
Transferable 3D Adversarial Textures using End-to-end Optimization

Camilo Pestana*, Naveed Akhtar*, Nazanin Rahnavard†, Mubarak Shah†, Ajmal Mian*
*The University of Western Australia

†University of Central Florida
{camilo.pestanacardeno, naveed.akhtar, ajmal.mian}@uwa.edu.au,

{nazanin.rahnavard@, shah@crcv}.ucf.edu

Abstract
Deep visual models are known to be vulnerable to ad-

versarial attacks. The last few years have seen numerous
techniques to compute adversarial inputs for these models.
However, there are still under-explored avenues in this crit-
ical research direction. Among those is the estimation of
adversarial textures for 3D models in an end-to-end opti-
mization scheme. In this paper, we propose such a scheme
to generate adversarial textures for 3D models that are
highly transferable and invariant to different camera views
and lighting conditions. Our method makes use of neural
rendering with explicit control over the model texture and
background. We ensure transferability of the adversarial
textures by employing an ensemble of robust and non-robust
models. Our technique utilizes 3D models as a proxy to sim-
ulate closer to real-life conditions, in contrast to conven-
tional use of 2D images for adversarial attacks. We show
the efficacy of our method with extensive experiments.

1. Introduction
Deep neural models are well-known for their impressive

performance in numerous computer vision tasks. However,
they are also found susceptible to adversarial attacks [4].
These attacks compute perturbations to modify inputs to the
models such that their predictions become misleading. Of-
ten, attacks are concealed by restricting the norm of pertur-
bations to small values [44]. Literature shows that despite
embedding such weak signals in inputs, model outputs can
be controlled at will [2]. This strategy is particularly pop-
ular in fooling visual models. Another scheme to deceive
these models is to use plausible ‘patch’ or ‘graffiti’ on im-
ages or objects for fooling [8].

For deep learning in practice, it is of utmost importance
that we fully comprehend the adversarial weaknesses of this
technology. Currently, adversarial attacks on deep learning
are seen as a major threat to its adoption in real-life appli-
cations [5]. Hence, we are also witnessing numerous de-
fense methods against adversarial attacks on this technol-
ogy [3], [34], [35], [9], [32]. Often, such defense meth-
ods are subsequently broken by more advanced attacks [47],
[49]. This has practically resulted in an arm race between
adversarial attacks and defenses. The ultimate goal of this

race is to understand adversarial weaknesses of deep learn-
ing to the extent that it can be secured from any potential
attack. This makes it worthwhile to still explore new av-
enues of adversarial susceptibility of deep learning, despite
the large body of existing literature.

One particularly under-explored venue in adversarial at-
tacks is the computation of misleading textures for 3D ob-
jects that can fool models on images rendered through the
graphics pipeline. The graphics pipeline has been exten-
sively exploited in many industrial applications e.g. aircraft
simulators, autonomous vehicles, which rely on computer
generated images (CGI) to train deep learning models used
in automation. Rendering adversarial CGI can have catas-
trophic consequences for such applications. Due to such
practical concerns, we can find research efforts in this di-
rection. For instance, [10] and [51] study camouflaging 3D
objects using adversarial texture. However, those methods
fail to account for the complete graphics pipeline in attacks.
There are also methods to fool visual models by manipulat-
ing 3D object textures in the physical world [6], construct
unadversarial objects for robustness against attacks [38], or
embedding assistive signals in objects to improve classifi-
cation error on challenging circumstances [36]. However,
those techniques also do not focus on the rendering pipeline
for texture computation. In [6], the texture mainly retains its
adversarial character in the 3D world due to its robustness
to basic transformations.

In this paper, we propose a method to compute highly
transferable adversarial textures for 3D models that account
for the graphics rendering pipeline in an end-to-end opti-
mization scheme. As shown in Fig. 1, our pipeline em-
ploys a differentiable neural renderer that not only allows
us to synthesize images from 3D models with full control
over the scene parameters, but also enables us to backprop-
agate gradients of the target model throughout the pipeline.
Successful backpropagation of target model gradients to the
input has been the key feature of computing effective per-
turbations for adversarial attacks. For the adversarial 3D
textures, we provide the first instance of accomplishing it
with differentiable rendering. We specifically induce trans-
ferability in our textures by utilizing an ensemble of clas-
sifiers as the target models. This ensemble contains both

88

Untextured
3D Model

Scene Parameters

Batch of Rendered
Images

Camera

Lighting

Rendering
Function

Back-propagate Gradients to 3D model

Robust Visual Classifier Non-robust Visual Classifier

Inputs
Label: Tank Target: Ostrich

Pool of Background Images

2. Select a random background
Image from pool of images.

1. Render Images from
model given scene

parameters

+

3. Use ensemble of classifiers to back-propagate the
gradients w.r.t the image to the texture of the 3D model.

Rendered Image after 60 iterations +
Random Background

4. After some iterations, a
deceptive texture is optimizedfor

the target label

L 0 L 1

L 0 L 1

L 2 L 3

Sample view of deceptive texture +
desert background

Ensemble of Robust and
Non-robust pretrained

classifiers

Figure 1: Given an untextured 3D mesh and a target label, we propose an end-to-end adversarial texture optimization scheme
using an ensemble of visual classifiers (robust and non-robust). First, the untextured 3D mesh is passed to a differentiable
neural renderer along with scene parameters such as camera position and illumination. The neural renderer generates a
batch of images that are combined with a variety of background scenes. Different backgrounds are utilized during different
optimization iterations to induce background invariance in the resulting adversarial textures. The synthesized images are
passed to a classifier ensemble of whose gradients are backpropagated to estimate adversarial textures for a give 3D model.

standard and adversarially robust [41] models. We include
adversarially robust models to exploit their known represen-
tational alignment with human perception [40], [20]. This
is utilized in our scheme to induce texture patterns that pre-
serve salient features of the target (incorrect) class.

