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Abstract

Stereo vision algorithms are important building blocks
of self-driving applications. The two primary requirements
of a self-driving vehicle are real-time operation and nearly
100% accuracy in constructing the 3D scene regardless of
the weather conditions and the degree of ambient light.
Sadly, most real-time systems as of today provide a level
of accuracy that is inadequate and this endangers the life
of the passengers; consequently, it is necessary to supple-
ment such systems with expensive LiDAR-based sensors. We
observe that for a given scene, different stereo matching al-
gorithms can have vastly different accuracies, and among
these algorithms there is no clear winner. This makes the
case for a hybrid stereo vision system where the best stereo
vision algorithm for a stereo image pair is chosen by a pre-
dictor dynamically, in real-time.

We implement such a system called PredStereo in ASIC1

that combines two diametrically different stereo vision al-
gorithms, CNN-based and traditional, and chooses the best
one at runtime. In addition, it associates a confidence with
the chosen algorithm, such that the higher-level control sys-
tem can be switched on in case of a low confidence value.
We show that designing a predictor that is explainable and a
system that respects soft real-time constraints is non-trivial.
Hence, we propose a variety of hardware optimizations that
enable our system to work in real-time. Overall, PredStereo
improves the disparity estimation error over a state-of-the-
art CNN-based stereo vision system by up to 18% (on av-
erage 6.25%) with a negligible area overhead (0.003mm2)
while respecting real-time constraints.

1. Introduction

Depth estimation from stereo images is one of the most
important building blocks of autonomous-driving applica-
tions such as object tracking, localization, and navigation.
Sadly, such depth estimation techniques that are vital for en-

1ASIC → Application-Specific Integrated Circuit

suring the safety of autonomous vehicles, work quite poorly
in inclement weather conditions [30]. As a result, it is nec-
essary to supplement the image-based stereo vision with
other expensive sensing devices such as lidars, mmWave
radars, and ultrasonic sensors [34]. We argue in this pa-
per that the accuracy of inexpensive stereo imaging tech-
niques can be greatly enhanced using our novel ASIC-based
technique, PredStereo, while respecting the real-time con-
straints of the autonomous vehicles. PredStereo addition-
ally provides a level of confidence – if this value is low,
other expensive sensing techniques need to be used.

Let us first appreciate the severity of the problem. The
crux of depth estimation is to capture two photographs us-
ing two different cameras, identify the similar pixels, and
based on the displacement of their relative positions (dis-
parity), compute the depth of the object. Even if there is a
small 1-pixel error in this process, the error in estimating the
depth can be 6.4 m for an object that is actually 50 m away
(considering the same camera configuration as used by the
KITTI dataset [20]). For a car going at 70 km/hr, the safety
buffer time [18] (typically 1.8-2 s) will reduce by 320 ms
(see Section 6.5). Hence, there is a need for improving the
accuracy of such stereo vision techniques while respecting
the real-time requirements of these vehicles.

It would be presumptuous to claim that better stereo vi-
sion techniques can completely supplant expensive lidars
and mmWave radars; the latter are currently being used by
successful self-driving solutions such as Amazon Zoox [32]
and Yandex [31]. On similar lines, it would also be imprac-
tical to claim that it is possible to train a deep neural net-
work (DNN) that can take care of all possible weather and
ambient lighting scenarios. Consider the case of Yandex in
Russia [31], where researchers painstakingly collected im-
ages from 10 million km of driving data to just take snow
into account in LiDAR point clouds – it is hard to find the
wherewithal to do this for all kinds of scenarios. Thus, it
is likely that the future will by and large continue the cur-
rent trend: have a large number of stereo cameras as the
first-line mechanism, and a smaller array of expensive li-
dars or radars as the second-line solution. If the first-line
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solution is accurate, then we can reduce the size and the
cost of the second-line solution. At an extreme end of this
spectrum is Tesla’s [25] proposed solution (based on public
statements [34]) to move towards a LiDAR-less stereo vi-
sion system. Our proposal is complementary to either of the
two scenarios. Our focus is to design an efficient solution
for enhanced accuracy of the stereo vision system subject to
real-time performance constraints. We evaluate our scheme
for two hardware configurations: one based on ASICs (syn-
thesized) and the other based on GPUs.

