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Abstract

Learning to localize sounding objects in visual scenes
without manual annotations has drawn increasing attention
recently. In this paper, we propose an unsupervised sound-
ing object localization algorithm by using bottom-up and
top-down attention in visual scenes. The bottom-up atten-
tion module generates an objectness confidence map, while
the top-down attention draws the similarity between sound
and visual regions. Moreover, we propose a bottom-up at-
tention loss function, which models the correlation relation-
ship between bottom-up and top-down attention. Extensive
experimental results demonstrate that our proposed unsu-
pervised method significantly advances the state-of-the-art
unsupervised methods. The source code is available at
https://github.com/VISION-SJTU/USOL.

1. Introduction
As human beings, we can easily locate the sounding ob-

jects in visual scenes even without the help of the inher-
ent localization ability of our auditory system. This is be-
cause we perceive temporally synchronized visual scenes
and their corresponding sounds throughout our entire life
and learn the correspondence unconsciously. In contrast, in
the context of machine learning, given a pair of image and
sound examples, the sound localization task that aims at lo-
calizing the sounding objects in the visual scene remains
challenging.

In recent years, works about sound localization are
mainly based on audiovisual synchronization. They jointly
train visual and sound networks to extract deep visual and
audio features respectively. Then an integration module
fuses the features from the two modalities and is trained
on the fused representation to learn the temporal correspon-
dence, thus performing sound source localization [3, 24, 18,
29, 33, 20, 36, 26].

While most recent sound localization methods are lim-
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Figure 1. A brief illustration of bottom-up and top-down atten-
tion. Bottom-up attention is focused more on the basket and the
group of people as they stand out from the background. When the
subject hears a voice singing, guided by bottom-up attention, his
top-down attention can be quickly focused on the group of people.

ited to musical instruments [3, 36, 19], we focus on the
problem of unconstrained visual scenes in this work. In
[29], Senocak et al. proposed an audiovisual attention
mechanism to capture salient regions in unconstrained real-
life visual scenes in an unsupervised setting. However, the
localization accuracy based on this unsupervised method is
not satisfying. To improve the performance, the authors
annotated 5k visual-audio samples with bounding boxes to
train the model in a supervised way. Several other meth-
ods also provide additional supervision. Qian et al. [26]
leveraged the category labels of images and sounds and
established sound-object label alignment. They adopted
Class Activation Map (CAM) to measure class-specific cor-
respondence on each spatial grid.

In summary, unsupervised methods for sound localiza-
tion in unconstrained real-life visual scenes remain chal-
lenging. This limitation derives from the fact that current
unsupervised methods learn the audiovisual attention purely
from the temporal correspondence. However, when we look
for the sound source in a visual scene, the sound infor-
mation is not the only clue. The visual scene itself also
provides meaningful information about where the potential
sounding objects can be.

In this paper, inspired by findings about the attention
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(a) Uniformly scattered state (b) Bottom-up attention

Figure 2. Conventional sound localization methods attend to the
equally-sized regions from a scattered state as shown in (a). Our
bottom-up attention module allows audiovisual attention map to
be generated based on an inherent visual objectness attention map
which is shown in (b).

mechanism in cognitive science [21], we introduce an un-
supervised method based on the bottom-up and top-down
attention mechanism to perform the sound localization task.
Figure 1 gives a simple example of the two forms of atten-
tion. The subject pays attention to the basket and the group
of people at first. Then when the subject hears a singing
sound, he is likely to focus more on the group of people,
i.e., the sound source. More details about top-down atten-
tion and bottom-up attention will be discussed in Section 2.

