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Abstract

Unlike in most previous partial video copy detection
(PVCD) algorithms, where reference videos are scanned
one by one, we treat the PVCD as a video search/retrieval
problem. We propose a fast partial video copy detection
framework in this paper. In this framework, all frame CNN
features of the reference videos are organized in a KNN
searchable database. Instead of scanning all reference
videos, the query video segment does a fast KNN search in
the global feature database. The returned results are used to
generate a shortlist of candidate videos. A modified tempo-
ral network is then used to localize the copy segment in the
candidate videos. Furthermore, We propose to use a trans-
former encoder to improve the CNN feature. We evaluate
our algorithm on the VCDB dataset. Our benchmark F1
scores exceed state-of-the-art by a big margin. The speed of
our algorithm is also improved significantly.

1. Introduction
With the popularity of high-speed internet and 5G mo-

bile communication, low-cost video capture devices, and
social media, a large number of videos are generated and
uploaded online every second. This brings many issues,
including copyright, privacy, and child protection. In this
work, we focus on partial video copy detection (PVCD),
which identifies videos and localizes copy segments in a
large database of long untrimmed reference videos.

The PVCD is a very challenging problem because of a
large variety of editing and transformations such as rotation,
scaling, cropping, captioning, watermarking, FPS change,
picture in picture. For the background, the readers are re-
ferred to [16],[28] and references therein.

There are three main parts to the PVCD algorithm. The
first one is to identify the videos which have copy segments
in them. The second one is to represent a video with a fea-
ture. The last one is to localize the copy segment in a candi-
date video. We explore PVCD in all these three directions,
and our contributions are summarized as follows.

Traditional PVCD algorithms using hand-crafted fea-
tures can use features saved in an inverted file and use a
fast search such as k-nearest-neighbor (KNN) approaches
[15, 21, 5, 14]. However, since the deep CNN features
are explored for PVCD, there are no works studying to use
KNN approaches, likely because the deep CNN features
are hard to encode or compress further and require a lot
of resources in computation and storage. Instead, reference
videos are scanned one by one [16].

Our first contribution is to propose a PVCD framework
to use fast KNN search on a database of deep CNN features.
To our knowledge, this is the first work that uses a KNN
search method on deep CNN features for PVCD. We first
construct a global feature database consisting of all frame
features of all reference videos. Given a query segment,
we use the frame features of the query segment to search in
the global database and return the top-K answers for every
query frame. These answers’ scores are accumulated by
their reference video ID. The reference videos whose scores
are the highest are returned as the candidate videos.

Our second contribution is to propose to use a trans-
former [29] encoder to improve the frame CNN feature. In
[16] and [2], CNN is used to extract the feature for a video
frame. This feature is for one individual frame image with-
out considering the temporal context. Inspired by the trans-
former [29] for its power to model the context in the lan-
guage model, image classification [4], object detection [3],
video classification [1], video action recognition [9], video
re-localization [12], video point cloud [7] etc., particularly
by [26], we explore its application in an location-sensitive
video representation for the PVCD.

Our last contribution is on the copy segment localiza-
tion algorithm. We still use the temporal network algorithm
[28], but we make some major modifications to improve the
performance as well as the speed. Since the feature and the
similarity matrix are optimized, we can tighten the parame-
ters such that the algorithm runs a lot faster while achieving
the same or better performance.

Please note that our contributions are not about exploring
brand-new ideas. Instead, we optimize existing techniques
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into a well-engineered framework to solve a practical prob-
lem. We evaluate the new PVCD framework on the VCDB
dataset [15]. The best F1 score is improved from the state-
of-the-art 0.8025 to 0.8764 by a large margin. We also eval-
uate the speed in a few critical parts of the PVCD and show
the expedition of PVCD.

2. Related Work
Video copy detection includes near-duplicate video de-

tection or retrieval (NDVD or NDVR), PVCD, and content-
based copy detection (CCD). For an example of NDVR,
please refer to [18] and references therein. For CCD, please
refer to the TRECVID 2011 report [23].

