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Abstract

With population growth and a shrinking rural workforce,
agricultural technologies have become increasingly impor-
tant. Above-ground biomass (AGB) is a key trait relevant
to breeding, agronomy and crop physiology field experi-
ments. However, measuring the biomass of a cereal plot
requires cutting, drying and weighing processes, which are
laborious, expensive and destructive tasks. This paper pro-
poses a non-destructive and high-throughput method to pre-
dict biomass from field samples based on Light Detection
and Ranging (LiDAR). Unlike previous methods that are
based on the density of a point cloud or plant height, our
biomass prediction network (BioNet) additionally consid-
ers plant structure. Our BioNet contains three modules:
1) a completion module to predict missing points due to
canopy occlusion; 2) a regularization module to regularize
the neural representation of the whole plot; and 3) a projec-
tion module to learn the salient structures from a bird’s eye
view of the point cloud. An attention-based fusion block is
used to achieve final biomass predictions. In addition, the
complete dataset, including hand-measured biomass and
LiDAR data, is made available to the community. Exper-
iments show that our BioNet achieves ≈ 33% improvement
over current state-of-the-art methods.

1. Introduction

Based on the United Nations Department of Economic
and Social Affairs projections, the world population is ex-
pected to reach 10.8 billion in 2100 [9]. Agricultural pro-
duction will hence need to increase, whilst the pressure on
already scarce land resources will continue to rise and the
available workforce to shrink [4]. Therefore, new technolo-
gies, effective land usage, and efficient management prac-
tices are required to sustainably enhance productivity.

Biomass is a crucial variable for assessing the production
and performance of agricultural systems. Biomass predic-
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Figure 1. Overview of fields. Our method aims to predict the
biomass of each plot via the scanned point cloud. The point cloud
is obtained by the PhenoMobile-Lite® (zoom-in of the red box).
(Best viewed in colour on screen.)

tions inform growers and scientists about the amount and
timing of fertilizer, pesticides, and water that is required to
optimize crop performance and improve harvest production
[20]. Moreover, biomass is an important target for genetic
improvement to increase crop yield [30].

However, traditionally biomass estimation methods re-
quire cutting the culms at ground level for a defined portion
of an experimental plot, and weighing the plant material af-
ter drying in an oven to constant weight [31]. The applica-
bility and reliability of this method is limited by: 1) vari-
able accuracy, as the sample represents only a small section
of the whole experimental plot, which could bias the results
for non-uniform field plots; 2) the method being destructive,
thereby limiting the number of samples on which it can be
applied; and 3) the sampling and subsequent processing re-
quiring transport, drying, and manual handling, being slow,
expensive and restrictive in large experiments. In summary,
the measurement of biomass is laborious, subject to consid-
erable error and not amenable to high-throughput screens
required in modern field experiments or breeding trials.

Therefore, a non-destructive and high-throughput alter-
native method is required. In recent years, computer vision
technologies have been extensively utilized to support dif-
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ferent tasks in agriculture, including LiDAR-based methods
[7, 54, 3]. Existing LiDAR-based biomass estimation meth-
ods can be categorized into two streams: canopy height-
based and point density-based approaches. Canopy height-
based approaches [43, 46, 11] use the canopy height as a
proxy to estimate biomass in maize, wheat, and rice. How-
ever, variations in crop height are limited in wheat breeding
experiments. Consequently, researchers tend to utilize the
3D nature of a point cloud. Voxel-based, volume-based, and
point distribution-based methods are preferred as the den-
sity of the point cloud is shown to correlate strongly with the
manually measured biomass [19, 45, 10]. Although these
methods can be applied without a machine learning mecha-
nism, limited accuracy restricts their implementation. Addi-
tionally, in small grain cereals such as wheat, the following
limitations currently exist:

• Occlusion in the canopy, especially after the flowering
stage and in high-density plots. Hidden areas cannot
be detected by LiDAR, hence reducing the accuracy of
above methods.

• Lack of relevant datasets. Non-destructive biomass es-
timation at fine levels is currently not possible due to
the lack of accurate and high-throughput phenotypic
data and algorithms.