Typically in a sound localization network, visual CNN
outputs visual feature maps and sound CNN extracts sound
features. The conventional audiovisual attention mecha-
nism encourages the visual features at sound source pix-
els to take higher similarity with the sound features. How-
ever, because CNN features correspond to a uniform grid
of equally-sized image regions [2], the module attends to
each spatial pixel equally to learn the audiovisual corre-
spondence. This attention mechanism gives little consid-
eration to how likely the image regions would be attended
to without the sound information. As shown in Figure 2, the
conventional attention mechanism in the sound localization
task starts from a uniformly scattered state, which is out of
line with the way we perceive the world. Even without any
sound, we perceive the silent visual scene with our atten-
tion focused on some particular parts as they stand out from
the background because of their color, size, or other proper-
ties. Hearing the sound, to find the correlation between the
sound and the visual scene, our original visual attention is
modified to be focused more on sound source areas.

We define the inherent visual attention as bottom-up
attention and the audiovisual attention as top-down at-
tention. Our proposed model generates these two atten-
tion maps. The bottom-up attention map represents the
category-independent objectness score at each spatial grid
based on their inherent properties relative to the back-
ground. The top-down attention map draws the similarities

of deep visual and audio features. Top-down attention map
is generated under the guidance of bottom-up attention map.

Specifically, we implement the bottom-up attention mod-
ule with selective search proposed in [34]. Selective search
generates a list of category-independent object regions
based on a variety of grouping criteria. Pre-trained object
detection models are also tested.

Moreover, to better correlate the two attention maps, we
present a bottom-up attention loss function which is modi-
fied from the conventional cross entropy loss function. With
the cross entropy loss, the two attention maps are trained to
be as similar as possible. However, top-down audiovisual
attention map is supposed to be guided by bottom-up atten-
tion map, but not copy it. Our designed bottom-up attention
loss function focuses more on ignoring the inconspicuous
area instead of seeing all salient areas. As illustrated in Fig-
ure 1, we aim at reducing the area I and maximizing the area
III, while we ignore the area II. Experimental results show
that it helps improve the localization and sound discrimina-
tion ability.

Our method does not require human annotations or cat-
egory supervision. And our model only needs a 10k size of
training set to achieve a new state-of-the-art unsupervised
performance. Our supervised implementation using a pre-
trained Faster RCNN [28] also achieves the state-of-the-art
supervised performance.

In summary, the contributions of our work are three-fold:
(1) We propose an unsupervised method for sounding object
localization based on the bottom-up and top-down attention
mechanism which correlates the visual objectness and au-
diovisual correspondence; (2) We present a new bottom-up
attention loss to describe the guiding relationship of bottom-
up and top-down attention; (3) We achieve state-of-the-
art results on the public unconstrained sound localization
dataset.

2. Related Work
Sound Localization in Visual Scenes. Several approaches
have been proposed for sound source localization. Recent
methods in visual context mainly focus on joint modeling
of audio and visual modalities [3, 24, 18, 29, 33, 20, 36, 26,
19]. [3] performed unsupervised sound localization through
learning the audiovisual correspondence in the context of
musical instruments. The work of [24] trained a neural net-
work to predict the audiovisual alignment. Tian et al. [33]
leveraged audio-guided visual attention and temporal align-
ment to capture semantic regions of sound sources. In [29],
the authors proposed an attention mechanism to capture pri-
mary areas in an unsupervised way. They also manually
annotated a sound source localization dataset of 5k sam-
ples from the Flickr-SoundNet dataset [5] for quantitative
evaluation of sound localization task and supervised train-
ing. Zhao et al. [36] and Tian et al. [32] employed mix-

1738



then-separate frameworks to associate the audio and visual
feature maps in the context of musical instruments. The
work of [26] adopted CAM to measure class-specific corre-
spondence on each spatial grid. In [19], the authors divided
the instrument related datasets [13] [36] into single-source
subset and multi-sources subset and then aggregate object
localization in single-source videos to build discriminative
object representation. [8] proposed automatic negative min-
ing.

We propose an unsupervised method that needs no hu-
man annotations and no category labels to perform the
sound localization task in unconstrained visual scenes.