Two important parts of PVCD are the video represen-
tation and the copy localization. In early times, a global
feature is generated to represent a video for its simplicity,
fast speed, and low data storage [19, 30, 27]. However,
since its performance is poor, we only consider PVCD us-
ing frame features. Traditional local features for PVCD in-
clude LBP, SIFT, and variants, which are then aggregated
into frame features using BOW, Fisher vectors, or similar
methods [5, 24, 14, 28].

Before CNN feature is used, Hamming or binary embed-
ding and some simple local sensitivity hashing methods are
used [15] on these handcrafted features. Other works using
compact feature embedding include [21, 5, 14]. In [21], a
video fingerprint-based inverted search is implemented. In
[5], a multiple-level search in inverted files is implemented
on a database of a single reference video. Due to the signif-
icantly inferior performance of these hand crafted features,
we only consider the CNN feature in this work.

The work [16] is the first one that explores deep CNN
features on PVCD. Since then, the LAMV [2] implements
the PVCD in the frequency domain using the temporal
matching kernel [25]. Since CNN is used in PVCD and sim-
ilar tasks [16], [17], [26], the reference videos are scanned
one by one, and no fast KNN search approaches are avail-
able except for [10]. In [10], a low-cost global descriptor
in combination with a decision strategy adapted from rein-
forcement learning is used.

For the copy localization, early PVCD works include [6],
and [28], and the references therein. In these two works, the
authors propose the Hough voting algorithm and the tem-
poral network (or network flow) algorithm, which find the
location of the copy in the similarity matrix between the
query video and the reference video. These two algorithms
are evaluated in [16] on CNN features.

All these algorithms use the similarity matrix directly.
For PVCD, this similarity matrix is ideally a diagonal sub-
matrix at the location of the copy segment. In reality, how-
ever, it is not. The ViSiL [17] first explores the information
hidden in the similarity matrix. The authors propose a sim-
ple CNN to train the noisy sub-matrix to a better diagonal

Figure 1. Diagram of our PVCD algorithm

sub-matrix for similar tasks such as NDVR, event video re-
trieval. In these tasks, they only care if there is the same
event in the reference video but do not consider the event’s
location. Another disadvantage is it has to scan every ref-
erence video to find the candidate video, which cannot be
used for a real video retrieval problem.

In 2019, there was a PVCD challenge on Data Fountain
organized by China Computer Federation [8]. In this chal-
lenge, the query was an entire video instead of a video seg-
ment as in the VCDB standard protocol. In one of the forum
discussions, one team used a KNN search in a global feature
database, but the localization part was unclear [20]. Part of
our work is inspired by this scheme. Based on the KNN
search in the global feature database, we develop a whole
framework for PVCD.

3. Proposed Method

3.1. System Diagram

The diagram of our PVCD algorithm is shown in Figure
1. There are three main functions. The first one is the video
representation. In this work, the frame is extracted in the
video uniformly. Then, the CNN feature is generated for
the frame. This feature is for a single frame without consid-
ering the temporal context. To overcome this deficiency, we
propose to use a transformer encoder, highlighted in blue in
Figure 1, to improve the representation of the video, which
we call representation learning in this paper.

The second function is the global feature database - the
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foundation for a fast KNN search and video scoring. The
output of this function is a shortlist of candidate videos that
have the closest matches to the query video. More details
will be given shortly in Section 3.2. The third function is
the copy segment localization, which finds the location of
the copy segment in the candidate videos. We propose to
use a diagonalization CNN, highlighted in green in Figure
2, to refine the similarity matrix. After that, the temporal
network algorithm is used to localize the copy segment. The
outputs are the starting and ending location of the copy seg-
ments and their similarity scores.