In this paper, we propose an end-to-end network, dubbed
BioNet, to predict above-ground biomass. BioNet contains
three modules: 1) a completion module (Sec. 3.2); 2) a
regularization module (Sec. 3.3); and 3) a projection mod-
ule (Sec. 3.4). We adopt an attention-based fusion block
(Sec. 3.5) to fuse the output features from the three mod-
ules and output the final predicted biomass.

Our main contributions are summarized as follows.
1) We propose a simple and effective network, named

the Biomass prediction Network (BioNet), to pre-
dict above-ground-biomass robustly and accurately with
point clouds generated by LiDAR.

2) We share a dataset with point clouds of 306 plots repre-
senting a total of 26 varieties of small grain cereals, cap-
tured at two developmental stages and two sowing den-
sities, as well as their associated ground truth biomass.

3) Experimental results on the real dataset demonstrate the
superiority of our approach over current SOTA methods.

2. Related work
This section first summarizes studies that estimate

above-ground biomass (AGB) with LiDAR for field crop
research. Then, we briefly review commonly used learning
methods for point clouds.
Biomass Prediction with LiDAR. Canopy height, as a sur-
rogate for biomass, has been widely adopted [27, 15, 43].
Saeys et al. [36] estimated crop density using statistical

models for two LiDAR scanning frequencies. Tilly et
al. [43] added a field spectrometer to their platform and
derived bivariate biomass regression models by fusing 3D
data, and spectral data [42]. Li et al. [23] used airborne
LiDAR, and Pearson’s correlation analysis and structural
equation modelling (SEM) to estimate plant height and leaf
area index (LAI). To estimate canopy height, several stud-
ies used stereo reconstruction from aerial imagery [1], or
ground platforms [13] as an alternative to LiDAR. How-
ever, prediction of biomass from canopy height is unlikely
to be useful in the selection for improved biomass since the
variation for height is limited in breeding programs.

In addition to canopy height, other variables, such as
point volume, LiDAR Projected Volume (LPV), and 3D in-
dices [19, 45, 38, 6], have a strong correlation with mea-
sured biomass. Point density-based methods which utilize
the 3D nature of point clouds have been applied in cotton
[38], arctic shrubs [18] and trees [32], or for wheat grown
in a single environment [45]. Jimenez-Berni et al. [19] pro-
posed a voxel-based method (3DVI) by dividing the point
cloud into voxels of equal size and calculating the ratio be-
tween the number of voxels containing points and the num-
ber of subdivisions in the horizontal plane. They also pro-
posed a complement to 3DVI, that required splitting point
clouds into layers, applying a correction factor to each layer,
and summarizing the corrected point fractions present in
each layer. Importantly, 3DVI is currently considered the
‘gold-standard’ for measuring AGB. 3DVI is robust and ac-
curate for real-world applications and is used in [45, 41].
Learning in Point Cloud. PointNet [33] is a pioneering ef-
fort that directly processes point sets. It uses multi-layer
perceptron (MLP) networks [39] to extract features from
point sets. PointNet++ [34] is an extension of PointNet
with an added hierarchical structure. In this approach, the
set of points is partitioned into overlapping local regions by
the distance metric of the underlying space. Several other
methods [22, 48, 49, 24, 25] were proposed which utilize
local features or a pooling operation that is more advanced
than max-pooling. For example, Wang et al. [48] proposed
a new neural network module dubbed EdgeConv suitable
for CNN-based high-level tasks on point clouds, including
classification and segmentation. EdgeConv is differentiable
and can be plugged into existing architectures. Compared
with previous 3D point CNNs, GS-Net [51] exploits Eigen-
Graph to group distant points with similar and relevant ge-
ometric information, and aggregates features from nearest
neighbours in both Euclidean space and Eigenvalue space.