Our contributions can be summarized as:
• We propose an end-to-end optimization scheme to

compute adversarial textures for 3D models. We
successfully back-propagate gradients from the target
model to the input with differentiable neural rendering.

• We induce transferability in the computed adversarial
textures by using a model ensemble that includes both
standard and adversarially robust models. The latter is
leveraged to incorporate salient features of the target
(incorrect) class which are preserved during 3D map-
ping of the texture on the model.

• We make the proposed adversarial textures invariant to
environmental effects and background changes by ac-
counting for these variations in our rendering pipeline.

• We thoroughly evaluate the proposed adversarial tex-
tures for their efficacy and transferability on 18 Ima-
geNet models. Our results also provides insights on
transferability and the need of sophisticated methods
for adversarial textures.

2. Related Work
We first provide an overview of adversarial attacks. We

also include a brief discussion on standard and robust classi-
fiers, which relates to our work because both types are used
in our scheme. Finally, we provide a quick review of differ-
entiable rendering. which is employed in out technique for
backpropagating model gradients to the input.

2.1. Adversarial Attacks
Adversarial attacks have gained large popularity in deep

learning literature. We refer to [5] for detailed review of this
direction, here we first briefly discuss the popular gradient-
based attack and then move to adversarial textures.

2.1.1 Gradient-based Attacks
Gradient-based attacks compute gradient of the model to be
fooled, or its proxy. Among these attacks, the most popu-
lar is the Fast Gradient Sign Method (FGSM) [14] which
is computationally efficient as it requires only one itera-
tion of gradient computation. FGSM computes the attack as
xadv = xbenign+ε∗sign(∇xbenignJ(θ, xbenign, y)), where
xadv is the adversarial image and xbenign is the original im-
age. In the cost function J(θ, xbenign, y)), θ represents the
network parameters and y the ground truth label. Moreover,
ϵ is used to scale the noise and is usually a small number.
A sign function is applied to the gradients of the loss with
respect to the input image to compute the final perturbation.

A stronger iterative version of FGSM is the Projected
Gradient Descent (PGD) attack method [31]. The PGD at-
tack is considered one of the stronger attacks and it is used
as a benchmark to measure the robustness of many defenses
in the literature. As compared to FGSM, PGD is an iterative
attack that also involves projecting the perturbations onto an
ℓp-ball of fixed radius. The perturbations are computed as
model gradients. Currently, there are numerous gradient-
based attacks available in the literature. We refer interested
readers to [4] for their detailed review. Here, we highlight
that the effectiveness of these attacks mainly relies on the
ability of backpropagating gradient’s of the model loss sur-
face w.r.t. input to the input layer. This results in comput-
ing optimal directions along which adversarial perturbation
vectors can be computed.

2.1.2 Adversarial Textures
Existing literature in adversarial attacks is mostly focused
on either small imperceptible perturbations on digital ad-
versarial examples, or physical-world adversarial examples
created with large and less realistic distortions that can be
easily recognized by humans. A recent work of Duan et
al. [10] shows the possibility to create adversarial exam-
ples that can be concealed with natural styles. For instance,
they used the ‘snow’ and ‘rusty’ styles to hide the adversar-

89

ial perturbation on a stop sign. Their focus is on creating
stealthy perturbations, and their evaluation only considers
images where the object is right in front of the camera. It is
well-known that even small changes in the lighting condi-
tions and camera position can make an adversarial patterns
in the physical world ineffective [50].

In a related effort, Zhang et al. [51] introduced CAMOU,
which is a physical adversarial attack that specifically tar-
gets vehicles from being detected by deep learning object
detectors. While their approach seems to be effective un-
der different simulated lighting conditions and camera po-
sitions, their camouflage is very conspicuous for human per-
ception and feels unrealistic.

2.2. Standard & Robust Classifiers

In supervised learning, models are trained by optimizing
their parameters θ for the expected loss between the inputs x
and target y. Therefore, the standard optimization objective
can be expressed in the form:

θ = minθE(x,y)∼D[Lθ(x,y)]. (1)

Optimizing for this objective should ideally find the optimal
model that also provides desired performance on unseen
data from the distribution D [11]. However, such ‘standard’
models are susceptible to adversarial attacks [4].

A common approach to deal with this problem is to opt
for robust optimization for model training [14]. In that
case, the optimization objective minimizes the expected
loss, while making the model robust against worst-case per-
turbations of the input:

θ = minθE(x,y)∼D[Lθ(fadv(x, ϵ), y)]. (2)

Here, fadv is an adversarial attack such as FGSM or PGD
with a perturbation level ϵ. Training a network with this
robust objective is among one of the most practical ways
to train networks that are invariant to small ℓp-bounded
changes in the input while maintaining high accuracy.
Therefore, to achieve this objective in adversarial training
a common approach is to add adversarial examples to the
training set [14, 29, 42]. Leaving aside their adversarial ro-
bustness, the models resulting from this strategy also exhibit
other interesting properties [40]. One of them is to endow
adversarial perturbations computed with them the salient
features of the target class. It is shown in [19] that this is
not easily achieved by the standard models.

2.3. Differentiable Rendering
Rendering can be considered as the process of pro-

jecting 3D scenes onto 2D images. However, computer
graphics-based rendering pipeline is known to be non-
differentiable [37]. This limits its usability in deep learn-
ing that works with differentiabale programs only [27]. Re-
cently, promising progress has been made in developing dif-
ferentiable alternate of the graphics pipeline [22, 25, 46].