Please note that there are offline and online processes in
this diagram, denoted with solid and dashed lines in Figure
1. In the offline process, the global feature database is cre-
ated from all the reference videos. This offline process does
not affect the online query speed. In the online process, the
query video is processed to generate frame features, then
the KNN search and copy detection. Please note that this
query approach does not scan videos. It first finds candidate
videos from the KNN search results. Then copy detection
is done on this shortlist of candidate videos.

3.2. Global Feature Database

In this algorithm, frames are uniformly extracted out of
every reference video at one frame per second (FPS=1). A
CNN feature is generated for every frame. These features
are all inserted into the global feature database. The video
ID and frame index are combined to index the global feature
database.

Assume there are N reference videos, denoted by ri, i =
1, 2, ..., N . Let the extract frames of the video ri be ri,j ,
where j = 1, 2, ...,Mi, and Mi is the number of extracted
frames in video ri. For simplicity, we also use ri,j to rep-
resent the CNN feature of this frame, without ambiguity.
So the features of the reference video ri can be described
with a matrix Ri = [ri,1; ri,2; ...; ri,Mi

], which has a di-
mension Mi × d, where d is the length of the feature. The
global feature database for all the reference videos consists
of features ri,j , where i = 1, 2, ..., N , j = 1, 2, ...,Mi in
ascending order on j then on i. The index i is mapped to a
video ID if a video ID instead of number index is preferred.
The index for the database is a composite index of the video
ID i and frame index j. This function is pre-processed on
the reference video database and is indicated as offline in
Figure 2. Since all CNN features are L2 normalized, the
cosine distance, a measure of the similarity of a pair of
frames, is equivalent to the inner product or Euclidean dis-
tance. These two distances are the most commonly used
metric in KNN algorithms. So this global feature database
is KNN-searchable with any KNN algorithm.

Similarly, assume qt, t = 1, 2, ..., T be the frame fea-
ture of the query video, where T is the number of ex-
tracted frames. The feature matrix is Q = [q1; q2; ...; qM ].

When this query video detects a copy in the reference video
database, the frames and features are generated in the same
way on the query video, and the features are used to search
in the global feature database. This is indicated as online
process in Figure 2. For every frame qt, t = 1, 2, ...,M ,
the first top-K (denoted top K all) matches rtvid(l),j(l) are
returned, where l = 1, 2, ..,K, vid(l) is the video ID of the
l − th match, and the j(l) is the frame index of this match.
In other words,

sim(rtvid(1),j(1)) >= sim(rtvid(2),j(2)) >=

sim(rtvid(3),j(3)) >= ... >= sim(rtvid(K),j(K)) (1)

where sim() is the frame similarity score.
Next in the video scoring function, every returned an-

swer is assigned to a video according to answer’s video ID
as follows,

sim(vid) =
∑
t

∑
l

sim(rtvid(l),j(l)) s.t. vid(l) = vid

(2)
The videos whose total similarity scores sim(vid) are

the highest are the candidate videos. We return the top-K
(denoted top K video) videos for every query, so the re-
turned candidate videos vidi have,

sim(vid1) >= sim(vid2) >= ... >= sim(vidK) (3)

The value of top K video can be chosen appropriately for
a particular dataset.

3.3. Modified Temporal Network Localization

After the candidate videos are available, the temporal
network algorithm [28] is used to localize the position of
the copy in the candidate videos. Since the number of can-
didate videos is usually very small, the running speed is ac-
ceptable, close to real-time.

There are a few key parameters that affect the temporal
network localization performance. The first one is the top-
K matched (denoted top K one) frames for every frame in
the query. Only the top K frames with the highest match-
ing scores are used, and the rest are ignored. The second
parameter is the max step, which is the allowed maximum
step in both row and column directions in the similarity ma-
trix when a network flow path is formed, which is the same
as the constraint wnd in [28]. The third one is a similarity
threshold simth where similarities smaller than this thresh-
old are not considered.