Given our motivation, we began with selecting the most
accurate CNN-based and computational geometry-based al-
gorithms and evaluated them on the KITTI-2015 stereo
dataset [20]. The conclusions are quite revealing. For
roughly half the images, the CNN-based algorithm High-
res [40] is better than the most accurate traditional algo-
rithm, SGM (Semi-global matching) [11]; the reverse is
true for roughly the other half. The absolute difference
of the 3-pixel error (defined in Section 3) of Highres and
SGM was quite small (up to 9%). However, the moment we
considered augmented images (with snow, rain, and fog),
the differences between the two algorithms in terms of the
maximum absolute error (3-pixel error) increased to 95%.
Clearly, for some images Highres was much better, and for
others SGM was markedly better. We need to bear in mind
that this was observed in spite of the fact that Highres was
trained with several data augmentations such as varying the
image color, brightness, and intensity (see supplementary
document for more details).

The results motivated us to search for hybrid solutions
that combine multiple algorithms and respect real-time con-
straints. As of today, this is a relatively sparse area. The
prominent contributions are by Feng et al. [7] and Spy-
ropoulos et al. [29]. Feng et al. propose to find similarities
across consecutive frames using traditional motion compen-
sation algorithms (originally used in video compression).
However, such approaches require a high frame capture
rate for good results. Our empirical studies indicate that
with 10 fps (typical frame capture rate for autonomous driv-
ing [16, 40]), the resulting accuracy is not at par with the
best stereo-matching algorithms. The recent work by Spy-
ropoulos et al. [29] is the most related. Here, the authors
propose to choose the most accurate traditional stereo vision
algorithm from a pool of algorithms for each pixel using
a random forest-based predictor. The computational com-
plexity and power dissipation of such pixel-wise decision
making is prohibitive for real-time applications. PredStereo
improves upon this algorithm by making real-time decisions
in hardware (ASIC) at the level of full images and also pro-
viding a confidence associated with the prediction. We also
consider CNNs, whereas [29] does not.

With exhaustive experiments, we show that only two fea-
tures namely the perceived brightness and the percentage of

dark pixels are sufficient to predict which algorithm is better
and also yield a number that is indicative of the confidence
of the prediction. Efficiently designing a circuit in hardware
to rapidly compute these features in real-time was challeng-
ing; the issues were solved using a host of arithmetic opti-
mizations and circuit techniques.

1.1. Contributions

¶ We show a detailed characterization of the perfor-
mance, energy, and accuracy of different stereo vision al-
gorithms on different hardware platforms.

· We use the insights from the characterization to design
a low-overhead real-time architecture, PredStereo, that uses
a hardware predictor (area: 0.003mm2, accuracy: 82.5%,
96.6% accuracy for scenes with large differences in the 3-
pixel error) to decide the most accurate algorithm in real-
time (10 ms) using a host of small yet tricky optimizations.

¸ A detailed comparison of our system with competing
systems, where we achieve an increase in the disparity es-
timation accuracy by up to 18% (6.25% on average) over
hitherto the most accurate CNN-based stereo vision sys-
tem [40] and 45% (average) over the latest real-time stereo
vision system, ASV [7].

¹ We underscore the importance of the error in dispar-
ity estimation by showing its effect on the depth estimation
error and the subsequent reduction in the safety buffer of a
self-driving vehicle.

2. Background and Related Work
2.1. Depth Estimation

Any 3D point in a real-world scene is projected to a 2D
point in an image. Stereo vision involves capturing two im-
ages (left and right) simultaneously by two different cam-
eras placed slightly apart. This is similar to human binocu-
lar vision where the two cameras are the two eyes. To find
the distance of this 3D point from the observer (depth), we
need to calculate the distance between the projected points
((x1, y1) and (x2, y2)) of this 3D point across the two im-
ages. This distance between the projected points is called
disparity. Based on the triangulation principle [27], the
depth Z is calculated as Z = b×f

d . Here, b is the distance
between the two cameras, f is the focal length of the two
cameras, and d is the disparity. If the two camera lenses are
parallel, then the disparity is equal to x2 − x1. As can be
observed, b and f are fixed for a camera, hence the problem
of calculating the depth becomes equivalent to calculating
the disparity. Calculating the disparity for the entire image
results in a disparity map.