Bottom-Up and Top-Down Attention. Our work is moti-
vated by the findings of bottom-up attention and top-down
attention in cognitive science and vision science. As our
brain has a limitation in its capacity to process massive sen-
sory impressions coming together, attention helps select rel-
evant impressions and ignore irrelevant ones. Currently,
there are two commonly distinguished types of attention:
bottom-up attention and top-down attention. Bottom-up at-
tention, also called stimuli-driven attention, is purely based
on stimuli that are salient because of their inherent prop-
erties relative to the background. On the other hand, top-
down attention refers to the internal guidance of attention
based on prior knowledge, willful plans, and current goals.
The two forms of attention are incorporated into a global
saliency map [21].

Region Proposal and Object Detection. Region proposal
algorithms aim at generating possible object locations for
segmentation and detection tasks.

Generating category-independent region proposals
methods include objectness [1], selective search [34],
category-independent object proposals [10], constrained
parametric min-cuts (CPMC) [7], multi-scale combinato-
rial grouping [4], and Ciresan et al. [9]. Selective search
[34] combines the strength of both exhaustive search and
segmentation. It uses a diverse set of complementary
and hierarchical grouping strategies to yield object-class
independent region proposals.

Object detection is the task of detecting instances of ob-
jects of a certain class within an image. Recently, deep
learning techniques [16, 22] have emerged as powerful
methods for learning feature representations automatically
from data, and provided major improvements in object de-
tection [15, 31, 14, 28, 27]. Faster RCNN [28] is based on
work of RCNN [15] and Fast RCNN [14]. It uses a Re-
gion Proposal Network to generate a set of proposals and
remains one of the best object detection frameworks.

In this paper we use selective search [34] to implement
bottom-up attention as it is able to generate good region pro-
posals based on the inherent properties of images without
any supervision. We also conduct experiments on object
detection methods with Faster RCNN [28] for comparison.

Figure 3. An illustration of the bottom-up attention map gen-
eration process. Selective search generates region proposals and
arranges them in the decreasing order of objectness. Top 50 region
proposals shown in the first row are weighted summed to produce
the bottom-up attention maps in the second row. The attention
maps are normalized for visualization.

3. Proposed Method
In this section, we present our model architecture and

proposed attention loss function. The framework is illus-
trated in Figure 4. In Section 3.1, we describe our approach
to implement a bottom-up attention module. In Section 3.2,
we present the architecture of the top-down attention model
and in Section 3.3, we describe the bottom-up attention loss
function to train our network.

3.1. Bottom-up Attention: Objectness at First
Glance

Given an RGB image V of size H×W×3, the bottom-up
attention module generates a H ×W confidence score map
Abottom to present the objectness of each pixel before being
fed into the deep neural network. This attention map does
not involve sound information or object category knowledge
and is used as a guidance of top-down attention.

Unsupervised Setting. Specifically, we implement this
module using selective search [34]. Selective search [34]
firstly over segments the image according to the method de-
scribed in [12]. Then the algorithm recursively combines
the smaller similar regions into larger ones using a diverse
set of grouping strategies and thus yields a list of object-
class independent region proposals. These proposals are ar-
ranged in decreasing order of objectness. We choose the
first K regions and then the confidence score map Abottom

is calculated as:

Abottomi,j
=

K∑
k=1

weightk ∗ Ir(i,j),k , (1)

where indicator function Ir(i,j),k is defined as:

Ir(i,j),k =

{
1 if (i, j) in region k,
0 otherwise,

(2)
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Figure 4. An overview of our proposed unsupervised learning model based on bottom-up attention and top-down attention. Bottom-
up attention map is generated by the bottom-up attention module from the original image. Visual and audio features are extracted by visual
network and sound networks respectively. Then top-down attention is captured by visual-audio correspondence under the guidance of
bottom-up attention.

and the weightk is the objectness weight of region k. The
process is illustrated in Figure 3, with K set to 50.

The selective search algorithm considers four types of
similarity when combining the initial small starting segmen-
tation regions into larger ones. These similarities are color
similarity, texture similarity, size similarity, and fill similar-
ity. Color similarity is measured using the normalized color
histogram intersection. Texture similarity is measured us-
ing texture histogram derived from fast SIFT. Size similarity
encourages small regions to merge early. And fill similarity
measures how well two regions fit with each other.