Algorithm 1: Generating Deceptive Textures
Input: Render functionR, step size α, ensemble of classifiers

K, set of background images B, 3D mesh parameters Θ,
target label ytarget, number of iterations γ

Output: texture Θt

GenerateTextureR, α,K,Θ, ytarget, γ
ξ ← 0, w ← [w0, .., wn]
while ξ ≤ γ do
I ← addRandomBackground(R(Θ),B)

L = 1
n

n∑
j=0
L(Kj(I), ytarget)wj + λV (I)

Θt ← Clip[0,1](Θt + α∇L)
ξ ← ξ + 1

return Θt

The works of Kumar et al. [24] and Kato et al. [23] have
particularly sparked a wave of interest in differentiable ren-
dering in deep learning community.

3. Computing Deceptive Textures
In this section, we provide details of the proposed tech-

nique of computing deceptive textures. We consider a ren-
dering function R, which takes shape parameters Θs, cam-
era parameters Θc, lighting parameters Θl, and texture pa-
rameters Θt as inputs and outputs a batch of RGB im-
ages I. Let us collectively denote the inputs for R as
Θ = {Θs,Θc,Θl,Θt}. When rendering is differentiable,
the function R can also compute the gradients of the out-
put images with respect to the input parameters ∂I

∂Θ . While
inferring Θs and Θc from I using techniques like backprop-
agation is a common task for differentiable renderers [22],
for the task of 3D texturization, we focus on inferring Θt.

Let Ks(I) be a visual classifier trained using the standard
optimization objective in Eq. (1). Similarly, denote the ro-
bust classifier trained under the objective given by Eq. (2) as
Kr(I). An ensemble of classifiers containing any number
of both traditional classifiers and robust classifiers can be
denoted as K = {Kr0 , ...,Krn ,Kt0 , ...,Ktv}. Let us denote
the true label of an input as ‘y’ and the label of the target
(incorrect) class by ‘ytarget’. Adversarial attacks aim to com-
pute a perturbation ρ ∈ Rm that satisfies the constraint:

K(I + ρ) → ytarget, s.t, ytarget ̸= y, ||ρ||p ≤ ϵ, (3)

where ||.||p is the ℓp-norm that is restrained by ϵ. For regu-
larization purposes, we use the total-variation norm, which
can be expressed as:

V (I) =
∑
a,b

|Ia+1,b − Ia,b|+ |Ia,b+1 − Ia,b|. (4)

In Eq. (4), V corresponds to the total-variation regular-
ization function, which takes as a parameter an image I .
The parameters a and b denote the indexes of the corre-
sponding row and column of each pixel in an image. The
maximum value of a and b are the height and width of the
image respectively. The total variation regularization simul-

90

taneously preserves edges whilst smoothing away noise in
flat regions. We use this regularization to induce a smooth-
ing effect in the generated textures. The parameter λ con-
trols the magnitude of the smoothing regularization.

We summarize our procedure of computing deceptive
textures in Algorithm 1. In the algorithm, the function ad-
dRandomBackground(.,.) takes as inputs the rendered im-
ages from R(Θ) and a set of background images B. Both
of these are expected as input by the algorithm. The out-
put of addRandomBackground is a batch of images with
randomly selected backgrounds from B. For each classi-
fier K in the ensemble (expected as input), a weight value
w is initialized. We set w = 1 for all classifiers, but this
can be changed to control each classifier’s priority in the
ensemble. The loss function L used in the algorithm is a
Cross-entropy loss that is computed over the prediction of a
classifier K and the target label ytarget. Finally, a scaled ver-
sion of the gradients of the loss is added to the texture Θt.
The function Clip is used to constrain the values of the re-
sulting texture in the valid dynamic image range, i.e. [0,1].
In essence, Algorithm 1 generates the desired textures by
adversarially attacking a classifier ensemble while account-
ing for natural smoothness of the patterns resulting from the
attack. These patterns serve as deceptive textures.

4. Implementation Details

To ensure that our computed textures are not biased
to a particular network or architecture, we use an en-
semble of classifiers to compute the adversarial textures.
Initially, for the non-robust ensemble we tested a di-
verse range of models using different architectures such
as Vgg16 [43], ResNet50 [15], DenseNet121 [17], Incep-
tionV3 [45], SqueezeNet1.0 [18], ShuffleNetv2 [30], and
MobileNetv2 [39]. Where pretrained networks are used to
extract features for texturization, e.g. in Neural Styling [12],
VGG-like networks are known to produce acceptable re-
sults. However, our exhaustive experimentation showed
that deeper networks generally generate better and more
transferable textures than shallow networks for non-robust
ensemble. There are two main reasons for that. First,
generating textures for 3D objects from different camera
views is a complex process. The corresponding complex-
ity of deeper networks helps in modeling this process. Sec-
ond, approaches such as Neural Styling only use partial in-
formation from the CNN such as the intermediate layers
as features. However, our schema directly optimizes the
classification error of the ensemble in an end-to-end pro-
cess. Therefore, our final ensemble includes 2 non-robust
models (DenseNet121 and InceptionV3) and 4 robust mod-
els (ResNet50 PGD ℓ2 ϵ = 3/255, ResNet50 PGD ℓ∞ ϵ =
8/255, ResNet34 FGSM ℓ∞ ϵ = 2/255, and ResNet34 PGD
ℓ∞ ϵ = 4/255). Herein, ϵ denotes the perturbation mag-
nitude. Moreover, it is now an established fact that opti-
mizing adversarial patterns using a ensemble of models can

help in improving transferability of the attack to other mod-
els [48, 1]. However, after extensive experimentation, we
noticed that adding robust models helped to create more re-
alistic textures as opposed to using non-robust models. In
addition, those realistic deceptive textures also transfer bet-
ter to other networks.