2.2. Related Work

Feng et al. [7] proposed a hybrid stereo vision system
by using a combination of CNN-based stereo algorithms
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Model MACs (109) Dataflow Accelerator (scaled to 16nm [13]) GPU Tesla P100 Error(%)
RS OS WS

Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J) KITTI train KITTI test
PSMNet 980 2.10 0.70 3.22 1.46 3.22 1.15 0.47 47 0.8 2.32

DeepPruner 775 1.74 0.72 2.68 1.15 2.68 0.92 0.052 5.72 1.1 2.15
Highres 55 0.09 0.048 0.19 0.089 0.19 0.070 0.039 2.19 2.6 2.14

Table 1. Execution time per frame, energy consumption, and error for CNN-based stereo algorithms

and motion compensation algorithm to reduce the compu-
tational overheads of the CNNs. The idea is to use a CNN
algorithm for a frame to calculate the disparity and prop-
agate this disparity to the n consecutive frames as a hint.
This hint is used by a motion compensation algorithm to
generate the disparity for the n consecutive frames. Par-
titioning the frames between the CNN accelerator and the
motion compensation hardware is an important problem in
itself. Feng et al. use static partitioning, i.e., n = 2 in their
scheme. Another work by Spyropoulos et al. [29] proposes
to choose the most accurate traditional stereo vision algo-
rithm for each pixel of the image. They use a random forest
(RF) based predictor to choose an algorithm out of a pool
of algorithms. Each decision tree (DT) in the random forest
provides a prediction and a score; the algorithm chosen by
the DT with the highest score is the winner. This method is
computationally very expensive and cannot be deployed for
latency-sensitive applications. In comparison, PredStereo
works at the level of full images and considers CNN-based
stereo vision algorithms too.

3. Characterization of Stereo Vision Work-
loads

3.1. CNN-based Workloads

The aim of this characterization is to choose the eligi-
ble algorithms from a pool of the most accurate CNN-based
stereo algorithms for operation in real-time. We run all the
popular open source CNN-based stereo algorithms on an
Nvidia Tesla P100 GPU (frequency: 1190-1329 MHz) and
choose the top-3 most accurate algorithms. We evaluated
the algorithms on the KITTI-2015 stereo dataset.

We then performed a characterization of the top-3 highly
accurate CNN-based stereo vision algorithms: PSMNet,
DeepPruner, and Highres on the accelerator simulator,
Timeloop. Timeloop provides an optimal mapping of a
CNN model on to the underlying CNN accelerator architec-
ture. It also provides performance, energy, and area num-
bers. It uses the Accelergy-v0.3 [38] framework with the
Aladdin [28] and the Cacti7 [1] plugins to estimate the en-
ergy consumption of the various components of the accel-
erator. We model three popular dataflows [22] for the CNN
accelerators: Row Stationary (RS), Output Stationary (OS),
and Weight Stationary (WS). All the dataflows are made
to occupy the same area (2 mm2 with 16 nm technology).
The PE array is a 24× 24 systolic array clocked at 1.2 GHz
(similar to prior works [7,41]). The buffer sizes are adjusted

to ensure that the total area for all the designs is the same
(similar to prior work [22, 23]).

Table 1 (column 2) shows the number of MACs
(multiply-accumulate operations) required by the three al-
gorithms. We observe that Highres requires the least num-
ber of MACs and thus is the fastest on both the GPU and
the accelerator. The largest number of MACs is required
by PSMNet, and therefore it takes the maximum time to
execute. Another observation is that for all the CNN mod-
els, the time taken to execute on the RS architecture is less
than that taken to execute on the WS and OS architectures.
Since the number of MACs of a CNN model remains con-
stant across the dataflows, the difference in the execution
time comes primarily from the PE utilization (60-80% for
WS and OS and 80-100% for RS), which in turn is depen-
dent on the scheduling of operations, memory bandwidth
and NoC throughput. We also observed that RS is the most
energy-efficient dataflow for any CNN model mainly due to
fewer DRAM accesses. We observe that GPUs are the most
energy-inefficient platform as compared to the ASICs.

Note that the execution times of the CNN models on the
accelerator are more as compared to that on the GPU. This
is because the accelerator just has 576 PEs, whereas the
GPU has 3584 CUDA cores and requires 2 orders of magni-
tude more area and power. This trend was observed by Lin
et al. [16] as well. The reason for this is that the designs are
made for systems with different form factors. We show two
real-time configurations: one that uses ASICs (small form
factor) and one with GPUs (large form factor).

The last column of the table shows the 3-pixel error of
the CNN models on the KITTI-2015 dataset. 3-pixel error
is a standard way of measuring the error for KITTI datasets
in the computer vision community [5, 35], where we count
all the pixels for which the disparity estimation error is more
than 3 pixels and greater than 5% of the ground truth dispar-
ity. We choose Highres because it is the only algorithm that
obeys the timing constraint, execution time per frame< 100
ms [40], on both the RS dataflow accelerator and the GPU.
Note that we are targeting a sampling rate of 10 frames per
second (100 ms per frame).

