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Abstract

Computer-aided support and analysis are becoming in-
creasingly important in the modern world of sports. The
scouting of potential prospective players, performance as
well as match analysis, and the monitoring of training pro-
grams rely more and more on data-driven technologies to
ensure success. Therefore, many approaches require large
amounts of data, which are, however, not easy to obtain
in general. In this paper, we propose a pipeline for the
fully-automated extraction of positional data from broad-
cast video recordings of soccer matches. In contrast to pre-
vious work, the system integrates all necessary sub-tasks
like sports field registration, player detection, or team as-
signment that are crucial for player position estimation.
The quality of the modules and the entire system is inter-
dependent. A comprehensive experimental evaluation is
presented for the individual modules as well as the entire
pipeline to identify the influence of errors to subsequent
modules and the overall result. In this context, we pro-
pose novel evaluation metrics to compare the output with
ground-truth positional data.

1. Introduction

Match analysis in soccer is very complex and many dif-
ferent factors can affect the outcome of a match. The ques-
tion is which so-called key performance parameters allow
for the characterization of successful teams [27, 34, 40, 44].
While team behavior can be differentiated into a hierarchi-
cal scheme consisting of individual, group, and team tac-
tics, different metrics are necessary to capture behavior at
each level [13, 40]. Researchers have recognized that game
plays should be segmented into different phases since tac-
tics vary greatly [31] across them. Performance in soccer is

also determined by physiological factors [10] such as run-
ning distance [8]. For this reason, it has been suggested to
link such information to tactical parameters [3].

To carry out such analyses, the player positions on the
field are required. Current tracking technologies allow the
recording of several million data points representing player
and ball positions during a match by using additional hard-
ware, e.g., multiple static cameras or sensors on players.
However, they are difficult to obtain, for instance, due to li-
censing, financial restrictions, or competitive concerns, i.e.,
a club normally does not want or disclose its own team’s
data. In contrast, broadcast video recordings of soccer
matches can be accessed more easily. In this paper, we in-
troduce a modular pipeline to extract the two-dimensional
positions of the visible players from ordinary broadcast
recordings. As illustrated in Figure 1, the system involves
sports field registration, shot boundary detection, shot type
classification, player detection, and team assignment.

Application Novelty: While commercial approaches
like [51, 52, 56] primarily use multiple static cameras for
position data generation from video data, the TV feed is
concretely used by SkillCorner [49] and Track160 [57].
However, only the final output of such systems is accessi-
ble [49, 57]. To the best of our knowledge, neither their
quality, nor used architectures or even information about
training data and applicability to own data is publicly re-
ported. While individual sub-tasks were tackled in research,
its combination for the joint real-world task of player posi-
tion estimation has not been studied yet (also not beyond
soccer). Even individual sub-modules have not been suf-
ficiently evaluated in terms of applicability to real-world
data. For the essential step of sports field registration, recent
approaches [37, 46] are evaluated only on a single small-
scale dataset [16]. Potential for generalization were men-
tioned [5, 37] with the use of many cost-intensive annota-
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Figure 1. Proposed pipeline to extract positional data with team assignment from broadcast videos: The video is pre-processed to segment
the field and detect shot boundaries. The camera type is estimated to extract shots from the main camera. Subsequently, the sports field is
registrated and the extracted homography matrix is used to transform the sport field and player detections in order to obtain two-dimensional
coordinates for each player. Team assignment is performed by clustering the player’s bounding boxes.

tions from various data sources. Furthermore, the influence
of errors in individual modules and their connections has
not been explored. To tackle this demanding real-world task
is of interest for the computer vision community as well for
sports science, and has direct applications.

Contributions: In contrast to commercial systems and
related work, we provide the first transparent baseline
for player position estimation with interchangeable mod-
ules, that relies on state-of-the-art techniques and freely
available data, while evaluating each module. We demon-
strate the generalizability on multiple datasets where the ap-
plied models were not originally trained on. The proposed
pipeline is also applicable to the so-called ”tactic-cam” that
is located next to the main camera. It usually covers the
entire soccer field (without any cuts) and is consequently
of interest for video analysts. To evaluate the global task,
estimated positions are compared to ground-truth positional
data. This comparison is not trivial due to non-visible play-
ers in the video and the influence of errors of individual
modules. Therefore, we propose novel evaluation metrics
and identify the impact of errors on the final system output.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a brief overview of related work.The pipeline
itself is introduced in Section 3. In Section 4, the different
system components and the accuracy of the extracted posi-
tional data are evaluated. Finally, Section 5 discusses the
results and describes possible areas of future research.

2. Related Work
Since the global task of player position estimation has

not yet been addressed, we briefly review related work for
all individual sub-tasks in this section.