We empirically found that an ensemble with 2 Non-
Robust (2R) and 4 Robust (4NR) models worked the best
in our experiments. Early in our experiments, we also no-
ticed that PGD is more effective for targeted attacks. There
are two main reasons for that. First, when optimizing a loss
ensemble from multiple models (e.g., ImageNet models),
having a single target label helps in the convergence of the
loss. In an untargeted attack when using more than 2 classi-
fiers, having a multi-objective loss makes the optimization
difficult. The situation worsens when more classifiers are
added to a multi-objective loss. Second, when introducing
robust models to the ensemble, the features generated in the
textures are easily recognizable to non-robust models due to
their alignment with human perception. A targeted attack
on an ensemble of robust classifiers will lead to more rec-
ognizable features which ultimately improves the transfer-
ability. Hence, in this work, we focus on targeted attacks.

Currently, there are four main libraries that allow dif-
ferentiable rendering: Pytorch3D [37], Kaotlin [21], Ten-
sorflow Graphics, and Mitsuba2 [33]. Our implementation
uses Pytorch and Pytorch3D libraries. One of the core de-
sign choices of the PyTorch3D API is to support batched in-
puts for all components. The renderer and associated com-
ponents can take batched inputs and render a batch of output
images in one forward pass. This is the key to achieve the
desired outputs for our solution. We used Pytorch3D [37]
library to implement our rendering function with a Mesh
Rasterizer using the parameters blur radius equal to 0 and
faces per pixel equal to 1. In addition, Pytorch3D also of-
fers a variety of Shader implementations. In this work, we
use the Soft Phong Shader [26] implementation offered by
Pytorch3D using default parameters.

We optimize for 6 deceptive textures targeting 6 Ima-
geNet classes: Banana, Chameleon, Gorilla, Ostrich, Straw-
berry and Tree Frog. Moreover, 8 different views from each
deceptive texture are generated to evaluate with 21 differ-
ent backgrounds for a total of 168 images for each decep-
tive texture (6 images x 8 views x 21 background = 1008
test images). We perform attacks on 18 different ImageNet
models (see Fig. 2).

We performed our experiments using a GeForce 2080
Ti 11GB GPU. We found that usually 4-6 carefully selected
views of the 3D object are enough to cover its entire surface.
On average, for the textures in our experiments are gener-
ated using 2 non-robust and 4 robust models, 5 different
camera-views and 100 iterations; we were able to generate
1 fully textured 3D mesh every 3.15 seconds approximately.
This is the same as 19 fully textured 3D meshes per minute.
It is important to note that not all 3D meshes require multi-

91

Generated	Deceptive	Textures	for	a	Tank

Ensemble	of	2NR	+	4R
Target	Label:	“Ostrich”

Ensemble	of	6NR	
Target	Label:	“Ostrich”

Texture 1 Texture 2

Figure 2: Examples of textures for a 3D tank model with target label ‘ostrich’ generated using Algorithm 1. We provide
top-5 confidence scores of the rendered images for 18 models that are not used in the ensemble to generate the texture. (Left)
Texture 1 is generated with an ensemble of 2 non-robust and 4 robust classifiers. (Right) Texture 2 is generated by attacking
an ensemble of 6 non-robust classifiers. The green bar indicated the label of ‘ostrich’ - the target label.

Label Texture: Ostrich

Deceptive Texture
(Sample View)

+

Background Images

=

Testing Images

Figure 3: Different backgrounds are used to generate our
deceptive textures to simulate practical conditions.

view optimization. For example, a 3D mesh model for a
‘Road Sign’ might only need one view for optimization.

5. Evaluation Methodology and Results
This work is inspired by a recent conclusion that visual

models suffer from texture bias [13, 16]. Geirhos et al. [13]
demonstrated that traditionally trained classifiers prefer tex-
ture over shape. Hence, we focus on texture manipulation
in our attack instead of object shape. Moreover, for po-
tential physical world attacks, it is easier to manipulate the
texture rather the shape of an object as the latter has engi-
neering constraints. A major challenge faced in evaluating
deceptive textures is to actually imprint those on large ob-
jects to conduct evaluation in the physical world. Normally,
this imprinting requires facilities that are impractical for the
fast pace of research in this direction. Hence, the common
practice is to simulate the environment for evaluation [4].

In this work, for better synthesis of realistic conditions in
the simulated environment, we use 3D models and add dif-
ferent backgrounds to the rendered images (Fig. 3). Using
our rendering function, we also simulate scene conditions
generating new views with a variety of camera positions
and lighting conditions that are then combined with differ-
ent backgrounds and evaluated on the 18 ImageNet models.
It is now known that CNNs can be brittle to small trans-
formations such as camera viewpoint and object position-
ing. Such transforms are often enough to fool image classi-
fiers [7, 36, 50]. To conduct a fair evaluation, we position
the object in the center of the image and test it under dif-

Table 1: Accuracy (%) for rendered tank image with de-
ceptive textures optimized for: (B)anana, (C)hameleon,
(G)orilla, (O)strich, (S)trawberry, and (T)ree Frog, tested
for 8 different views and 21 different backgrounds.