3.2. Traditional Workloads

We choose the three most popular traditional stereo vi-
sion algorithms that are known to be accurate and are
highly cited: AD-Census [19], Semi-Global Matching
(SGM) [11], and PatchMatch [4]. The CNN-based algo-
rithms have a large variance in performance and accuracy
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due to the different number of layers and parameters. Un-
like CNN-based algorithms, traditional algorithms are fairly
similar in performance on different platforms (based on our
experiments). Thus, an in-depth platform specific charac-
terization of these algorithms is not required. In contrast,
these algorithms differ significantly in terms of the accuracy
of the estimated disparity primarily due to the difference in
the basic building blocks. Hence, we characterize the accu-
racy of these algorithms on the KITTI-2015 dataset.

Algo. Error (%)
AD-Census 10.99

SemiGlobal (SGM) 2.5
PatchMatch 15.7

Table 2. Error comparison

Table 2 shows the per-
centage 3-pixel error of
the three traditional al-
gorithms on the KITTI-
2015 dataset. Out of the
characterized algorithms,
only SGM achieves an accuracy (error: 2.5%) that is at par
with the accuracy achieved by the best CNN-based stereo
algorithm Highres (error: 2.66%). Thus, we discard the
other two algorithms. We then choose a suitable execution
platform for SGM. We find that the execution time of SGM
on an Intel Xeon CPU is 880 ms and thus does not obey the
real-time constraint of 100 ms. Since the algorithm is highly
parallelizable, we deploy the algorithm on faster platforms:
GPU and ASIC. A multi-threaded version of SGM is found
to be 80 times faster (execution time 11 ms) on the Nvidia
Tesla P100 GPU as compared to the Xeon CPU. The state-
of-the-art implementation of SGM on an ASIC [15] for pro-
cessing one KITTI-2015 (size 1242×375) frame is 36.4 ms
(scaled from 65 nm to 16 nm tech. [13]).

Since both the chosen algorithms, Highres and SGM,
have comparable accuracies, we performed an in-depth ac-
curacy analysis of the KITTI-2015 dataset (see Section 1
and the supplementary doc.).

4. Design of the Predictor

Based on the insights from Section 3, we propose to de-
sign a predictor that chooses between Highres and SGM at
runtime such that the overall error is limited. We shall show
the design of a lightweight selection predictor that takes as
input the minimum possible number of features from the
stereo image frames and then selects an accurate stereo al-
gorithm: Highres or SGM.

The idea of confidence prediction has gained a lot of
traction since real-life applications such as self-driving ve-
hicles need nearly 100% accuracy [9] in the estimation of
disparity. Hence, we also design a confidence predictor that
gives a confidence with which the selected algorithm can be
used such that collisions (in self-driving scenarios) are com-
pletely avoided. Our confidence predictor is able to predict
if the chosen stereo vision algorithm will perform satisfac-
torily on a given frame, be it a CNN-based algorithm (High-
res) or a traditional algorithm (SGM).

4.1. Data Augmentation

As discussed in Section 1, a CNN-based algorithm is
not expected to generalize to the infinite number of driv-
ing scenarios that are possible. The key insight is that we
observed that in many of these scenarios where Highres
failed, SGM worked fairly satisfactorily and vice versa. In
order to make our predictor generalize to different weather
scenarios, we created a new version of the KITTI dataset
(2200 images) by augmenting it with images capturing sev-
eral weather conditions (augmented images are shown in
the supplementary doc.). We used the imgaug [14] APIs to
control the degree of different weather augmentations such
as clouds, rainfall, snowfall, snow covered land, fog, and
frost. We further used dropout augmentation to drop some
random regions from the image and provide them a constant
pixel intensity. This situation is analogous to many unpre-
dictable situations such as locust attacks or small swarms of
black birds (particularly during sunset). This is the standard
way to prepare the augmented dataset using photometric
transformation [17,33]. More sophisticated methods having
higher photorealism can be used to improve the accuracy of
the predictor.