3D shape completion plays an important role in robotics
and perception. Yuan et al. [53] proposed the pioneering
point cloud completion (PCN) work using a simple encoder-
decoder network. TopNet [40] proposed a hierarchical tree-
structure network. GAN-base network RL-GAN-Net [37]
was invented for real-time point cloud completion.
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Figure 2. Architecture of BioNet. We first feed the point cloud X to the completion module to get a completed point cloud Y = f(X ; F⃗).
A feature vector vc is extracted from Y with a MLP block. Meanwhile, the point cloud Y is fed to the regularization and projection module
to extract a feature vector vr and vp, respectively. Modulated by the feature vector of a reference point cloud, the regularized feature
vector vr = h(Y; H⃗) has a better global representation of the non-uniformity cereal plot. Considering the standardised planting practice,
the projection module first projects Y as a bird-eye view image, and then extracts a salient structural feature vector vp = g(Y; G⃗). With
vc, vr and vp, we adopt an attention mechanism to fuse the three feature vectors. A MLP block outputs our final biomass prediction.
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Figure 3. Architecture of the point feature block (small dark-blue
cuboids in Fig. 2). The block aims to extract a feature vector from
the input point set. (Best viewed in colour on screen.)

3. Biomass prediction network
In this section, we first present an overview of our net-

work and then introduce the three modules which contribute
to accurate and robust biomass predictions. Finally, we
present an attention fusion method to aggregate outputs of
the three modules together.

3.1. Overview

A point cloud of a plot is represented as a set of 3D points
X = {Xi|i = 1, · · · , N}, where each point Xi is a coor-
dinate vector (xi, yi, zi) and N is the number of 3D points
in the plot. With the input point cloud, our BioNet is able
to predict the AGB ŵ. To train our BioNet, we use ground-
truth biomass w.

The pipeline of BioNet is given in Fig. 2. BioNet con-
tains three key modules: the completion module f(·) with
parameters F⃗ , the regularization module h(·) with param-
eters H⃗, and the projection module g(·) with parameters
G⃗. The completion module (Sec. 3.2) predicts the miss-

ing points due to canopy occlusion caused by neighbouring
plants. The regularization module (Sec. 3.3) is to regular-
ize the neural representation of the whole cereal plot with a
reference wheat plant. The projection module (see Sec. 3.4)
first projects the whole cereal plot as a bird’s eye view, and
then extracts salient structural features. Finally, output fea-
tures from the three modules are fused to predict the above-
ground biomass ŵ.

To train BioNet, we use both a prediction loss Lpre and
a completion loss Lcomp. The final loss is the sum of these
two losses

L = Lpre + λLcomp, (1)

where λ is the weight parameter to balance the two losses.

Prediction loss Lpre. We adopt the smooth ℓ1 loss. Smooth
ℓ1 loss S(·) is widely used in regression tasks, for its ro-
bustness and low sensitivity to outliers [16]. This loss en-
forces the predicted biomass to be similar to the ground
truth biomass, and is given by

Lpre(ŵ, w) =
1

M

MX

m=1

S(wm − ŵm) , (2)

where M is the number of plots and the subscript m ∈
{1, · · · ,M} is the plot index.

Completion loss Lcomp. Taking the original point cloud
of a plot as input, the completion module outputs a high-
fidelity, dense point cloud. To measure the difference be-
tween the completed point cloud Y and the ground truth
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Figure 4. Architecture of the completion module. The module aims
to complete the low-density point cloud X with a scale factor s =
2.

point cloud G, we adopt the Earth Mover’s Distance (EMD)
[12, 53, 26]. The Lcomp is defined as

Lcomp(Y,G) = min
ϕ:Y→G

1

|Y|
X

Y∈Y
∥Y − ϕ(Y)∥ . (3)

Here, ϕ is a bijection that minimizes the average distance
between corresponding points [5].

Next, we describe each key component of BioNet.

3.2. Completion module

The depth of laser pulse penetration varies with the
canopy structure. In early developmental stage (vegetative),
small grain cereal plants such as wheat have few leaves
which are all close to the stem. At later developmental
stages (flowering and later), the same plants widen to form a
canopy of varying density, depending on the species, variety
and sowing density. It is difficult for laser pulses to pene-
trate the canopy due to the occlusion of leaves and panicles,
leading to partially-scanned 3D point clouds. This poses a
challenge for existing methods which estimate the volume
of scans, as only points collected from the top of the canopy
are used to compute biomass. As discussed above, the in-
accurate prediction due to occlusion should be noted as a
limitation of LiDAR-based biomass measurements.