Accuracy (%) for Label : Tank
CNN Model Tank (B) (C) (G) (O) (S) (T) Avg.
DenseNet121 81.5 0 0.5 0 0.5 0 0.6 0.3
DenseNet169 92.9 7.0 1.8 2.4 0 0 3.0 2.3
DenseNet201 90.5 16.5 2.4 0 0 0 1.8 3.4
inceptionresnetv2 97.0 33.5 12.9 8.2 20.6 0 0.7 12.7
inceptionv3 85.7 13.5 2.4 13.5 15.3 0 0.4 7.5
mobilenet 76.8 17.1 4.7 2.4 8.2 0 0.6 5.5
mobilenetv2 74.4 0.5 0 0.6 4.1 0 0 0.9
nasnet 91.1 27.6 7.1 15.9 15.9 1.2 1.2 11.5
nasnetmobile 60.7 0.5 0 0 0 0 0 0.1
resnet101 83.3 6.5 0 2.3 0 0 0 1.5
resnet101v2 73.8 0.6 0 0.5 0 0 0.6 0.3
resnet152 72.6 5.3 0 1.2 0 0 0 1.1
resnet152v2 81.5 0.6 0.6 2.9 0 0 0.6 0.8
resnet50 55.4 0 0 0 0.6 0 0 0.1
resnet50v2 56.0 0 0 1.2 0 0 0 0.2
vgg16 29.8 0 0 0 0 0 0 0
vgg19 32.7 0 0 0 0 0 0 0
xception 86.3 28.2 1.7 2.9 0 0 11.8 7.5
Average 73.4 8.7 1.9 3.0 3.6 0.1 1.2 —
Accuracy drop — 88.1 97.4 95.9 95.1 99.9 98.4 —

ferent illumination conditions, backgrounds, and rotations
to ensure that the fooling is due to our generated textures
rather than a particular set of conditions.

5.1. Experimental Results
Table 1 shows comprehensive quantitative results of our

deceptive textures computed for the tank model. The results
shown in this table correspond to textures that are optimized
without background. Then, we added background only dur-
ing the testing phase. The first column shows the accuracy
(%) of the model on the tank images with original texture.
The remaining columns show accuracies (%) when the tank
has deceptive textures. Average accuracy for all textures is
reported in the last column. In general, we can see that the
accuracies drop significantly with deceptive textures. These
results were computed for all views and backgrounds con-
sidered in this work to simulate different real-world scenar-
ios. Overall, our deceptive textures significantly reduce the

92

Table 2: Average accuracy of all 6 deceptive textures (%) for tank with different backgrounds on all 18 ImageNet models.
The last row shows the average accuracy per background.

Accuracy (%) for Label : Tank
Model/Background desert desert1 desert2 desert3 desert4 desert5 desert6 desert7 desert8 forest grass grass1 grass2 grass3 grass4 grass5 grass6 grass7 grass8 grass9 grass10
DenseNet121 14.3 12.5 10.7 12.5 10.7 10.7 8.9 10.7 14.3 0 10.7 8.9 14.3 8.9 14.3 14.3 12.5 14.5 14.3 16.1 13.3
DenseNet169 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 16.1 3.5 5.3 14.3 21.4 16.1 17.9 14.3 17.9 12.9 19.6 32.1 13.3
DenseNet201 14.3 14.3 14.3 14.3 5.3 14.3 14.3 17.9 23.2 0 12.5 26.8 21.4 16.1 10.7 16.1 16.1 14.5 23.2 28.6 13.3
inceptionresnetv2 23.2 17.9 16.1 19.6 16.1 16.1 14.3 28.6 33.9 7.1 12.5 25.0 60.7 19.6 16.1 32.1 17.9 27.4 53.6 51.8 25.0
inceptionv3 25.0 12.5 14.3 26.8 16.1 12.5 7.1 23.3 23.2 0 5.3 33.9 25.0 23.3 14.3 12.5 26.8 14.5 41.1 28.6 16.7
mobilenet 15.7 17.9 14.3 12.5 7.1 7.1 12.5 17.9 23.2 5.3 16.1 28.6 16.1 7.1 1.8 14.3 10.7 12.9 53.6 30.4 3.0
mobilenetv2 16.1 1.8 12.5 16.1 12.5 7.1 5.3 12.5 16.1 0 7.1 12.5 14.3 5.3 14.3 14.3 8.9 17.7 17.9 19.6 10.0
nasnet 35.7 14.3 16.1 14.3 16.1 14.3 12.5 23.2 41.1 3.6 1.8 8.9 33.9 14.3 14.3 33.9 30.4 22.6 39.3 55.4 15.0
nasnetmobile 8.9 7.1 5.3 14.3 10.7 12.5 3.6 12.5 5.3 0 5.3 7.1 10.7 7.1 8.9 10.7 1.8 8.1 16.1 14.3 11.7
resnet101 25.0 7.1 10.7 12.5 7.1 14.3 1.8 14.3 10.7 1.8 10.7 14.3 19.6 5.3 14.3 16.1 12.5 12.9 17.9 17.9 13.3
resnet101v2 12.5 8.9 12.5 14.3 1.7 10.7 7.1 14.3 12.5 0 7.1 3.6 16.1 14.3 3.5 8.9 10.7 11.3 14.3 17.9 11.7
resnet152 14.3 12.5 12.5 14.3 1.8 8.9 5.3 7.1 19.6 0 7.1 8.9 17.9 7.1 10.7 14.3 17.9 12.9 14.3 19.6 11.7
resnet152v2 12.5 10.7 14.3 12.5 12.5 8.9 14.3 14.3 14.3 1.8 3.6 14.3 14.3 14.3 5.3 14.3 10.7 14.5 16.1 21.4 11.7
resnet50 14.3 3.6 0 14.3 0 0 5.3 12.5 3.6 0 14.3 3.6 12.5 12.5 14.3 0 10.7 12.9 12.5 10.7 8.3
resnet50v2 14.3 7.1 7.1 12.5 10.7 3.5 8.9 12.5 3.6 1.8 1.8 8.9 16.1 0 0 7.1 14.3 12.9 12.5 12.5 1.6
vgg16 10.7 0 5.3 5.3 0 1.8 5.3 7.1 0 0 0 0 10.7 1.8 5.3 0 0 6.5 10.7 10.7 6.6
vgg19 3.6 0 3.5 5.3 1.7 12.5 0 0 0 0 10.7 0 0 5.3 3.5 5.3 0 12.9 10.7 12.5 8.3
xception 28.6 14.3 14.3 17.9 12.5 14.3 5.3 16.1 32.1 0 7.1 23.2 33.9 17.9 12.5 10.7 32.1 19.4 30.4 30.4 18.3
AVG Accuracy 16.8 9.8 11 14.1 8.7 10.2 8.1 14.4 16.3 14 7.7 13.5 19.9 10.9 10.1 13.3 14 14.5 23.2 23.9 11.8