On the one hand, these inherent properties accord with
the bottom-up attention in our cognitive system which is
purely driven by stimuli. On the other hand, it needs no
human annotations for training. Besides, it does not need a
pre-train network either. Therefore, we refer to this bottom-
up attention implementation with selective search [34] as an
unsupervised setting.
Supervised Setting. In contrast to category-independent
region proposals, object detection networks locate object
instances and determine their classes too. Deep learning
techniques have made remarkable breakthroughs in the field
of object detection. With many pre-trained models for ob-
ject detection available, we also implement our bottom-up
attention using pre-trained models for object detection.

Specifically we choose Faster RCNN proposed in [28]
pre-trained on PASCAL VOC dataset [11]. Given an im-
age V , it generates a list of region proposals. Similarly, we
arrange all detected bounding boxes in decreasing order of
confidence score and keep those whose confidence scores
are larger than a tunable hyperparameter threshold τ . The
confidence score map is calculated similarly as defined in
Equation 1. The only differences are that here the weightk
is the confidence score generated by Faster RCNN and that

region number K is determined by the confidence threshold
τ .

As this bottom-up attention implementation with Faster
RCNN requires a pre-trained model, we refer to this imple-
mentation as a supervised setting. It should be noted that
our supervised method still needs no human annotations,
which is different from other existing supervised methods
in the sound localization task.

3.2. Top-down Attention: Attention Guided by An-
other Attention

Our visual-audio top-down attention module is similar to
work in [29]. Given an audiovisual pair: image V of size
H×W×3 and raw audio S of size L from an unconstrained
video sample, the top-down attention network outputs an
attention map Atop of size ⌊H

16⌋ × ⌊W
16 ⌋, a visual feature fv

of size 1000 and an audio feature fa of size 1000.
A VGG16 network proposed in [30] is implemented to

extract deep visual features of the input image. With V
input into the network, the output feature map of layer
conv5 3 of size ⌊H

16⌋×⌊W
16 ⌋×512 is output as Fm used for

further attention calculation.
The SoundNet audio network proposed in [5] is imple-

mented to extract audio features from a 1-D audio signal.
We only keep the 1000-D object distribution in conv8. Raw
waveform S is input into 1-D CNN and the features are tem-
porally average pooled to get a 1000-D feature fa. To adapt
to the visual features, like [29], fa is transformed by two
fully connected layers to a 512-D feature vector h.

Then Atop is calculated as:

Atopi,j = F̄mi,j · h̄, (3)

where x̄ denotes the l2-normalized vector of x. Then as
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suggested in [29], attention map Atop is softmax normal-
ized.

To give a connection to Atop with sound source location,
similar to [35, 6, 5], with this top-down attention, visual
feature z is obtained by:

z =
∑
i,j

Atopi,j
· Fmi,j

(4)

Next, the visual feature z is transformed through two
fully connected layers to get 1000-D fv .

At last, the network outputs Atop, fa, fv . Atop is referred
to as top-down attention map. It represents the similarity
between sound embeddings and visual regions.

3.3. Loss Function
Visual Audio Correspondence Top-down attention is also
known as goal-driven attention. We define the goal here in
the sound localization task is to learn the correlation of au-
dio and visual features. Similar to [29], we impose that cor-
responding visual and audio features are close to each other
while non-corresponding pairs are far from each other. We
use the triplet loss [17] for learning. With visual feature fv
regarded as the query, the corresponding audio feature fa is
the positive sample f+

a . At each iteration, we randomly se-
lect the sound from another sample f−

a in the training set as
a negative sample for each query. The positive and negative
distances are calculated:

[d+, d−] = [
∥∥fv − f+

a

∥∥
2
,
∥∥fv − f−

a

∥∥
2
], (5)

then these two distances are softmax normalized to
[D+, D−]. The audiovisual correspondence loss function
is defined as:

Lav(D+, D−) = ∥D+∥2 + ∥1−D−∥2 (6)

Bottom-up Attention and Top-down Attention Bottom-
up attention represents the objectness from a set of basic
features like color, size, texture, and shape. Top-down atten-
tion is related to prior knowledge and current goals, which
in our case are the sounding objects. Their relationship is
that bottom-up attention and top-down attention affect each
other and are incorporated into the final output visual prior-
ity map.