Therefore, we add a completion module to BioNet, to
predict missing points due to occlusion. This module di-
rectly maps a partial point cloud X to a dense, com-
pleted point cloud Y without any voxelization. Inspired by
[26, 53, 47], we generate Y in a coarse-to-fine fashion.

The completion module is an encoder-decoder network,
and is given in Fig. 4. The encoder network takes the input
point cloud X as input, and extracts a k-dimensional feature
vector v ∈ IRk with k = 1024. The decoder network takes
the feature vector v as input, and outputs the completed
point cloud Y , by combining the advantages of a fully con-
nected decoder and a folding-based decoder [2, 52]. In Fig.
5, we show an example of the input point cloud X and the
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Figure 5. We give an example of the input point cloud X (Left)
and the completed point cloud Y (Right).

completed point cloud Y . The result shows that our com-
pletion module is able to predict missing points caused by
occlusion.

The completed point cloud Y is then fed to the regular-
ization and projection modules.

3.3. Regularization module

Reference plant

Input plot

N × 3

N � × 3

1024× 1

Output
1024× 1

Point feature block

Regularisation Module h(·)

Figure 6. Architecture of the regularization module. A reference
wheat plant is introduced to regularize the neural representation
of the whole cereal plot. (Best viewed in colour on screen.)

As discussed earlier, it is common that the point set
shows a non-uniform density across different areas of a
given plot. Such non-uniformity introduces a signifi-
cant challenge for point set feature learning and accurate
biomass predictions. Features learned in dense data may not
generalize to sparsely sampled regions. Conversely, mod-
els trained with sparse point clouds may not recognize fine-
grained local structures.

Besides non-uniform density, the canopy structure of
small grain cereals varies depending on the species, vari-
ety, developmental stage and sowing density. Consequently,
features learnt from a given variety/stage/density may not
generalize to another.

Therefore, we use the attention mechanism [44, 14, 8,
29] to selectively aggregate the feature by a weighted sum-
marization, which helps to tackle the non-uniform density
in the point cloud. Moreover, to ‘regularize’ the point cloud
of a plot that contains multiple cereal plants, we use a sin-
gle standard wheat plant as a reference. Features extracted
from the point cloud of the reference plant are used to rec-
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Figure 7. Architecture of the projection module. The module aims
to extract salient structural features from a bird’s eye view projec-
tion of the point cloud. (Best viewed in colour on screen.)

tify features learnt from the point cloud of the whole plot.
The above strategy allows our model to learn features from
irregular plant structure when predicting the biomass com-
pared to existing density-based methods. The architecture
of our regularization module is given in Fig. 6. Specifically,

First, a query feature Q ∈ IRk is extracted from the ref-
erence plant Xref with a MLP block. Next, a key feature
K ∈ IRk is extracted from the completed point cloud Y
with a MLP block. After performing a matrix multiplica-
tion between Q and the transpose of K, we apply a softmax
layer to calculate an attention map A ∈ IRk×k.

A = Softmaxi(Q ·KT), (4)

where i ∈ {1, . . . , k} is the row index and Softmaxi(·) is
the (row-wise) softmax function [17].

Then, a value feature vector V ∈ IRk is extracted from
the complete point cloud Y with a MLP block. Finally,
the output of our regularization module is computed as a
weighted sum of value features by performing a matrix mul-
tiplication between A and V.

In summary, the query feature Q from the reference plant
is used to draw an attention map A on the completed point
cloud Y , and A is further used to regularize the value fea-
ture vector V of Y .

3.4. Projection module

In an actual application, a point cloud is sparsely sam-
pled from 3D surfaces in an irregular and off-order way. In
addition, plants are sown in rows in a plot, separated by
even gaps. The gaps allow plants to grow but also con-
tribute to the non-uniform point distribution in each cloud.
To feed the non-uniform and sparse point cloud to a net-
work in training, previous attempts included iterative far-
thest point sampling, volumetric grids and view-based pro-
jections [34, 50, 28].