accuracy of the 18 ImageNet models. Some deceptive tex-
tures work better than others and some ImageNet models
are more resilient to the deceptive textures than others, but
in general, accuracy drops are alarmingly high.

In our experiments, an interesting observation was that
backgrounds play an important role for deceiving ImageNet
models for our problem. Some backgrounds seemed more
helpful in deception than others. Taking this into account,
we calculated the accuracy of the 18 ImageNet CNNs for
each background. Table 2 shows the accuracy per back-
ground and model. We can see that there is significant dif-
ference between the average accuracies. For example, the
hardest background being ‘grass9’ with an average accu-
racy of 23.9% and the easiest background for deceiving be-
ing ‘grass’ with an average accuracy of 7.7%. This differ-
ence between the hardest background and the easiest (over
15% difference) indicates that the background is an impor-
tant element to consider when creating deceptive textures.

Provided that some adversarial textures give the impres-
sion of ‘printing’ images over the 3D object when using
robust classifiers, we wanted to test if simply adding im-
ages of the target as textures would be enough to make an
object adversarial. The process to generate the textures and
the results are shown in Fig. 4. First, we take the model
of the tank and add a banana image as a UV texture to the
model. Then, we select 4 backgrounds displaying differ-
ent environments such as desert and grassland. Then, we
sample some views in the rendering process and combine
the image with the 4 different backgrounds. Our results are
rather interesting given that they suggest that even if we are
using directly a texture or image of the target label, this is
not enough to fool the model. From all the views tested and
different backgrounds used, only Texture 2 was able to fool
ResNet50v2. However, this seems to be an outlier given
that for the rest of the samples, the models are not fooled.
Banana class does not show up even in the top-5 predic-
tions. Interestingly, the majority of top-1 predictions are

still ‘tank’ despite banana image being used as the texture.
These results establish the need of systematically comput-
ing adversarial textures as opposed to randomly selecting
the target label images as textures.

In our technique, an important hyper-parameter to regu-
larize the generated texture is λ. By increasing the magni-
tude of λ the smoothing effect in our adversarial textures is
stronger, resulting in slightly blurred textures. For the ex-
periments presented in this section we used λ=1e-6. How-
ever, we also test if textures that are generated with lesser
details with a higher λ value can still fool the models and
transfer well. Figure. 5 shows an example of a 3D sub-
marine model with textures optimized for the target labels
‘killer wale’ and ‘grey whale’. Both textures were generated
using a strong smoothing regularization with a magnitude λ
= 0.01. As the results in the figure demonstrate, the efficacy
of the computed textures is retained reasonably well despite
such a large regularization factor.

5.2. Background-based Optimization
Lopez-Paz et al. [28] first discovered the relationship be-

tween object and background context when using image
classifiers. They first proved that the background in an im-
age can have a significant influence on the classification re-
sults (i.e., background bias). In this section, we propose a
background-based optimization for our adversarial textures
to make them more efficient when the object is presented in
different backgrounds.

In the context of deceptive textures and camouflage, it is
common to optimize textures of the object based on its envi-
ronment (e.g., desert, forest, urban). Our results in Table 2
also indicate that background selection can help in making
deceptive textures more effective. Therefore, we also opti-
mized the same 6 deceptive textures, from previous experi-
ments, for specific relevant background environments. We
created two super categories for the background optimiza-
tion: Desert and Grassland. We used 10 images for each cat-

93

Banana ImageUntextured Model

+ =

Tank with Banana Texture

+

Test Backgrounds Banana Tank + Background

Texture 1 Texture 2 Texture 3 Texture 4

Results

Texture 1 Texture 2

Texture 3 Texture 4

Preparing Tank with Banana Textures

Figure 4: Results establishing the need of systematically computing adversarial textures as oppose to using images of the
target class as texture. We use a random ‘banana’ image and applied to 3D tank model and used a variety of backgrounds
(top row). The rendered images were passed to the models. It was expected that this would fool the models in predicting the
‘tank’ as ‘banana’. However, the ‘banana’ class appeared only once (shown in green) in top-5 predictions, authenticating the
need of sophisticated methods for adversarial texture computation.

Sampled view of Submarine optimized as a ‘Killer whale’ Sampled view of Submarine optimized as a ‘Grey Whale’

Figure 5: A 3D model of a submarine is optimized targeting the labels ‘killer whale’ and ‘grey whale’. In addition, two dif-
ferent backgrounds are used to ‘simulate’ underwater environment. In this example we use a strong smoothing regularization
parameter λ = 0.01 (as opposed to λ=1e-6 used in other experiments). Despite the adversarial textures ‘lacking’ finer details
in the texture because of smoothing, the textures are still generally effective and highly transferable.

egory. In Table 3, we show a comparison between adversar-
ial textures for a tank optimized for specific environments
of Desert and Grassland versus adversarial textures opti-
mized without background. The evaluation is performed on
all 21 background images from previous experiments. Our
results show that those adversarial textures optimized with
background improve fooling rates. Moreover, even if a tex-
ture is specifically trained for a given background, it is still
able to improve fooling performance for other backgrounds.