In cognitive science, there is no clear found theory about
how this process works. In our implementation, we build
the model with the top-down attention map output as the
final visual priority map. As we use the derived top-down
attention map as the incorporated attention map, we refer to
the bottom-up attention map as a guiding restriction to top-
down attention. That is to say, the network is supposed to
pay more attention to salient objects proposed in bottom-up
attention. It accords with our intuition, as when we look

for the sounding objects, we tend to look in the objects we
find in the scene at first. Therefore, the bottom-up attention
map is used as a ground truth-like supervision and a cross
entropy loss function can be used to learn the attention cor-
respondence.

In binary classification, the cross entropy loss can be cal-
culated as:

LCE = −
N∑
j=1

(tj log(pj) + (1− tj)log(1− pj)), (7)

where tj denotes the truth value 0 or 1 and pj represents the
predicted probability of jth sample.

In the context of our top-down attention and bottom-up
attention, with Abottom firstly resized to ⌊H

16⌋ × ⌊W
16 ⌋, the

attention loss function can be defined as:

Latt(Atop, Abottom) = −
∑
i,j

(Abottomi,j
log(Atopi,j

)

+ (1−Abottomi,j
)log(1−Atopi,j

)), (8)

where A(i,j) represents the attention value at pixel (i, j) of
corresponding attention map. It is a value between 0 and 1.
Here Abottomi,j

is regarded as a soft label. With an indicator
function, it can be defined with a hard label as:

Latt(Atop, Abottom) = −
∑
i,j

(Ili,j log(Atopi,j )

+ (1− Ili,j )log(1−Atopi,j
)), (9)

where Ili,j is a loss indicator function:

Ili,j =

{
1 if Abottomi,j

is larger than threshold t,
0 otherwise

(10)

However, this is not the way we want to correlate the two
forms of attention. This conventional cross entropy function
actually encourages top-down attention to attend to all the
potential salient regions. We do not want top-down atten-
tion to copy bottom-up attention. The bottom-up attention
map is supposed to be a guidance during the generation of
top-down attention. To this end, we modify the conven-
tional loss function, and the bottom-up attention loss func-
tion is defined as:

Latt(Atop, Abottom) = −
∑
i,j

(1− Ili,j )log(1−Atopi,j
),

(11)

where we only keep the negative part of cross entropy func-
tion.

Combining the two loss functions mentioned above, the
overall unsupervised loss function is defined as:

L(fv, f+
a , f−

a , Atop, Abottom) = Lav(fv, f
+
a , f−

a )

+ αLatt(Atop, Abottom),
(12)

where α is a tunable weighting hyperparameter.
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Methods cIoU@0.5 AUC

Attention (10k) [29] 43.6 44.9
Negative Mining (10k) [8] 58.2 52.5

Unsupervised Attention (144k) [29] 66.0 55.8
Negative Mining (144k) [8] 69.9 57.3

Our Bottom-Up Attention (10k) 73.4 57.6
Random Bottom-Up Attention (10k) 25.4 35.2

CAM (10k) [26] 52.2 49.6
Supervised Sup. Attention (2.5k) [29] 82.0 60.7

Our Bottom-Up Attention (2.5k) with Faster RCNN 80.8 60.9

Table 1. Evaluation results of recent sound localization methods on the Flickr-SoundNet dataset.

4. Experiments
4.1. Dataset

The Flickr-SoundNet dataset presented by [5] contains
sound and image pairs extracted from more than two mil-
lion unconstrained videos for cross-modal recognition. [29]
sampled a 5k size subset from the Flickr-SoundNet dataset
and annotated the sound sources with bounding boxes for
supervised learning and qualitative evaluation. This is now
the only annotated open dataset for general sounding object
localization. For training, We randomly choose 10k sam-
ples from the Flickr-SoundNet dataset. For evaluation, ran-
dom 250 image-audio pairs are chosen from the 5k anno-
tated set.