Consider the similarity matrix between a pair of videos
(q,r), where q is the query video segment, and r is one ref-
erence video found in the previous step. Let us call every el-
ement in the matrix a 2D point p, where p[0] and p[1] are its
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row and column index. The similarity matrix is expressed
as sim(p) = sim(qp[0], rp[1]). Please note that for simplic-
ity, we drop the video index of q and r since there is only
one q and one r in this pair. The index i is now the frame in-
dex. The temporal network localization becomes a network
flow optimization problem,

path(p), score, L = max
p

L∑
i

sim(pi) s.t.

(a) : 0 < pi+1[0]− pi[0] <= max step

(b) : 0 < pi+1[1]− pi[1] <= max step

(c) : pi[1] ∈ top−K(pi[0])

(d) : sim(pi) >= simth

(e) : |pi+1[0]− pi[0]− (pi+1[1]− pi[1])| < max diff

(4)

The conditions (a) and (b) are in the original temporal
network algorithm [28]. The conditions (c)-(e) are our mod-
ifications. These modifications show a big impact on both
speed and performance. In the original temporal network
[28], the network flow runs in the whole similarity matrix.
In conditions (c) and (d), we propose to only keep the reli-
able top-K matched reference video frames for every query
frame. As a result, the similarity matrix becomes a sparse
matrix, and the network flow runs more accurately and effi-
ciently.

The condition (e) is added to force the network flow to
run along with a narrow band along the diagonal direction.
Since we optimize the similarity matrix to near a diagonal
matrix in the copy segment location, we can tighten the con-
ditions by using smaller K and max diff and expedite the
algorithm.

The returned result includes the longest path of length
L whose total score is maximized. From the path
p1, p2, ..., pL, the starting and ending location of copy clip
in q and r are defined, as well as the video similarity score,

qstart = p1[0], qend = pL[0]

rstart = p1[1], rend = pL[L]

sim(q, r) = score/L

(5)

3.4. CNN Feature with Transformer

The transformer is introduced in the paper [29]. It is one
of the breakthroughs in machine learning in recent years. It
has been studied extensively on different applications, in-
cluding [4, 3, 1, 9, 12], etc. Particularly in [26], the trans-
former is proposed to improve the representation CNN fea-
ture in a video retrieval task. Therefore, we explore its
application in PVCD - a video retrieval and re-localization
task, where we add the supervision of location.

Figure 2. CNN feature using a transformer encoder.

The self-attention mechanism of the transformer is effec-
tive at modeling long-term dependencies within a sequence
input. The encoder can be used to aggregate temporal con-
text in representing videos. Even though the encoder out-
put keeps the same dimension as the input, the contextual
information within a longer range of each frame feature is
accounted for.

Let the video descriptor X of dimension M × d. De-
note the parameter matrices of the transformer encoder by
WQ,WK , WV . The video descriptor X is encoded into
Query Q (please do not confuse with the query video fea-
ture matrix), Key K and Value V by three different linear
transformations,

Q = XTWQ,K = XTWK , V = XTWV (6)

The self-attention is calculated as,

Att(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

where
√
dk is used to scale the dot product. This self-

attention value is then passed to a LayerNorm layer and a
Feed-Forward Layer to get the output of the Transformer
encoder. The multi-head attention is usually used, where
the multi-head attention outputs are concatenated before the
Feed-Forward layer. This transformer encoder can be used
on different video frame features. In this work, it is applied
to the Resnet-RMAC [2] feature. Our proposed transformer
encoder for the CNN feature is shown in Figure 2.

An example of a similarity matrix before and after apply-
ing the transformer is shown in Figure 3. In this example,
it can be clearly seen that after the transformer encoder, the
similarity matrix becomes more like a diagonal sub-matrix
at the copy segment location.

2194



Figure 3. An example of an original similarity matrix and its trans-
former encoded one.