4.2. The Selection Predictor

The process of prediction is a binary classification prob-
lem: Highres or SGM. The intuition behind the chosen fea-
tures for the classification problem comes from the results
of related work. It is well known that CNNs do not per-
form well on images that have occluded regions, texture-
less regions, and reflective surfaces [5, 12]. The current
CNN-based stereo algorithms such as PSMNet and Highres
have mitigated these issues to some extent by capturing the
global context using a pyramid structure. Nevertheless, we
use the percentage of dark regions [39] in an image as a fea-
ture. Similar to the occluded regions, no useful information
is available for dark regions in an image and hence finding
the disparity for these regions becomes difficult. Contrast
and homogeneity [21] are features that quantify the com-
plexity of the texture in an image. The perceived bright-
ness [3] feature captures how an image would appear to hu-
mans. This is an amalgam of multiple factors such as the
relative contrast, color, reflectance of the surface in an im-
age, and flatness. Similarly, the SSIM [36] feature captures
the contrast and structural similarity between the two im-
ages in a stereo pair.

We conducted exhaustive experiments for all the com-
binations of features and classifiers using the best config-
urations of the classifiers (configuration of the classifiers
is in the supplementary doc.). Table 3 shows the valida-
tion accuracy of the classifiers for different augmentations.
We used the LOGOCV validation technique to leave out the
data points of an augmentation for each experiment (corre-
sponding to a row) in Table 3. We observe that the highest
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accuracy is achieved by the decision tree (82.5%). Other
predictors also perform between 70 − 75%, however they
are difficult to implement in hardware. We thus choose a
decision tree as the selection predictor because it addition-
ally provides a great degree of explainability, which may
be useful for satisfying many legal requirements associated
with self-driving.

Augmentation MLP SVM KNN LR AdaBoost DT
Cloud 83 83.5 79 83.5 81.5 85
Rain 60 59.5 59.5 59.5 65 72
Fog 74.5 74.5 73.5 74.5 74.5 78
Snow 99.5 95 95.5 99 99.5 99.5
Frost 94 90 92 94 94 96
Dropout 51 65.5 56 61.5 65.5 75
Kitti 55 52 56 52 60 72
Mean 73.8 74.28 73.1 74.8 77.1 82.5

LR→ Logistic Regression, DT→ Decision Tree
Table 3. Accuracy of the classifiers for different scenarios

Since it is a vital requirement for self-driving vehicles
to have explainable models, we also performed an analy-
sis of the decision path (while using all the features). The
spread of the violins for the brightness and the percentage
of dark regions features is wide as shown in Figure 1. This
suggests that they are used in the decision making process
for the maximum number of image frames, 100% and 95%,
respectively. Additionally, the peaks of the violins for the
brightness and the percentage of dark regions features are at
1, 2, and 3, suggesting that they are used multiple times in
the decision making process of each data point. The other
features have their peaks at 0 and 1, and are hence less im-
portant. Sensitivity results of the two features are shown
in the supplementary document. We explain the hardware
implementation and the functionality of the two chosen fea-
tures in detail in Section 5.

Dark re
gions

Brig
htness

Contra
st

Homogeneity
SSIMFr

e
q
u
e
n
cy

 o
f 

o
cc

u
re

n
ce

 o
f 

fe
a
tu

re
s 4

3

2

1

0

Figure 1. Frequency of features in the decision making process

4.3. The Confidence Predictor

We formulate the confidence prediction as a regression
task, where the confidence is a value between 0 and 100%:
defined as 100−%3−pixelerror. The idea is that the pre-
dictor should be able to predict the confidence with which
the chosen algorithm from the selection predictor can be

used. In order to minimize the overheads of the feature col-
lection process, we use the same features that are used by
the selection predictor. Thus, the confidence predictor uses
the perceived brightness, the percentage of dark pixels, and
the selection label as the inputs. The training labels are gen-
erated by using the percentage 3-pixel error in the disparity
estimation as the metric. For example, if the 3-pixel error
is less than 5%, then the confidence is 95%. For other sce-
narios, the confidence is assigned suitably. We use a deci-
sion tree regressor (enables reuse of the selection predictor
hardware and has more explainability) and obtain the cor-
rect confidence prediction with an accuracy of 97% in all
the weather scenarios. We can get a much better error if we
search for the best features, however that would add to the
feature collection overheads both in terms of execution time
and energy consumption.

5. Architecture
We consider two types of SoCs: a GPU-based SoC and

an ASIC-based SoC. Figure 2 shows the layout of the ASIC-
based SoC in detail. In the GPU-based SoC, the accelerators
are replaced with a CPU-GPU system. We now discuss the
primary module: the hardware predictor.

