b′
=

sinϕ

sinϕ′

c

c′
= 1

,


b

a
=

sinϕ

cosϕ

b′

a′
=

sinϕ′

cosϕ′

. (10)

Equations in (Eq. (10)) are independent of the elevation an-
gles θ and θ′, and it indicates that we cannot determine the
unique solution under the condition of θ = θ′. Indeed, this
degenerate condition introduces rank deficiency in the co-
efficient matrix A in Eq. (7).

To sum up, for uniquely determining surface normals,
the proposed method requires a pixel pair that has (1) the
same albedo, i.e., ρ = ρ′ and (2) distinct surface normals in
terms of the elevation angles.

4. Pixel-pair selection
Our method uses a pair of scene points with the same

albedo but distinct elevation angles of their surface normals.
For stably selecting such pixel pairs, we develop a simple
yet effective method based on albedo and surface normal
clustering.

Albedo clustering To select pixels having the same
albedo, we use a chromaticity-based clustering [18]
to approximate the albedo clustering. From the four
RGB measurements under our symmetric-light setting for
each pixel, we compute the mean RGB measurements(
m̄(R), m̄(G), m̄(B)

)
. Using the mean RGB measurements,

we compute the chromaticity as(
m̄(R)

m̄(R) + m̄(G) + m̄(B)
,

m̄(G)

m̄(R) + m̄(G) + m̄(B)

)
.

Once the albedos are clustered, our method selects a pixel
pair that belongs to the same cluster.

Surface normal clustering To select a pixel pair having
distinct surface normals in terms of their elevation angles,
we cluster surface normals based on their elevation angles.
While the elevation angles are unknown, let us suppose that
two pixels have elevation angles θ and θ′ ∈

[
0, π

2

]
. We

use a metric r for assessing the difference of the elevation
angles defined as

r = | tan2 θ − tan2 θ′|. (11)

From Eq. (4), we have

(nx, ny, nz) =

(
a

ρlx
,
b

ρly
,
c

ρlz

)
. (12)

Substituting Eq. (12) into the metric r in Eq. (11), we have

r =
∣∣tan2 θ − tan2 θ′

∣∣ = ∣∣∣∣1− cos2 θ

cos2 θ
− 1− cos2 θ′

cos2 θ′

∣∣∣∣
=

∣∣∣∣∣1− n2
z

n2
z

− 1− n′
z
2

n′
z
2

∣∣∣∣∣ =
∣∣∣∣∣n2

x + n2
y

n2
z

−
n′
x
2
+ n′

y
2

n′
z
2

∣∣∣∣∣
=

l2z
l2x

∣∣∣∣a2 + b2

c2
− a′2 + b′2

c′2

∣∣∣∣ ,
with the assumptions that lx = ly and ρ = ρ′. Since the
light directions lx and lz are constant across a scene, we can
define a distance r̂ =

∣∣∣a2+b2

c2 − a′2+b′2

c′2

∣∣∣ that is free from the
light directions. Using the metric r̂, we use K-means clus-
tering to obtain clusters of similar surface normals in terms
of their elevation angles. Once the clusters are obtained, a
pixel pair is selected by taking pixels from different clusters.

For robustifying the pixel selection, we avoid selecting
pixels from clusters that have large intra-cluster variances of
the distance r̂. Namely, we avoid clusters with top 50 per-
centile intra-cluster variances and randomly sample from
the remaining clusters. In our implementation, we sample
100 pixel pairs and take the median of those estimates by
vector median filter [1].

5. Experiment
We evaluate the proposed method using synthetic and

real-world data. For comparison, we use a calibrated pho-
tometric stereo method by Woodham [23], denoted as “Cal-
ibrated.” The estimation accuracy by the calibrated method
can be considered as the upper bound of the accuracy, as
our method only uses less information about the light di-
rections. For the real-world data, we use the DiLiGenT
dataset [19], which is a benchmark dataset for calibrated
photometric stereo, as well as the data captured by our
setup. For the albedo and surface normal clustering, the
numbers of clusters are set to 20 and 50, respectively.
Since the proposed method is designed for grayscale mea-
surements, the color measurements are first converted to
grayscale in our implementation.
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Figure 3. Estimation results for our synthetic dataset. For each row, we show one of the input images, results of albedo and surface normal
clustering, the ground-truth and estimated normal maps for each method, and corresponding error maps. For each error map, we show the
mean angular errors in degrees. For each scene, we have two rendering conditions: with and without global illumination effects.