3.5. Loss Function

We use the notation defined in Section 3.1. For query
video feature matrix Q of dimension T × d, and the refer-
ence video feature matrix R (we omit index i for simplicity)
of dimension M × d, the similarity matrix P is,

P = [Pi,j ] = QRT (8)

Assume there is a copy segment of the query video Q in
the reference video R. Let the starting location and length of
the copy segment in the query video be (sq, L), in the refer-
ence video be (sr, L). Then the ground-truth (GT) similar-
ity matrix PGT is,

PGT = [P ′
i,j ]

P ′
sq+i,sr+i = 1, i = 0, 1, ..., L− 1

P ′
i,j = 0 elsewhere

(9)

The loss function is defined as the mean square error
(MSE) of all the elements between matrix P and PGT ,

loss =
1

MT

∑
i,j

[(Pi,j − P ′i, j)wi,j ]
2 (10)

where the wi,j is a weight factor to balance the number of
ones and number of zeros in the similarity matrix, since the
number of zeros is a lot more than the number of ones, we
use a weight of 0.1 for zeros and 1.1 for ones, as an example.

Please note that there are some arguments that PVCD
may not have an identity sub-matrix at the copy segment lo-
cation due to video rate (FPS) change or reshuffling. This
is partially true. However, in PVCD, we use the segment
F1 as a metric and treat detection of any frames as a suc-
cessful detection of the copy segment. Furthermore, since
adjacent frames are usually very similar, an identity sub-
matrix is likely showing up at some locations of the copy
segment. The evaluation results on the VCDB dataset will
demonstrate our algorithm’s effectiveness.

4. Experiments
4.1. Implementation Details

All the videos are first uniformly extracted with 1 FPS
into frames, as widely used in many works including [15,

16, 20]. We test other FPS and find 1 FPS gives a good
trade-off between performance and speed. When the scale
of the reference videos gets very large, larger FPS can be
used to speed up the generation of the CNN features. The
impact is that the resolution of the PVCD is reduced.

Then the Resnet29-RMAC CNN feature [2] is extracted
for every frame. In one ablation study, we also extract the
VGG16 max-pooling feature. The dimension of feature d =
512.

We use the global frame feature database and the tempo-
ral network for copy segment localization. The parameters
we use are (top K all, top K one, top K video, simth,
max step, max diff ), whose meanings are defined in
Sections 3.1 and 3.2. For this study, we do not use the KNN
search method. Instead, matrix multiplication and sorting
are used to return the top-K matches.

In the training of the transformer encoder, we use a
multi-head transformer with inner dimension 128. We use
the Adam optimizer, learning rate 1E-6 and 30 epochs. The
weight factor 0.1 and 1.1 are used on the ones and zeros
elements in the similarity matrix.

In the training of the diagonalization CNN, we use the
Adam optimizer, learning rate 1E-4, and 30 epochs. No
weight factors are used on the ones and zeros elements in
the similarity matrix.

For the speed test, we use an Intel i7-6850K CPU at
3.60GHz and a Ubuntu 16.04 LTS OS. We use an Nvidia
GTX 1080TI GPU in the GPU mode of the KNN speed test.

4.2. Dataset

VCDB [15] is the only public PVCD dataset. VCDB in-
cludes 528 videos in the core dataset and a very large back-
ground dataset. There are a total of 9236 annotated copy
segments. In this section, we evaluate our algorithm on the
VCDB dataset. We only use the videos in the core dataset
and use all the annotated copy segments as the query. As in
the standard VCDB protocol, the detected segment with any
frame overlap with the ground truth is called a true positive.
We only use segment F1 score in this study. One frame per
second is extracted uniformly in all videos.

However, for training the transformer, we cannot use the
same VCDB dataset for both training and test since the
whole VCDB dataset is used in the benchmark performance
test [15, 16, 2]. Instead, we use a private PVCD dataset
as a training dataset and use the whole VCDB dataset as
a test dataset. This makes the benchmark on the VCDB
dataset more reasonable and also demonstrates this algo-
rithm’s cross-domain performance. This dataset has more
than 300 reference videos, most of which are longer than the
VCDB reference videos. There are a few thousand query
videos, each of which has a copy segment in multiple refer-
ence videos.
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4.3. Training Data Collection for Transformer

In ViSiL [17], [26], and [12], triplet loss or contrastive
learning is used, therefore triplet videos including anchor
video, positive video, and negative video are prepared. In
our work, there is no triplet video needed. We use the stan-
dard supervised learning using training samples (positive or
negative) and their ground truth. So the collection of train-
ing data is easier.