In this study, we represent the 3D point cloud as a 2D
depth image to achieve robustness to transformations and

(a) Early stage (b) Flowering stage
Figure 8. Bird’s eye view of the same plot at two different growing
stages. We generate a greyscale image based on points (xi, yi, zi)
in a point cloud. The image coordinates correspond to (xi, yi)
and pixel intensity values correspond to zi.

permutations. A strong structure can be found when looking
down at the plot, due to the standardised planting practices
which ensure seeds are planted in evenly-spaced rows. In
Fig. 8, we show the representation of a plot with small grain
cereals at two growing stages (one at the early stage and one
at the flowering stage), where it is possible to recognize six
plant rows (shown as columns) in either stages.

In our representation, each point (xi, yi, zi) in a cloud is
mapped to discrete coordinates (xi, yi), where its intensity
value is zi. Compared with point sampling, the representa-
tion helps to feed all points to the network in training. In
addition, the representation is able to filter the soil point
which can be treated as noise in the point set. After the rep-
resented image, we adopt the convolutional neural network
(CNN) to extract a k-dimensional feature vector from the
2D depth image. The architecture of the projection mod-
ule is given in Fig. 7. Then, with a point feature block we
extract the feature vector vp.

The above three modules form the basis of our BioNet.

3.5. The fusion block

As explained above, our network starts with a point
cloud X being fed to the completion module to get a com-
pleted point cloud Y . A feature vector vc is extracted from
Y with a MLP block. Meanwhile, the point cloud Y is sep-
arately fed to the regularization and projection module to
extract a feature vector vr and vp.

With vc, vr and vp, we feed the three feature vectors to a
feature fusion block. The fusion block adopts the attention
mechanism [44], and is given by

Fuse(vr,vp,vc) = Softmax(
vrv

T
p√
k

)vc, (5)

where
√
k is a scaling factor and k is the dimension of fea-

ture vectors. The output of the fusion block is fed to a MLP
block to extract our final biomass prediction ŵ.
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4. Experiments

4.1. Dataset

We collected data from a field experiment conducted in
2019 at Yanco, NSW Australia. In this experiment, 26 vari-
eties of small grain cereals (wheat and triticale) were sown
at two different densities to generate a range of AGB val-
ues and plant architectures. Seeding rates were 250 (‘high’,
standard Australian yield trials) and 50 (‘low’) seeds/m2.
Both sub-trials were sown in May, and each crop variety
was randomly replicated for each sowing density, giving 78
plots per sub-trial, 156 plots in total.

Each plot was scanned at two different developmen-
tal stages, early (August, vegetative stage) and late in the
growing season (October, flowering stage). Point clouds
were generated with LiDAR mounted on a PhenoMobile-
Lite® driven above all plots at 2 m height. The experimen-
tal imaging set-up is shown in Fig. 9. The PhenoMobile-
Lite®, conceived as a manually operated buggy, is designed
to be lightweight, cost-effective, and transportable across
multiple field sites. It provides reliable field phenotyp-
ing amenable to deployment in multi-site managed environ-
ment facilities for targeted trait and germplasm evaluation
[35]. To measure the associated ground truth above-ground
biomass, ground-level cuts were then taken from each plot
immediately after the LiDAR scanning. The cuts, taken
from 1 m2 (early stage) and 0.5 m2 (flowering stage) ar-
eas of each plot, were oven-dried at 70◦C for 7 days until a
constant dry weight was reached. They were then weighed
to calculate AGB on area basis (g/m2) for each cut.

Agronomic and bioinformatics experts worked together
for five months to collect the 306 point clouds and cor-
responding manually-measured ground-truth AGB. The
dataset was then split into 204 training plots and 102 testing
plots. We make our small grain cereals biomass prediction
(SGCBP) dataset1 publicly available.

4.2. Experimental Setup

Baselines. The state-of-the-art method is 3DVI [19], which
is a traditional density-based, non-deep method. It is
demonstrated to be effective and accurate in real-world ap-
plications and is used in [45, 41]. Given that our method
is the pioneer of learning-based biomass prediction meth-
ods, there is no open-source baseline available at this stage.
Thus, to prove the effectiveness of our BioNet, we build
several baselines based on the state-of-the-art point cloud
learning methods. The selected methods include PointNet
[33], PointNet++ [34], DGCNN [48] and GS-Net [51]. All
networks are retrained on the proposed new dataset and are
optimized with the same prediction loss function.