Generally, the average accuracy of models with both back-
ground optimizations is significantly better than the average
accuracy with no background.

To test the extent of invariance of our adversarial textures
to lighting, camera views, and backgrounds, we simulated
different environments for terrestrial, aerial and aquatic
man-made vehicles. In Fig. 6, we show an example of
an aircraft under different camera views, lighting condi-
tions and backgrounds. The test is performed using differ-

94

Adversarial Texture for an Aircraft 3D model optimized as a ”Kite”

Rural Background Urban Background

Figure 6: Example of an adversarial texture for an aircraft 3D model optimized for the ImageNet label “kite”. One of
the challenges of adversarial textures in the physical world is the degradation of the adversarial signals due to changes in
the environment conditions. Our deceptive textures are generally robust to such condition variations. The shown rendered
images of aircraft have ‘rural’ and ‘urban’ backgrounds in different conditions. However, the the target class of ‘kite’ appears
very frequently in the top-5 labels despite large variations in the conditions.

Table 3: Average accuracy (%) of all 6 Adversarial Textures
(A.T) for tank when trained with background (A.T + Back-
ground) and without background (A.T). Textures rendered
with background are in general more deceptive than those
not accounting for the background optimization.

A.T + Background No Background
Training Background Desert Grassland AVG AVGTesting Background Desert Grassland Desert Grassland
DenseNet121 0 1.33 0 0 0.33 11.78
DenseNet169 0.28 4.34 0 0.10 1.18 15.18
DenseNet201 0 0.94 0.22 0 0.29 15.78
inceptionresnetv2 4.87 7.55 1.87 6.04 5.08 25.45
inceptionv3 3.13 5.91 2.35 4.25 3.91 19.17
mobilenet 3.22 2.11 6.72 14.16 6.55 15.61
mobilenetv2 0.36 1.52 0.03 1.04 0.74 11.51
nasnet 4.31 4.97 4.82 3.73 4.46 21.94
nasnetmobile 0.22 0.50 0 0.40 0.28 8.66
resnet101 0.02 0.29 0.02 0.21 0.14 12.38
resnet101v2 0 1.54 1.83 0.63 1.00 10.18
resnet152 0.85 1.37 0.85 1.02 1.02 11.36
resnet152v2 0 0.95 1.76 0.83 0.88 12.21
resnet50 1.13 0.39 0.82 0.62 0.74 7.89
resnet50v2 0.25 1.79 0.77 0.62 0.86 8.08
vgg16 0 0 0 0 0 4.18
vgg19 0 0.28 0 0 0.07 4.56
xception 5.78 9.29 3.32 8.71 6.77 18.62
AVG 1.36 2.50 1.41 2.35 1.91 13.03

ent models, backgrounds and camera views to those used
during training. However, the adversarial texture remains
highly transferable across different models. In our exper-
iments, we found this effectiveness of our textures to be

generally true. This is because our technique explicitly ac-
counts for variations in scene parameters, which makes our
textures robust to changes in scene conditions.

6. Conclusion
We explored adversarial texture generation with graph-

ics pipeline in an end-to-end optimization paradigm, using
differentiable rendering. We demonstrated highly effective
adversarial textures for 3D models and established that our
proposed optimization technique significantly outperform
usage of target class images as the texture maps. We per-
formed thorough experiments to demonstrate that our ad-
versarial textures are able to fool 18 ImageNet models, even
under considerable scene parameter variations.

7. Acknowledgements
The main author was recipient of an Australian Govern-

ment Research Training Program (RTP) Scholarship at The
University of Western Australia. This research was partially
supported by ARC Discovery grant DP190102443. This
material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Agree-
ment No. HR00112090095. Dr. Naveed Akhtar is recipi-
ent of an Office of National Intelligence National Intelli-
gence Postdoctoral Grant (project number NIPG-2021-001)
funded by the Australian Government.

95

References
[1] Mahdieh Abbasi and Christian Gagné. Robustness to adver-

sarial examples through an ensemble of specialists. arXiv
preprint arXiv:1702.06856, 2017.

[2] Naveed Akhtar, Mohammad Jalwana, Mohammed Ben-
namoun, and Ajmal S Mian. Attack to fool and explain deep
networks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021.

[3] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against
universal adversarial perturbations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3389–3398, 2018.

[4] Naveed Akhtar and Ajmal Mian. Threat of adversarial at-
tacks on deep learning in computer vision: A survey. arXiv
preprint arXiv:1801.00553, 2018.

[5] Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak
Shah. Advances in adversarial attacks and defenses in com-
puter vision: A survey. arXiv preprint arXiv:2108.00401,
2021.

[6] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. In Inter-
national conference on machine learning, pages 284–293.
PMLR, 2018.

[7] Aharon Azulay and Yair Weiss. Why do deep convolutional
networks generalize so poorly to small image transforma-
tions? Journal of Machine Learning Research, 20(184):1–
25, 2019.

[8] Tom B Brown et al. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017.

[9] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lip-
ton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and An-
ima Anandkumar. Stochastic activation pruning for robust
adversarial defense. arXiv preprint arXiv:1803.01442, 2018.

[10] Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey,
A Kai Qin, and Yun Yang. Adversarial camouflage: Hiding
physical-world attacks with natural styles. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1000–1008, 2020.