The positive samples are prepared from the annotations
of the training dataset. We borrow the idea of using hard
negative samples in ViSiL [17]. We first do the PVCD on
the features before the transformer is applied, collect all the
false-positive results as the hard negative samples. If the
numbers are not enough, we can collect more negative sam-
ples by randomly choosing video segments in the reference
videos in the training dataset. This has been proved much
better than only randomly choosing video segments in the
reference videos.

Furthermore, since the number of negative samples is a
lot more than the positive samples, we randomly pick nega-
tive samples from its pool in every epoch of the training pro-
cess and make the numbers of positive and negative video
segments equal in any epoch.

4.4. KNN Search in Global Feature Database

In the following subsection, we study the global feature
database and the CNN feature without using the transformer
or the similarity CNN.

After the candidate video is found, there are two methods
to form the similarity matrix. We can use use the original
similarity matrix calculated from every pair-wise frame be-
tween the query segment and the candidate video, or we
can use the reconstructed similarity matrix using the re-
turned KNN results. Only the frames found by the KNN
belonging to this candidate video have a non-zero value in
the similarity matrix; others are all filled with zero. As a
result, this similarity matrix is very sparse, and the tempo-
ral network localization runs a lot faster than the original
similarity matrix. If the performance is comparable, then
the reconstructed similarity matrix is preferred for its fast
speed.

Other parameters we try to optimize include top K all,
and (top K one, top K video, simth, max step). To ex-
pedite the tuning, we only use the first 500 query segments.
Please note that, for a fair comparison, we must use the
same set of query segments in this comparison. We should
not compare these results with results for a different set of
query segments. The F1 score on the full query dataset may
be lower than that on the first 500 segments. This is un-
derstandable because the distribution of the video similarity
score of the first 500 segments is not stable yet.

We first use the reconstructed similarity matrix to
optimize parameters, and the results are listed in the

Table 1. Tuning parameters using the first 500 query seg-
ments. In the matrix column, R indicates reconstructed
similarity matrix, O indicates original similarity matrix,
and S indicates scanning videos. The parameters are
(top K one,top K video,simth,max step).

Matrix Parameters F1
R (5, 10, 0, 10) 0.7917
R (10, 10, 0, 10) 0.8015
R (10, 20, 0, 10) 0.8584
R (20, 20, 0, 10) 0.8609
R (20, 20, 0, 5) 0.8609
R (20, 20, 0.25, 10) 0.8637
R (20, 20, 0.5, 10) 0.8980
R (20, 20, 0.5, 5) 0.9010
R (20, 20, 0.6, 10) 0.8959
O (20, 20, 0, 10) 0.8774
O (20, 20, 0.25, 10) 0.8654
O (20, 20, 0.5, 5) 0.9010
O (20, 20, 0.6, 10) 0.8959
O (20, 20, 0.6, 5) 0.8988
S (20, - , 0.5, 10) 0.7352
S (20, - , 0.0, 10) 0.6694

first panel in Table 1. From the results, we see that
top K video=20 have better results than top K video=10,
because in VCDB dataset many segments have copy in
more than 10 reference videos. The similarity thresh-
old simth = 0.5,0.6 give good results. The best result
of F1=0.9010 is achieved with (top K one, top K video,
simth, max step)=(20.20.0.5,5).

Next, we check the performance of the original sim-
ilarity matrix with a few good parameter configurations
from the previous step, and the results are listed in the
second panel in Table 1. The best F1=0.8988 is achieved
with top K one=20, top K video=20, simth=0.6,
max step=5. From these results, we see that the recon-
structed similarity matrix can achieve the same or even
better performance than the original similarity matrix.