5.1. Evaluation with synthetic data

We generate our synthetic dataset by Blender1 using the
scenes PILLOW, TEDDY, and PLANT2 rendered with the
Lambertian reflectance. The scenes are rendered with and
without the global illumination effect, i.e., cast shadow and
interreflections, to assess the robustness of the methods. As
for the light directions, we set the elevation angles to 80
degrees, i.e., lx = ly = 0.1736, lz = 0.9848.

Figure 3 shows the visual results for our synthetic dataset
along with the mean angular errors of the estimated normal
maps in degrees. The proposed method shows almost com-

1Blender 2.83 LTS, https://www.blender.org, last accessed
on Aug. 17, 2021

2CGtrader, https://www.cgtrader.com, last accessed on Aug.
17, 2021

parable accuracy with the calibrated photometric stereo,
while for some objects with slightly larger errors. In the
PILLOW scene, the proposed method has a relatively large
error at the boundary of the surface texture due to the error
of the albedo clustering. On the other hand, the PLANT
scene shows the applicability of the proposed method for
scenes that do not satisfy the surface integrability.

5.2. Evaluation with real-world data

Figure 4 shows the results for the DiLiGenT dataset.
Since the DiLiGenT dataset uses 96 light directions roughly
arranged in a grid manner, we choose four light directions3

that approximately satisfy the symmetric-light assumption,

3The results with different choices of the light directions are shown in
the supplementary material.
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Figure 4. Estimation results for the DiLiGenT dataset. For each row, we show one of the input images, results of albedo and surface normal
clustering, the ground-truth and estimated normal maps for each method, and corresponding error maps. For each error map, we show the
mean angular errors in degrees.

camera

object

LED arrays
symmetric lights

Figure 5. Our capturing setup. We use four symmetric LEDs for
our method, and 100 calibrated LEDs for obtaining the ground
truth of the surface normals.

all lights
symmetric lights

as shown in the left figure. Since
we focus on the Lambertian-like
scenes, we use BALL, BEAR,
POT2, and CAT scenes out of ten
scenes in the dataset.

Although the light configura-
tion does not strictly satisfy our

symmetric-light assumption (discussed in Sec. 6 later), for
the BALL, BEAR, and POT2 scenes, the proposed method
still shows almost comparable accuracy to the calibrated
method even though the proposed method does not use the
information of the light source calibration. For the CAT
scene, the proposed method has a larger error compared to
the calibrated method, due to the failure of the albedo clus-
tering. The detail of the failure mode will be discussed in
Sec. 6.

Next, we show the results of scenes captured by our setup
with the symmetric-light configuration in Fig. 5. We use a
CCD camera (FLIR BFS-U3-28S5-C) with the image reso-
lution of 1464 × 1936 pixels with 12 bit color depth and a
lens with the focal length of 25 mm. To obtain the ground
truth, we use 100 LEDs on the LED arrays, which are cal-
ibrated [16]. We use objects with simple (SPHERE and
KITTEN) and complicated (LIZARD) shapes for scenes
with uniform albedo. SHEEP and CHALK scenes con-
tain spatially-varying albedos. Figure 6 shows the esti-
mated results for our dataset. Overall, the proposed method
achieves comparable results to the calibrated method. For
the CHALK scene, the proposed method exhibits a larger
error compared to the calibrated method in the concave re-
gions since these regions are clustered as different albedo
due to cast shadows. In contrast, the other regions with
spatially-varying albedos are correctly clustered and surface
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Figure 6. Estimation results for our dataset. For each row, we show one of the input images, results of albedo and surface normal clustering,
the ground-truth and estimated surface normal maps for each method, and corresponding error maps. For each error map, we show the
mean angular errors in degrees.

normals are accurately estimated.