Evaluation metrics. We use standard metrics to evalu-

1https://doi.org/10.25919/xv6v-6h56

Ground Level

LiDAR

2 m
Adjustable

1 m

Border Rows

Figure 9. Schematic of our imaging set-up, using a PhenoMobile-
Lite® to collect point clouds. PhenoMobile-Lite comprising Li-
DAR laser scanner and touch-screen computer mounted on an alu-
minium frame with adjustable wheel spacing to accommodate dif-
ferent plot widths (1.7–2.2 m) and ground-clearance for canopy
heights up to 1.5 m. The height-adjustable sensor boom (2.0–2.5
m) enables data capture from crop emergence to maturity. In the
standardised planting practices, the border rows are cut manu-
ally. This is because the plant at border rows has a larger growing
space and more sunlight than the inner rows, making the canopy
structure of border rows different from the inner rows.

ate the quality of the AGB prediction using BioNet from
the LiDAR point cloud. Specifically, these metrics include
the mean absolute error ‘MAE’, the absolute relative error
‘MAE rel’, and the root mean square error ‘RMSE’. Here,
the ‘MAE Rel’ is defined as

MAErel =
1

M

MX

m=1

|ŵm − wm|
wm

, (6)

where M is the number of point clouds and the subscript
m ∈ {1, · · · ,M} is the plot index. Here, ŵm is the mth

predicted above-ground biomass and wm is the mth manu-
ally measured ground-truth biomass.
Implementation details. BioNet is implemented in Py-
torch and is trained from scratch using the Adam opti-
mizer [21] with a learning rate of 10−3 and a batch size
of 24. Our model is trained on four NVIDIA Tesla P100
GPUs. During the training procedure, we augment the data
by randomly sampling and perturbing the point locations.

4.3. Experimental Results

We compare our results with baselines on the collected
real datasets (note: no other datasets are available). BioNet
predictions achieve competitive results compared with the
state-of-the-art methods [33, 34, 48, 51, 19] (Table 1). Here,
‘Ourc’, ‘Oursr’, and ‘Oursp’ denote our model with only
the completion module, the regularization module, and the
projection module, respectively. ’Ours’ refers to our model
with its three modules and an attention mechanism-based
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Table 1. Quantitative comparisons of biomass prediction methods on our real dataset. The best results are shown in bold. The model of
each learning-based method is trained on the whole training set. We report the result on the whole testing set (‘Overall’), the ‘Early stage’
set, and the ‘Flowering stage’ set separately. We achieve competitive results compared to state-of-the-art methods in all three testing sets.
To demonstrate the effectiveness of each module in our BioNet, we also report the result of only using the completion module (‘Ourc’),
the regularization module (‘Ourr’), and the projection module (‘Ourp’) separately. In the last column, we show the relative improvement
(‘RI’, (%)) compared to the state-of-the-art method 3DVI. Our BioNet achieves ≈ 33% improvement on average.

Metric
Method PointNet

[33]
PointNet++

[34]
DGCNN

[48]
GS-Net

[51]
3DVI
[19] Ourc Ourr Ourp Ours RI

Overall
MAE ↓ 139.61 142.80 129.66 145.63 115.15 92.46 112.85 108.36 71.23 38.14
MAErel ↓ 27.40 27.52 25.35 26.13 19.02 18.79 18.49 18.68 12.08 36.49
RMSE ↓ 189.80 188.85 161.61 180.85 151.79 119.69 146.87 140.93 99.33 34.56

Early stage
MAE ↓ 92.59 120.62 83.07 83.68 60.45 69.83 72.06 79.56 43.11 28.68
MAErel ↓ 32.61 41.07 33.40 33.06 21.14 23.89 21.87 23.23 13.54 35.95
RMSE ↓ 108.50 159.17 98.67 98.10 69.83 78.62 87.99 91.72 57.71 17.36

Flowering stage
MAE ↓ 188.52 181.69 170.10 210.05 172.04 120.22 155.27 109.41 100.47 41.60
MAErel ↓ 21.98 17.96 16.39 19.44 16.82 13.49 14.98 10.94 10.57 35.51
RMSE ↓ 247.48 230.96 207.74 238.15 204.77 150.98 189.61 135.87 129.09 36.96

fusion block. The relative improvement is on average 33%
but it can reach up 41% in some of the cases. Although
there are some gains using the individual modules, the re-
sults demonstrate combination of the three modules and the
fusion block can significantly improve the predictions.