Thirdly, we test scanning the reference videos. In
this mode, the original similarity matrix is used, and
top K video is not used. The results denoted by S are
shown in the third panel in Table 1. We notice the
big improvement from simth=0.0 to simth=0.5, which
demonstrates the effectiveness of the modified temporal net-
work localization algorithm. Furthermore, the speed of
simth=0.5 is a lot (> 50 times) faster than simth = 0.0
or using no threshold in the original temporal network.

4.5. Other CNN Features

Other than the Resnet-29 RMAC feature from the
LAMV [2], we also use the VGG-16 pool5 feature map
[22]. We do not directly use the FC output since it is widely
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Table 2. Different CNN features and pooling methods.
CNN Feature F1 Score

AlexNet FC, scanning videos [16] 0.6503
VGG-16 Max pooling 0.7657
VGG-16 Avg pooling 0.7656

VGG-16 SPoC 0.7538
VGG-16 Crow 0.7538

Resnet-29 RMAC 0.8613

believed that the Conv layer feature works better than the
FC feature in the image retrieval task. We test the follow-
ing pooling method: Max pooling, average pooling, Crop,
SPoC, and find that the max-pooling gives the best F1 score.
The results are summarized in Table 2. For all these differ-
ent pooling methods, please refer to [11] for details. The
Resnet-29 RMAC F1 score outperforms the VGG-16 max-
pooling by a big margin.

We analyze the performance improvements in the F1
score. Using the better feature is a big factor in it. Chang-
ing the feature from VGG-16 max pooling to the Resnet-
29 RMAC, the F1 score improves from 0.7657 to 0.8613.
However, with the same Resnet-29 RMAC feature, in Ta-
ble 2, the F1 score is only 0.7352 by scanning all reference
videos with a simth = 0.5. With simth = 0, the F1 score is
even worse 0.689. This shows the improvement due to the
modified temporal network localization algorithm. While
with the global feature database, the F1 score improves to
0.8613. With all these factors added together, our PVCD
framework achieves significantly improved performance.

4.6. CNN Features with Transformer

In this section, we add the transformer encoder on the
Resnet-29 RMAC CNN feature. We study to determine if
this extra transformer encoder can improve the F1 score fur-
ther over the previous two subsections. We use the previous
F1 = 0.8613 as a baseline.

We test a 2-head and an 8-head transformer on the full
VCDB query dataset. The only difference is that the origi-
nal CNN feature in Figure 1 is replaced with the transformer
encoded feature. The F1 score results are listed in Table
3, as well as the parameters used to achieve this F1 score.
Please note that the speed does not include the extraction of
frames from videos and the extraction of the original CNN
features from frames, which are pre-processed and saved.

From the results, we notice that the transformer improves
the F1 score from 0.8613 to 0.8760. The improvement is
not significant, perhaps because the previous baseline is al-
ready very good. In fact, the temporal network can model
the temporal information in the copy localization algorithm
indirectly, but it has to work on a pair of videos. The
transformer, on the other hand, models the temporal infor-
mation directly. The results show that the combination of

Table 3. F1 scores and speed test results of transformer (TF) en-
coded feature on the VCDB query dataset. The parameters are
top K all=200, (top K one, top K video, simth, max step,
max diff ). Transformers with 2-head (2H) and 8-head (8H) are
tested.

Method Parameters F1 score speedup
Baseline (20,20,0.5,5,5) 0.8613 1
2H TF (3,20,0.55,2,2) 0.8709 1.64
2H TF (3,20,0.55,2,0) 0.8714 1.68
8H TF (3,20,0.55,2,2) 0.8760 1.42
8H TF (3,20,0.55,2,0) 0.8764 1.59

VGG16-MP (20,20,0.5,5,5) 0.7657 -
VGG16-MP,2H (20,20,0.5,5,5) 0.8077 -

the transformer and the temporal network localization algo-
rithm brings some extra benefit, demonstrating that some
temporal information is missed in the temporal network lo-
calization algorithm alone.