MUSIC dataset consists of 685 video samples, contain-
ing 11 categories of musical instrument. Since this dataset is
smaller, we use it for more comprehensive evaluation. We
annotated a random subset of 250 samples in the MUSIC
dataset in a segmentation way.

4.2. Implementation Details

We implement our framework in PyTorch [25]. Audio
signals are sampled at 22050Hz and we take the first 20 sec-
onds (repeat if not long enough). We resize RGB images to
320 x 320. Therefore, the output attention map is 20 x 20.
The model is trained by Adam optimizer with betas 0.9 and
0.999. For the unsupervised setting of the bottom-up atten-
tion module, we use OpenCV Selective Search [23] to im-
plement it. For simplicity, we set weightk = 1/K. For the
supervised setting, weightk is set to the confidence score
generated by Faster RCNN, and the attention map values
are clipped to the range 0 and 1. We pre-train Faster RCNN
with Pascal VOC dataset [11], which contains 20 classes
including some common sounding objects like person and
animals as well as usually silent objects like chair, table, and
plant. If no otherwise specified, region number K is set to
50, loss function threshold t is set to 0.02, object detection
confidence threshold τ is set to 0.5 and loss weight α is set
to 0.1.

4.3. Results
Quantitative Results. Consensus Intersection over Union
(cIoU) [29] is employed as the evaluation metric and 0.5
is set for the cIoU threshold. We compare our methods
with recent supervised and unsupervised sound localization
methods evaluated on the Flickr-SoundNet dataset. Table
1 shows the evaluation results of different methods. [29]
and [8] trained their models with a 10k training set and a
144k training set in an unsupervised way. The supervised
attention method in [29] used 2.5k annotated samples. The
CAM method [26] leveraged the category labels of images
and sounds and established sound-object label alignment.
CAM is adopted to measure class-specific correspondence
on each spatial grid. Similar to ours, the CAM method [26]
does not need human annotations and is trained in an unsu-
pervised way. Given that additional supervision from pre-
trained models is provided, we compare it within the super-
vised field.

In our unsupervised setting, the bottom-up attention
module is based on selective search, and in our supervised
setting, it is based on a pre-trained Faster RCNN model.
The results show that our unsupervised method advances
other unsupervised methods by a large margin with only
10k train data needed. It can also be observed that our su-
pervised method can have competitive performance com-
pared with state-of-the-art supervised methods. We repeat
that our supervised method does not need extra human an-
notations.

For comparison, we also conduct experiments with a ran-
dom generated bottom-up attention map. The results show
that this random attention map decreases performance. It
confirms that our bottom-up attention provides meaningful
guidance for top-down attention.

We further evaluate our method pretrained on the
SoundNet-Flickr dataset on MUSIC dataset. Compared
with unsupervised baseline with audiovisual attention [28],
our bottom-up attention method improved the accuracy by
+17%, +9%, and+3% with IoU thresholds at 0.2, 0.3 and
0.5 respectively.
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Figure 5. Qualitative sound localization results on the Flickr-SoundNet dataset using unsupervised and supervised attention models [29]
and our models (the last two rows of pictures).

Qualitative Results. Figure 5 visualizes the localization
results of the image-sound pairs from the Flickr-SoundNet
dataset [5] using our unsupervised and supervised bottom-
up attention methods and the unsupervised and supervised
attention models present in [29]. It shows that our unsu-
pervised method achieves comparable performance to the
supervised methods.

Water
Sound
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Child
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Water
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Figure 6. Qualitative sound discrimination evaluation in dif-
ferent learning settings. All settings are trained with the bottom-
up attention mechanism. Results of different loss functions are
shown.