Great progress has been made in recent years for
sports field registration with monocular non-static cam-
eras. Cuevas et al. [7] trained a probabilistic decision tree
to classify specific line segments as an intermediate step
for homography estimation and integrated a self-verification
step to judge whether a predicted homography matrix is cor-

rect. Homayounfar et al. [16] propose a solution that relies
on field segmentation and Markov random fields. Sharma
et al. [47] and Chen and Little [4] propose the nearest neigh-
bor search from a synthetic dataset of pairs of edge images
and camera images for fully-automated registration. Jiang
et al. [19] present a two-step deep learning approach that
initially estimates a homography and minimizes the error
using another deep network instead of the Lucas-Kanade
algorithm [1]. Citraro et al. [6] suggest an approach that
also takes into account the position of players and is trained
on a separate dataset for uncalibrated cameras. Sha et al.
[46] propose an end-to-end approach for area-based field
segmentation, camera pose estimation, and online homog-
raphy refinement that allows end-to-end training and effi-
cient inference. Nie et al. [37] tackle the challenge when no
prior knowledge about the camera is available and propose
a multi-task network to simultaneously detect a grid of key
points and dense field features to estimate and refine a ho-
mography matrix end-to-end. This approach seems suitable
since also temporal consistency is verified for successive
frames. However, a very large number of training samples
is required to achieve the desired accuracy and generaliz-
ability, but training data are not publicly available except
for the WorldCup2014 dataset (WC14 [16]).

Shot boundary detection (e.g., [14, 26, 53, 58]) and
shot type classification (e.g., [45, 54]) are necessary pre-
processing steps for many tasks of video analysis. It en-
ables the distinction between different camera shot types.
Related work in the context of soccer distinguishes between
three [48], four [35] or five [59] different camera shot types.
For the extraction of positional data, the main camera (with
the largest distance) offers the most useful information, be-
cause it normally covers a larger part of the field depicting
several players.

There are several approaches for the detection of play-
ers in sports analysis [21, 28, 43, 60]. Although general-
purpose approaches for object detection [25, 42] are also
able to detect persons, sports offer specific challenges. For
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example, the players are usually small, they differ in scale
due to the distance from the camera, they can occlude
one another, and there is blur caused by camera move-
ment. Nevertheless, specialized approaches [21, 60] com-
pare themselves to general-purpose detectors such as the
Single Shot Detector (SSD) [25] or Faster R-CNN [42]. Ko-
morowski et al. [21] have recently introduced a computa-
tionally much more efficient method with results similar to
a fine-tuned Faster R-CNN. In team sports, the jerseys of
the teams are designed so that they can be easily recognized
by their color. Thus, for team assignment of the (detected)
players, color information can be used as a discriminant fea-
ture. Hand-crafted (color) features ([9, 30, 55]) or features
from convolutional neural networks (CNNs) ([18, 22, 29])
are exploited and clustered by these approaches for team
assignment. An approach for player detection and team dis-
crimination [18] addresses the problem of occlusions and
errors in object detection [32].

3. Player Position Estimation in Soccer Videos
A frequent problem in the field of automatic sports anal-

ysis is the lack of publicly available datasets. Currently,
there is no public dataset that provides positional data for
given broadcast soccer videos. Besides, related work solely
considered sub-problems of the overall task of player posi-
tion estimation. This section describes a pipeline as well as
the choice and modifications of individual components that
solve all required sub-tasks for player position estimation
to predict the two-dimensional player positions on the field
given an input (broadcast) video (Figure 1).

After all relevant (main camera) shots are identi-
fied (Section 3.1), the step of sports field registration is es-
sential to extract position data (Section 3.2). A homogra-
phy matrix is determined and used to transform the posi-
tions of the players from the image plane into world coordi-
nates (Section 3.3).

3.1. Shot Boundary and Shot Type Detection

We aim at estimating player positions in frames recorded
by the main camera since it is most frequently used and
shows the area of the game that is relevant for tactical
analysis, as shown in Figure 1. We first extract shots
from the television (TV) broadcast using the widely ap-
plied TransNet [26, 50] for shot boundary detection. Since
our objective is to gather only valuable positional data, we
subsequently apply shot type classification to identify shots
captured by the main camera. We exploit the homography
matrices estimated by the sports field registration approach
presented in Section 3.2. We found that the homography
matrices do not change fundamentally in successive frames
captured by the main camera. On the other hand, all other
cameras that, for example, capture player close-ups or ac-
tions depict no or only small fractions of the sports field

causing large errors and consequently inconsistencies in the
predicted homography matrices. For this reason, we calcu-
late the average LH of the homography changes for each
shot. The homography change for two successive frames t
is defined as LH(Ht, Ht+1) = ‖Ht −Ht+1‖2 where each
entry in H is (min-max) normalized for each shot. Finally,
we classify each shot as the main camera shot if the condi-
tion LH ≤ τ is fulfilled.