However, if we pay attention to the parameters, we no-
tice that a lot smaller parameters (top K all, top K one,
max step, max diff ) are used, which can help increase
the speed. Please note that max diff = 0 means the net-
work flow is only allowed along the diagonal in the similar-
ity matrix. It indicates that a simple dynamic programming
algorithm can be used for copy segment localization.

Ablation study: We use the 2-head and an 8-head trans-
former as an ablation study. The results show that a 2-head
transformer is good enough. More heads get only a small
performance gain while the model size gets larger quickly.
We also test different dk, inner dimensions and find that
they have a very small impact on the performance.

We also test the transformer encoder on the VGG16 max-
pooling (denoted VGG16-MP in Table 3) feature, and the
results are listed in Table 3. The original F1 score is 0.7657.
After the transformer encoder, the F1 score increases to
0.8077. This more significant improvement shows the ef-
fectiveness of transformer encoder on CNN feature not as
good as the Resnet29-RMAC feature [2].

Qualitative example: Shown in Figure 4 are examples
of a successful and a failed case. In the successful case in
the first row, the video on the left is significantly shaded and
distorted. The target video on the right is flipped but is still
partially detected. In the failed case in the second row, the
target video has a relatively small actual content window.
This failed case indicates that there is still work to do in
PVCD.

4.7. Comparison with the State of the Art

We use our best F1 score on the full query dataset in Ta-
ble 2 and Table 3 as our benchmark and compare it with the
previous state-of-the-art results. The comparison is listed in
Table 4. We notice that our CNN feature with transformer
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Figure 4. Examples, the first row is a successful detected case, the second row is a failed case.

Table 4. Comparison with existing methods on VCDB dataset.
Method F1 Score

CNN [16] 0.6503
LAMV [2] 0.6740

Ref [21] 0.6440
Ref [10] 0.8025

Ours (No-transformer) 0.8613
Ours (Transformer) 0.8764

Table 5. Average search time per frame
Method time(ms) Speed up

Matrix multiplication 20.0 1
Flat-CPU 2.55 7.86
Flat-GPU 1.48 14.79

IVF256-Flat-GPU 1.82 10.81

outperforms all existing methods. The F1 score improves
from the previous 0.8025 to 0.8764. In addition, our algo-
rithms improve the copy detection speed, as already shown
in Table 3, and more details of the speed test of KNN with
GPU will be given in the next subsection.

4.8. KNN Speed Test

In this section, we test the query speed of different search
methods. The time reported here is only the query search
time, not including the network flow localization time.

The baseline search method we test is a brute force
search and sorting in matrix multiplication. Then we test the
FAISS index types: Flat-CPU, Flat-GPU, IVF-Flat-GPU
[13]. Since the total number of frames in the VCDB dataset
is less than 100,000, we do not test the scalar or prod-
uct quantization. The average search time per frame, the
speedup over the matrix multiplication are summarized in
Table 5. We see that the speedup of the Flat-CPU is about
eight times, and that of Flat-GPU and IVF256-Flat-GPU 15
ad 11 times, respectively.

5. Conclusion

In this work, we study a global feature database and a fast
KNN search method for PVCD to find candidate videos that
likely have copy segments in them. Using Resnet29-RMAC
[2] feature, we improve the previous F1 score around 0.80
to 0.8613.

Then we study an algorithm to improve the similarity of
video pairs in PVCD. The transformer encoder enhances the
representation of the frame CNN feature. The transformer
improves the F1 score on the full VCDB query dataset fur-
ther to 0.8764.

Lastly, we study a modified temporal network to localize
copy segments in the candidate videos. The modifications
corporate with the improved representation or video simi-
larity to improve both the F1 score and the speed.

Overall, we improve the F1 score of PVCD on the VCDB
dataset from the previous state-of-the-art 0.8025 to the new
0.8764.
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