Here, all learning-based models are trained on the whole
training set (mix of early and flowering stage data). We re-
port the result on the whole testing set (‘Overall’), as well
as on the ‘Early stage’ set, and the ‘Flowering stage’ set,
separately. Here, ‘3DVI’ and ‘DGCNN’ achieve the second
and third-best performance. ‘3DVI’ is more accurate at the
early stage, while both ’3DVI’ and ‘DGCNN’ work simi-
larly at the flowering stage. Notably, ‘Ours’ is superior at
both the early and the flowering stage.

To further demonstrate that our BioNet learns struc-
ture features and has generalization ability, we perform a
cross-validation experiment using our two developmental
time points. To do this, the dataset was split into two
early and flowering stages categories. We used 2/3 of the
point clouds of each category as training and 1/3 as test-
ing data. We train our model on either early or flowering
stage data, and test our model on both temporal stages sep-
arately (Table 2). In this sub-experiment, baseline methods
are second- (‘3DVI’) and third-best (‘DGCNN’). The two
learning-based methods (‘Ours’ and ‘DGCNN’) are trained
on the early or flowering stage only and tested on the two
stages separately. Because ‘3DVI’ does not need to be
trained, its performance is only driven by the test set. For
models trained and tested on the same growing stage, both
‘Ours’ and ‘DGCNN’ achieve competitive results compared
to the traditional density-based method ‘3DVI’. However,
for the model trained on the early stage and tested on the
flowering stage, or the model trained on the flowering stage

and tested on the early stage, ‘DGCNN’ failed to achieve
good results. In contrast, our BioNet showed results supe-
rior to both baseline methods to predict biomass at the flow-
ering stage, regardless of the training set. The experiment
demonstrates that our BioNet learns structure features and
has useful generalization abilities.

Note that, in Table 2, the model trained on the early stage
and tested on the flowering stage achieves the best perfor-
mance. However, the model trained on the flowering stage
and tested on the early stage only achieves the second-best
performance. We suspect that the point cloud for a plot at
the early stage has a stronger and clearer structure than at
the flowering stage. Feature extracted from the early stage
can contribute to the prediction at the flowering stage. How-
ever, we hypothesize that at the flowering stage, canopy oc-
clusion limits distinguishable features, reducing the accu-
racy of our model when predicting another stage.

4.4. Ablation study

The main body of our BioNet is based on a multi-layer
perceptron (MLP) network [39] with three proposed mod-
ules. When combined, the completion (‘Ourc’), regulariza-
tion (‘Ourr’), and projection (‘Ourp’) modules achieve su-
perior performance on our real-world dataset. To study the
contribution of each one of these modules to the final per-
formance of BioNet, we investigate their individual impact
on prediction accuracy (Table 1). First, adding any one of
our three modules significantly improves the predicted re-
sult. Second, by fusing the feature vectors with an attention-
based fusion block, the accuracy of the predicted biomass
was improved by ≥ 35% in terms of MAE rel, compared
to only using one individual module. This is likely be-
cause BioNet benefits from the combination of representa-
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Table 2. Quantitative comparisons of biomass prediction methods on our real dataset. The best results are shown in bold. We test the
generalization ability of the top-3 methods Ours, 3DVI, and the DGCNN. We first split the dataset into two categories, the early stage and
the flowering stage. We use 2/3 of point clouds of each category as the training set and 1/3 as the testing set. The two learning-based
methods are trained on the early or flowering stage only, and tested on the two stages separately.