6. Discussions

This paper studies the conditions derived from the
symmetric-light configuration for surface normal recovery.
As a result, we present the symmetric-light photometric
stereo, in which directional lights are symmetrically dis-
tributed w.r.t. the camera. Using a pixel pair that has the
same albedo but different elevation angles of the surface
normals, the proposed method can uniquely determine the
surface normal without ambiguities. Unlike previous meth-
ods that use a ring-light, the symmetric-light alleviates the
need for assuming a known radius of lights and surface in-
tegrability. Our experiments demonstrate that the proposed
method works as good as calibrated photometric stereo even
without the need for the geometric light source calibration.

For improving the surface normal estimation accuracy,
there are a few venues that can be investigated. Here we

discuss the source of errors in albedo clustering, surface
normal clustering, and the symmetric-light configuration.

Albedo clustering For albedo clustering, our method
uses chromaticities as an approximation of albedos, be-
cause the true albedo is inaccessible. To observe the er-
ror caused by this approximation, we compute true albe-
dos from the ground truth surface normal, apply the same
clustering method, and assess the surface normal estima-
tion accuracy. Figure 7 shows the estimated results with and
without true albedos. This result indicates that the proposed
method can be improved by a better albedo approximation
and albedo clustering.

Surface normal clustering We assess the effect of sur-
face normal clustering to the surface normal estimation ac-
curacy. Figure 8 shows the results of the synthetic scenes,
PLANT and CUBE, with and without surface normal clus-
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tering. Since PLANT scene has a complex shape and var-
ious surface normals, even without surface normal cluster-
ing, we could obtain a reasonable result by random sam-
pling, while surface normal clustering still improves the ac-
curacy. On the other hand, the CUBE scene has only three
distinct surface normals, resulting in a larger error without
surface normal clustering. It indicates that accurate surface
normal clustering contributes to a better surface normal es-
timation accuracy.

Deviation of symmetric-light configuration We evalu-
ate the effect of deviations of light directions from the
symmetric-light assumption in the surface normal estima-
tion. Figure 9 shows the results of the synthetic experiments
with adding noise to the light directions. We use the same
settings in Sec. 5.1 and render the scenes without the global
illumination effects. The Gaussian noise with varying the
noise level is added to the elevation and azimuth angles of
the light directions, respectively. The results indicate that
the accuracy remains comparable to the calibrated method
even when the light directions are off from the symmetric-
light assumption.

Limitations One of the limitations of the proposed
method is a distant light assumption. To make photomet-

1.38 × 10−1

0.1 [deg.]0.0 [deg.]

4.51 × 10−2

w/ clusteringw/o clustering

8.02 1.34 × 10−2

PLANT

Er
ro

r m
ap

N
or

m
al

 m
ap

w/ clusteringw/o clustering

C
U

B
E

GT 
normal mapImage Surface normal

clustering

CUBE

PL
A

N
T

Figure 8. Estimation results for the PLANT and CUBE scenes by
the proposed method with and without surface normal clustering.
The numbers below the error maps indicate the mean angular er-
rors in degrees. “w/o clustering” randomly selects the pixel pairs
that have the same albedo.

M
ea

n 
an

gu
la

r e
rr

or
 [d

eg
.]

0.0
2.5
5.0
7.5

10.0

15.0
17.5

Standard deviation of noise [deg.]
0

12.5

1 2 3 4 5 6 7 8 9

PILLOW
PLANT
TEDDY

Calibrated
Proposed

Figure 9. Estimation results for our synthetic datasets with adding
noise to the light directions. The solid line is the proposed method,
and the dotted line is the calibrated method. Each data point is an
average of 30 trials.

ric stereo more practical, we typically want to put the light
sources close to a target scene, resulting in a near light set-
ting. One of our future directions is to extend the proposed
method for the near light setting.
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