To present our model’s sound discrimination ability, we
also visualize the responses of the network to different
sounds while keeping the frame the same. The results are
shown in Figure 6. It shows that our network can distin-
guish different sounds instead of simply locating the salient
objects in the scene. For example, given an image of a
woman walking along the beach, hearing the sound of a
woman talking, the region of the woman should be paid
more attention. In contrast, hearing the sound of the sea, the
sea surface should be attended to. For better comparison of
different loss functions in Section 3.3, we also present the
results under the same setting while training with the soft
label cross entropy loss function defined in Equation 9 and
hard label cross entropy loss function defined in Equation
8. It confirms that our modified loss function effectively
improves the discrimination ability. The qualitative com-
parison will be discussed later.

The evaluation results suggest that our top audiovisual
attention is generated with the guidance of bottom-up at-
tention but is not restricted to the latter. The audiovisual
attention regions are not determined by object region pro-
posals.

4.4. Ablation Experiments
Unsupervised Setting. The impact of the number of kept
region proposals K and loss function threshold t is summa-
rized in Table 2. We implement it with weightk = 1/K
for simplicity. The results suggest that a proper number of
region proposals is necessary. Too few regions cannot de-
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K t cIoU@0.5 AUC

50 0.02 72.4 56.8
50 0.04 68.4 55.5
50 0.06 65.8 54.8

100 0.01 71.2 57.2
100 0.02 73.4 57.6
100 0.04 47.2 26.4
200 0.005 47.6 24.3
200 0.01 46.8 27.0
200 0.02 45.2 25.7

Table 2. Ablation experiments in the unsupervised setting. The
impact of the number of kept region proposals K and loss function
threshold t is reported.

τ t cIoU@0.5 AUC

0.3 0.3 79.2 60.5
0.3 0.5 76.8 59.6
0.3 0.7 78.0 59.1
0.5 0.5 80.8 60.9
0.5 0.7 80.0 60.3
0.7 0.7 79.2 60.1

Table 3. Ablation experiments in the supervised setting. The
impact of the Faster RCNN detection confidence threshold τ and
loss function threshold t is reported.

scribe the objectness of the whole image well, while too
many will import too much noise. We visualize the bottom-
up attention maps with K set to 50, 100, and 200 respec-
tively in Figure 7. It shows that with K increasing, bottom-
up attention tends to cover more salient areas. However,
when too much noise is imported, the guidance effect of
bottom-up attention decreases.

Supervised Setting. For each sample, our pre-trained
Faster RCNN [28] generates 6000 bounding boxes, its cor-
responding predicted category, and a confidence score. As
described in Section 3.1, we keep the bounding boxes
whose confidence scores are larger than a threshold τ , while
we ignore the predicted class here. Table 3 shows the results
of the ablation experiments on this confidence threshold τ
and loss function threshold t. The results suggest that al-
though τ is insensitive in general due to usually high confi-
dence scores, a proper threshold provides a better descrip-
tion of the objectness.

Loss Functions. To analyze the performance of our present
bottom-up attention loss function, we conduct experiments
based on different loss functions. The results are shown in
Table 4. Our attention loss function is defined in Equation
11, and cross entropy loss functions with soft label and hard
label are defined in Equation 8 and Equation 9 respectively.

Loss α cIoU@0.5 AUC

CE with Soft Label 0.1 69.2 55.3
0.05 66 55.4

CE with Hard Label 0.1 66.4 55.2
0.05 66 55.5

Ours 0.1 71.2 56.7
0.05 69.2 56

Table 4. Results of different loss functions.

K=50 K=100 K=200

Figure 7. Bottom-up attention maps with K set to 50, 100, and
200 respectively.

The results demonstrate that our modified loss function im-
proves the localization ability.

5. Conclusions

In this paper, we focus on the task of locating sounding
objects in unconstrained visual scenes. We present an un-
supervised method based on bottom-up attention and top-
down attention. Top-down attention captures the audiovi-
sual correspondence under the guidance of bottom-up at-
tention. We also present a novel bottom-up attention loss
to learn the correlation between the two forms of attention.
Our proposed unsupervised method advances other unsu-
pervised methods by a large margin on the public sound
localization dataset. Our method implemented in the super-
vised setting also achieves competitive performance to the
latest supervised methods.
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