Training
Testing Early stage Flowering stage

DGCNN [48] 3DVI [19] Ours DGCNN [48] 3DVI [19] Ours

Early stage
MAE ↓ 101.75 62.14 50.53 592.91 147.64 121.86
MAErel ↓ 24.71 16.33 13.37 65.77 17.09 13.70
RMSE ↓ 116.05 74.75 62.18 613.57 181.82 226.45

Flowering stage
MAE ↓ 563.11 62.14 114.46 133.28 147.64 111.13
MAErel ↓ 147.63 16.33 29.50 11.48 17.09 9.87
RMSE ↓ 566.32 74.75 124.46 150.15 181.82 145.65

Table 3. Ablation on the modules of our BioNet. The best results
are shown in bold. To demonstrate the effectiveness of each mod-
ule in our BioNet, we test in the following cases: 1) main body
(a point feature block in Fig. 3 + a MLP block in Fig. 2) with-
out the three modules; 2) completion + regularization module; 3)
completion + projection module; and 4) regularization + projec-
tion module. In case 2/3/4, we only have two modules that extract
feature vectors feeding to the fusion block. Since our fusion block
needs three feature vectors, we concatenate feature vectors output
by the chosen two modules directly. Each model is tested on the
whole testing set (Overall).

Settings Case 1 Case 2 Case 3 Case 4 Ours
Completion × ✓ ✓ × ✓
Regularisation × ✓ × ✓ ✓
Projection × × ✓ ✓ ✓
MAE ↓ 146.42 102.55 94.67 98.27 71.23
MAErel ↓ 35.11 20.65 17.77 20.66 12.08
RMSE ↓ 198.65 128.13 119.86 124.65 99.33

Table 4. Ablation on the fusion block of our BioNet. To demon-
strate the effectiveness of the fusion block, we use vr,vp, or
vc as Query, Key, or Value in Eq. (5) respectively. We adopt
Fuse(vr,vp,vc) in our BioNet for its best performance.

Settings MAE ↓ MAErel ↓ RMSE ↓
concatenate 96.15 19.36 125.17
Fuse(vr,vp,vc) 71.23 12.08 99.33
Fuse(vp,vr,vc) 77.82 12.96 110.72
Fuse(vr,vc,vp) 71.27 12.35 104.48
Fuse(vc,vr,vp) 74.28 13.78 100.11
Fuse(vc,vp,vr) 76.28 13.74 110.77
Fuse(vp,vc,vr) 83.66 14.35 125.23

tions learnt by these three modules. The improved perfor-
mance of our full model shows that all three modules and
the fusion block contribute to final biomass predictions.

To further demonstrate the advantage of our three mod-
ules, we test four module combinations: 1) main body (MB)
alone; 2) MB + completion module + regularization mod-
ule; 3) MB + completion module + projection module; and
4) MB + regularization module + projection module. The

results of this experiment are shown in Table 3. Since our
fusion block needs three feature vectors, we directly con-
catenate feature vectors output by the two chosen modules.
Each model is tested on the whole testing set (Overall).

To further demonstrate the advantage of the fusion block,
we concatenate the three feature vector vc, vr and vp

directly and then feed that to the MLP block. Without
the fusion block, the model achieves 96.15/19.36%/125.17
in terms of ’MAE/MAE rel/RMSE’. In addition, we use
vr,vp, or vc as Query, Key, or Value in Eq. (5) respec-
tively. We test the following cases: 1) Fuse(vr,vp,vc)
(the setting of our fusion block); 2) Fuse(vp,vr,vc); 3)
Fuse(vr,vc,vp); 4) Fuse(vc,vr,vp); 5) Fuse(vc,vp,vr);
and 6) Fuse(vp,vc,vr). The results shown in Table 4 show
that our attention fusion method in any order outperforms
the direct concatenation strategy.

5. Conclusion
This paper aims at estimating the above-ground biomass

(AGB) using LiDAR. The agricultural dataset collected for
this study is made available to the community. Unlike previ-
ous methods which predicted biomass based on the density
of the point cloud or plant height, we propose a biomass
prediction network (BioNet) that also considers plant struc-
ture via a double attention-based fusion block, a completion
module and a point cloud representation module. BioNet
achieved higher AGB predictions than the previous state-
of-the-art method (3DVI) and is therefore proposed as the
new reference. In the future, we aim to introduce more sen-
sors in our system to improve prediction accuracy.
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