SoC Interconnect (AMBA AXI4)

Image sensor
ISP 

    SGM 
accelerator

DRAM

Raw data

RGB pixel 
data

Metadata

Frame buffer

HW 
pred.pixel 

data
     CNN 
accelerator

SRAM

Memory 
Controller

DMA

Prediction bit

Figure 2. Architecture of the SoC with ASIC

5.1. Hardware Predictor

The hardware predictor consists of two feature calcula-
tion modules (for calculating the perceived brightness and
the percentage of dark pixels) and a decision tree-based pre-
dictor. The entire pipeline, as shown in Figure 3, has four
components: the interface to read the data from the SRAM
of the ISP (image signal processor) to the hardware pre-
dictor, the brightness calculation module, the dark region
calculation module, and the decision tree predictor module.

ISP SRAM to Hardware Predictor: We get 128 bytes
of data at a time (that correspond to all the three channels
of the two images in the stereo pair) from the SRAM of
the ISP module (having a cache line size of 64 bytes, dual-
ported). Thus, we need to consume 128 bytes of data before
the next data chunk is available from the SRAM. In a 64-
byte block, we have 21 bytes of data (21 8-bit pixels) for
each channel, and the remaining 1 byte is used to indicate
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the status (prediction completed or not). We store this data
in internal registers and use it for subsequent computations.
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Figure 3. Architecture of the hardware predictor.

Brightness module: The standard equation [3] to
calculate the perceived brightness of an image is given by

brightness = 2
√
(0.241× r2 + 0.691× g2 + 0.068× b2).

Here, r, g, and b are the mean pixel intensities in each of
these channels, respectively, for the entire image. The key
operations are finding the mean of the pixels, calculating
the square, multiplications with floating point numbers, and
the square root operation. To compute the mean of the 21
bytes of data (per channel) read from the SRAM, we have
two options: compute the sum temporally (iteratively) or
spatially (in parallel). An iterative computation will use 1
adder but the operation will be spread over multiple clock
cycles, hence we use a binary adder tree (23 adders, tree
depth dlog221e) that adds 21 bytes in a cycle. The final sum
is stored in a 16-bit register. We discard the least significant
bits after every iteration to avoid overflows.

A total of 6 instances of the above circuit run in paral-
lel for the 2 images in a pair, each having 3 channels. For
calculating the square of a 16-bit number, we use a 128KB
lookup table. Each 16-bit number is expressed as two 8-bit
numbers: A = AHAL and B = BHBL. Thus, A × B be-
comesALBL+AHBL×28+BHAL×28+AHBH×216.
Considering different combinations of AHBL and BHAL,
we get a total of 216 combinations and each combination
results in a 16-bit output, which is equivalent to 128KB
lookup table. One multiplication translates to three lookups,
three shifts and three additions. These are very fast opera-
tions [24]. Note that dividing the 16-bit number into two
8-bit chunks reduced the size of the lookup table consid-
erably, from 256KB to 128KB. The expensive floating
point operations are optimized by expressing the floating
point numbers as an approximate sequence of shifts and
adds [10]. We omit the square root operation because in
a decision tree only the relative values matter.

Dark region calculation module: For calculating the
percentage of dark pixels in an image, we need to count all
the pixels for which the values of the r, g, and b channels

are less than or equal to a threshold. The idea is to use a
comparator to compare the 8-bit pixel values of the r, g,
and b channels with the threshold. Since the threshold is
fixed to 15 in our case (similar to [39]), we logically OR
the 4 upper bits of the 8-bit numbers. If the result is zero,
the number is less than or equal to the threshold. This is
done for all the three channels of a pixel and the outputs are
again passed through an OR gate to filter out the pixels for
which all of r, g, b values are less than the threshold. The
output is then inverted to get a 1 for these cases and a bi-
nary adder tree is used to get the final count. We performed
two optimizations here. First, we replaced the comparison
operations by logical OR operations. Second, we omitted
the percentage calculation operation (multiplication by 100
and division by the total number of pixels) because relative
values matter in a decision tree. We train our decision tree
as per these optimizations.

Selection and Confidence Predictor: The aforemen-
tioned modules run in parallel for both the images. After
we have all the four features for both the images (two each),
we send them to the decision tree. Our decision tree is of
depth 5, has a total of 33 nodes, out of which 16 are the
leaf nodes. Thus, we have 17 decision making nodes and
hence 17 multiplexers. The decision tree is implemented as
a tree of multiplexers. The select signal of each multiplexer
is the threshold value of that decision node obtained after
the training process. This value is stored in a 20-bit register.
Each leaf node contains a 1-bit register indicating the final
prediction for the stereo image pair under consideration.