[11] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Brandon Tran, and Aleksander Madry. Adversar-
ial robustness as a prior for learned representations. arXiv
preprint arXiv:1906.00945, 2019.

[12] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
A neural algorithm of artistic style. Journal of vision,
16(12):326, 2016.

[13] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained CNNs are biased towards texture; increas-
ing shape bias improves accuracy and robustness. In Inter-
national Conference on Learning Representations, 2019.

[14] Ian J Goodfellow et al. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[16] Chengming Hu, Haolun Wu, and Kai Wang. Adversarial
examples are not bugs, they are features, 2020. Submitted to
NeurIPS 2019 Reproducibility Challenge.

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[18] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and ¡0.5mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[19] Mohammad AAK Jalwana, Naveed Akhtar, Mohammed
Bennamoun, and Ajmal Mian. Attack to explain deep rep-
resentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9543–
9552, 2020.

[20] Mohammad A. A. K. Jalwana, Naveed Akhtar, Mohammed
Bennamoun, and Ajmal Mian. Attack to explain deep rep-
resentation. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9540–9549,
2020.

[21] Krishna Murthy Jatavallabhula, Edward Smith, Jean-
Francois Lafleche, Clément Fuji Tsang, Artem Rozantsev,
Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja
Fidler. Kaolin: A pytorch library for accelerating 3d deep
learning research. ArXiv, abs/1911.05063, 2019.

[22] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro
Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon.
Differentiable rendering: A survey. arXiv preprint
arXiv:1801.00553, 2020.

[23] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. arXiv preprint arXiv:1711.07566,
2017.

[24] Ananya Kumar, S. M. Ali Eslami, Danilo J. Rezende, Marta
Garnelo, Fabio Viola, Edward Lockhart, and Murray Shana-
han. Consistent generative query network. arXiv preprint
arXiv:1807.02033, 2019.

[25] Tzu-Mao Li. Differentiable visual computing. arXiv preprint
arXiv:1904.12228, 2019.

[26] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. The IEEE International Conference on Computer Vision
(ICCV), Oct 2019.

[27] Matthew M. Loper and Michael J. Black. OpenDR: An
approximate differentiable renderer. In Computer Vision –
ECCV 2014, volume 8695 of Lecture Notes in Computer
Science, pages 154–169. Springer International Publishing,
Sept. 2014.

[28] David Lopez-Paz, Robert Nishihara, Soumith Chintala,
Bernhard Schölkopf, and Léon Bottou. Discovering causal
signals in images. arXiv preprint arXiv:1605.08179, 2017.

[29] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A
unified gradient regularization family for adversarial exam-
ples. In 2015 IEEE International Conference on Data Min-
ing, pages 301–309. IEEE, 2015.

[30] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. arXiv preprint arXiv:1807.11164, 2017.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

96

[32] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland
Goecke, Jianbing Shen, and Ling Shao. Adversarial defense
by restricting the hidden space of deep neural networks. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3385–3394, 2019.

[33] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Transactions on Graphics (TOG), 38(6):1–
17, 2019.

[34] Camilo Pestana, Naveed Akhtar, Wei Liu, David Glance,
and Ajmal Mian. Adversarial attacks and defense on deep
learning classification models using ycbcr color images. In
2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–9, 2021.

[35] Camilo Pestana, Wei Liu, David Glance, and Ajmal Mian.
Defense-friendly images in adversarial attacks: Dataset and
metrics for perturbation difficulty. In 2021 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
556–565, 2021.

[36] Camilo Pestana, Wei Liu, David Glance, Robyn Owens, and
Ajmal Mian. Assistive signals for deep neural network clas-
sifiers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 1221–1225, June 2021.

[37] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020.

[38] Hadi Salman, Andrew Ilyas, Logan Engstrom, Sai Vemprala,
Aleksander Madry, and Ashish Kapoor. Unadversarial ex-
amples: Designing objects for robust vision. arXiv preprint
arXiv:2012.12235, 2020.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. arXiv preprint
arXiv:1801.04381, 2019.

[40] Shibani Santurkar, Dimitris Tsipras, Brandon Tran, An-
drew Ilyas, Logan Engstrom, and Aleksander Madry. Com-
puter vision with a single (robust) classifier. CoRR,
abs/1906.09453, 2019.

[41] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John
Dickerson, Christoph Studer, Larry S Davis, Gavin Taylor,

and Tom Goldstein. Adversarial training for free! arXiv
preprint arXiv:1904.12843, 2019.

[42] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Un-
derstanding adversarial training: Increasing local stability of
supervised models through robust optimization. Neurocom-
puting, 307:195–204, 2018.

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015.

[44] Christian Szegedy et al. Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199, 2013.

[45] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016.

[46] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan
Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman,
Dan B Goldman, and Michael Zollhöfer. State of the art on
neural rendering. arXiv preprint arXiv:2004.03805, 2020.

[47] Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial ex-
ample defenses. arXiv preprint arXiv:2002.08347, 2020.

[48] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferabil-
ity of adversarial examples with input diversity. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2730–2739, 2019.

[49] Yunrui Yu, Xitong Gao, and Cheng-Zhong Xu. Lafeat:
Piercing through adversarial defenses with latent features.
arXiv preprint arXiv:2104.09284, 2021.

[50] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu,
Lingxi Xie, Yu-Wing Tai, Chi-Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4302–4311, 2019.

[51] Yang Zhang, Hassan Foroosh, Philip David, and Boqing
Gong. CAMOU: Learning physical vehicle camouflages to
adversarially attack detectors in the wild. In International
Conference on Learning Representations, 2019.

97