Since the confidence predictor is also implemented as a
decision tree, we reuse the same architecture. This is possi-
ble because the selection predictor and the confidence pre-
dictor are executed sequentially since the output of the se-
lection predictor is an input to the confidence predictor. To
take care of the different thresholds for comparison at the
multiplexers in the selector and the predictor modules, we
store the two thresholds for each multiplexer in two separate
registers. The leaf nodes contain an additional 8-bit register
to indicate the predicted confidence value (0− 100).

6. Evaluation

6.1. Setup

ASIC-based implementation: We model a 24 × 24
PE systolic array with 1.5 MB of SRAM, clocked at 1.2
GHz and having an RS dataflow [7] architecture using the
Timeloop [23] tool. The performance, energy and area
numbers are obtained from Timeloop for the 16 nm TSMC
technology node. We get an area of 2mm2 for the acceler-
ator. The peak throughput is similar to prior works [7, 41]:
1.152 TOPS. We get a power efficiency of 3 TOPS/W for
executing Highres on our accelerator, which is in line with
recent CNN accelerators suitable for SoCs [2, 6]. We as-
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sume an accelerator for SGM similar to [15]. It is reported
to process a 1242× 375 image (same as the KITTI dataset)
in 36.4ms. We implemented the hardware predictor in Ver-
ilog. We synthesized, placed and routed the hardware using
the Cadence Genus Tool (TSMC 16 nm technology) and
obtained the power, area and timing numbers. We simu-
lated the memory with the Tejas architectural simulator [26]
using memory instruction traces (standard practice in the
hardware design community).

GPU-based implementation: We obtained the perfor-
mance and timing numbers for executing the Pytorch ver-
sion of Highres, and CUDA versions of SGM and feature
calculation modules on the Nvidia Tesla P100 GPU. The
timings for the selection and the confidence predictor (im-
plemented in C++) are obtained by executing them on a 48-
core Intel Xeon processor clocked at 2.3 GHz. We take into
account all the overheads of copying the data from the host
CPU to the GPU and vice-versa.

Module Area (µm2) Power (µW)
Brightness module 95.256 10.01
Dark region calculation module 26.17 2.75
Decision tree hardware 47 2.58
Overall hardware (including lookup tables) 2859 317.25
Tool Cadence RTL compiler, 16 nm

Table 4. Overheads of the hardware structures
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6.2. Synthesis Results

Table 4 shows the area and power overheads of the hard-
ware predictor and its individual modules. The total area
is 0.003mm2, which is negligible. The total time to calcu-
late the features for the entire image (size: 1242× 375 pix-
els), and provide a selection label and a confidence value
is 10 ms. This implementation is generic and its perfor-
mance does not depend on the underlying classes of stereo
algorithms. However, the total processing time of our pre-
dictor hardware increases with increasing the image sizes
as shown in Figure 4. For very large images, we need to
quadruple the predictor hardware and add 3 more cache
banks: this will bring the total time for the 2360 × 1992

image to 24 ms, which is well within our time limit of 100
ms. Hence, the additional PredStereo hardware is scalable.

6.3. Performance Comparison

We compare the average execution time per frame (av-
eraged over the entire KITTI dataset) for the four schemes
(see Table 5) in Figure 5, where all the schemes are im-
plemented on both GPU-based and ASIC-based SoCs. The
execution times of PredictAll and Perfpredict are similar to
PredStereo and hence not shown in the figure. Note that
ASV [7] does not report the absolute performance numbers
and hence we do not compare the execution time of Pred-
Stereo with ASV.

Scheme Disparity estimation algorithm
Highres [40] Highres for all frames
Highres+SGM Highres for first frame, SGM for next two frames
Random Random selection between Highres and SGM
ASV [7] Highres for one frame, motion estimation for next

two frames
PerfPredict Perfect predictor to choose between Highres and

SGM (100% accuracy)
PredictAll Predictor that uses all the features to choose be-

tween Highres and SGM
PredStereo Hardware predictor (using brightness and dark re-

gions) to choose between Highres and SGM
Table 5. Schemes and their disparity estimation methods
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Figure 5. Execution time per frame

Figure 5 shows that the execution times for all the
schemes on the GPU (0.02 − 0.04 s) are 2-4 × less as
compared to the corresponding execution times on an ASIC
(0.06 − 0.09 s). Additionally, the Highres scheme has the
worst execution time as compared to the other schemes. It is
also observed that with an increase in the number of frames
choosing SGM, the execution time decreases. Hence, High-
res+SGM scheme that uses SGM for twice the number of
frames as Highres has the lowest execution time. In com-
parison, PredStereo, that uses SGM for only those frames
where it is predicted to achieve a better disparity estimate is
6 ms and 5 ms slower than Highres+SGM on the ASIC and
GPU, respectively. Nevertheless, as observed in Table 6,
PredStereo achieves a 2.26% better disparity estimate as
compared to Highres+SGM. This improvement is sizeable
in the field of stereo vision [40].
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Augmentation ASV [7] Highres SGM Highres+SGM Random PredictAll PerfPredict PredStereo
Cloud 51.7 10.19 5.09 6.05 6.9 6.56 2.9 3.97
Rain 50.3 8.15 6.24 6.94 7.2 6.23 5.3 5.7
Fog 39.8 6.6 3.27 4.29 4.8 3.33 3 3
Snow 60 26 11 13.44 16.75 7.41 7.4 7.4
Frost 59.6 23.4 12.1 14.3 16.9 10.47 10.2 10.2
Dropout 48.7 3.7 3.06 3.32 3.4 3.05 2.7 2.8
Kitti 45.5 2.66 2.58 2.63 2.62 2.4 2.06 2.12
Mean 50.8 11.47 6.19 7.28 8.36 5.63 4.79 5.02

Table 6. Comparison of the error in the disparity estimation of different schemes in several weather conditions

6.4. Accuracy Comparison

For the accuracy comparison, we first train the predictor
for the entire dataset (with augmentations). We calculate
the accuracy of disparity estimation for all the stereo vision
schemes and report the accuracy numbers in Table 6. The
table shows the error in the estimation of disparity for a se-
quence of unseen frames taken from the current augmented
dataset or the default KITTI dataset (in the x-axis). This ex-
periment essentially quantifies the effect of a bad predictor
on the accuracy of the disparity estimation.

We observe that ASV achieves the highest disparity es-
timation error on all the data augmentations as compared
to all the other schemes (same reasons as Section 1). The
second highest error is obtained by the Highres scheme.
Since all the other schemes involve SGM (albeit for dif-
ferent number of frames) for the disparity prediction, they
are more accurate especially for the augmented scenarios.
Particularly, for the snow and frost data augmentations, our
scheme PredStereo is 18% and 13% more accurate over
Highres, respectively. This is because for the images with
these augmentations, SGM has a better disparity estimate as
compared to Highres and our predictor is able to accurately
predict the more accurate algorithm out of the two. More-
over, PredStereo is on average only 0.23% less accurate in
estimating the disparity than PerfPredict. This implies that
even though the accuracy of our predictor is 82.5% (see
Section 4.2), we are predicting the crucial points (the points
that have a higher gap in the disparity estimation errors us-
ing SGM and Highres) accurately (96.6% accuracy), and
hence it translates to a lower error in the disparity estima-
tion.
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6.5. Analysis of the Disparity Estimation Error in a
Self-Driving Scenario

In this section, we analyze the effect of error in the dis-
parity estimation in a self-driving scenario. Any car has to
maintain a half speedometer distance (1.8 s time) [18] from
the vehicles in front of it to allow a safety buffer time. Let
us assume a car with an average speed of 70 km/hr and fol-
lowing the half speedometer distance rule. We calculate the
reduction in the safety buffer time (1.8 s) as a result of error
in the prediction of the distance of the vehicle in front. Fig-
ure 6 shows the reduction in the safety buffer time (refer the
suppl. doc. for the calculation details) for the augmented
KITTI images having vehicles at different distances in front
of it. We observe that Highres can lead to high reductions
(upto 500 ms), while the reductions when using PredStereo
are limited to 100 ms.

A 500 ms reduction is significant because it leaves 1.3 s
to the safety buffer, and it typically takes 1.2-1.5 s [8,37] to
react and apply brakes. Hence, a high accuracy is needed
for such safety-critical applications.

7. Conclusion
There are several important takeaways in this work. The

first is that CNNs are not a panacea for all computer vision
problems; there is a need to recognize the accuracy of tra-
ditional algorithms such as SGM, and dynamically choose
between the two at run time. A low-overhead yet accurate
hardware predictor that uses only two features – the per-
centage of dark regions and perceived brightness – can be
constructed and made to work at real-time. A confidence
predictor based on the same features can provide necessary
hints to activate a higher-level control system, if the confi-
dence in the disparity estimation is low. Overall, PredStereo
improves the disparity estimation error over a state-of-the-
art CNN-based stereo vision system by up to 18% (on av-
erage 6.25%) with a negligible area overhead (0.003mm2)
while respecting real-time constraints.
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