3.2. Sports Field Registration

The task of sports field registration aims at determining
a homography matrix H for the transformation of an im-
age from the (main) camera into two-dimensional sports
field coordinates. Formally, the matrix H defines a two-
dimensional projective transformation and is defined by a
3 × 3 matrix with eight degrees of freedom. We use Chen
and Little’s approach [4] as the basis for sports field reg-
istration. The camera calibration is defined as the nearest
neighbor search in a synthetic dataset of edge map camera
pairs. We choose this approach for multiple reasons: (1) It
obtains almost state-of-the-art performance on the only test
set for soccer [16], (2) it does not rely on manual annota-
tions to obtain training data [5, 19, 37], and (3) is adaptable
to other environments (e.g., stadiums and camera parame-
ters) by changing only a few hyper-parameters, as shown in
our experiments (Section 4.4).

Chen and Little [4] adopt a pix2pix [17] model for
field segmentation and the subsequent detection of the field
markings. The edge images generated in this way are com-
pared with a dataset of synthetic edge images for which the
camera parameters are known (x, y, z position, focal length,
pan, tilt). This comparison is based on a Siamese CNN [15],
which takes two edge images as input. Feature vectors are
used to construct the reference database. The nearest neigh-
bor search on the feature vectors is then applied by comput-
ing the L2 distance over all pairs. The camera parameters
of the nearest neighbor in the synthetic dataset are used to
determine an initial homography matrix. This initial esti-
mation is refined using the Lucas-Kanade algorithm [1].

3.3. Player Detection and Position Estimation

Sports analysis offers some specific challenges for the
task of object detection and tracking, e.g., the objects (like
players) are often small because they are far away from
the camera. Camera motion causes blur in the players’ sil-
houettes. But the movement with unpredictable changes of
players’ direction and pace poses problems also for well-
tested approaches. Therefore, some approaches address
these problems in the architectural design [21, 28]. Zhou
et al. [61] solves object detection and tracking based on
the object center and should therefore be less susceptible
to movements of the players. In Section 4.2, a comparison
of three approaches is performed.
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To determine the actual position of each player on the
field, we can utilize the predicted homography matrix H ,
which maps pixel coordinates to sports field coordinates.
We define the image position p̃ ∈ R2 of players as the
center of the bottom of the detected bounding box, which
usually corresponds to the feet of the player. The predicted
position p̂ ∈ R2 of the player on the field is then calculated
with the inverse homography matrix and the detected image
positions of the players: p̂ = H−1p̃.

Self-Verification (sv): The predicted positions can be
used to verify the homography matrix extracted by the
sports field registration. Assuming that most player po-
sitions should be assigned to a coordinate within the
sports field, the system can automatically discard individual
frames where the sports field registration is obviously erro-
neous. If one of the projected player positions is far outside
the dimensions of the field including a tolerance distance ρ
in meter, then normally there is an error in the homogra-
phy estimation. The smaller the value ρ is chosen, the more
frames are discarded, because only smaller errors in the ho-
mography estimation are being tolerated. Intuitively, a tol-
erance distance between two and five meters seems reason-
able which is proven experimentally (Section 4.5).

Team Assignment: Assuming that for some sports ana-
lytic tasks the position of the goalkeeper is of minor rele-
vance (e.g., formation or movement analysis) and it is ex-
tremely rare that both goalkeepers are visible in the video at
the same time, they are ignored in the team assignment step.
Due to the different jersey type and color it requires context
information (i.e. the location) to correctly assign the team.

Another problem is that coaches and attendants also pro-
trude onto the sports field with their bodies due to the per-
spective of the camera so that the number of visible classes
which appear in a frame cannot be predetermined. We
present a simple approach that provides a differentiation be-
tween only two classes (team A and B) based on the object
detection and assumes that the use of an unsupervised clus-
tering method is more appropriate in this domain since it
does not rely on any training data and the player detection
results are already available with high quality. We apply
DBScan [11] to determine two dominant clusters represent-
ing the field players of both teams. Any unassigned detec-
tion, which should include goalkeepers, referees, and other
persons, is discarded. The feature vectors are formed based
on the player detection results, i.e., the bounding boxes.
We use the upper half of a bounding box since it usually
covers the torso of a player. Each bounding box is first
uniformly scaled to 20 × 20 and then the center of size
16× 16 is cropped. This should reduce the influence of the
surrounding grass in the considered area. Since the jersey
colors differ greatly, it is sufficient to use the average over
color channels (HSV color space). It can be assumed that

field players are most frequently detected and that this is
roughly balanced between both teams. Furthermore, due to
the previous segmentation of the playing field, only a few
detections are expected which are not field players. DB-
Scan requires two parameters: ε, which is the maximum
normalized (color) L2 distance between two detections to
be assigned to the same cluster, and ncls ∈ [0, 0.5], which
specifies how many of all detections must belong together
to form a cluster (maximum of 0.5 due to two main clus-
ters). Since the optimal value for ε will be different for each
match, a grid search for randomly selected frames of each
sequence of the match is performed to determine the pa-
rameter. In contrast to previous work that generally utilizes
color histograms [30, 55] to reduce the input feature space,
we apply the average over pixels without any performance
decline. The value for ε is selected, for which the cost func-
tion c(ε) = |X(O)ther| + ||XA| − |XB|| is minimal and re-
stricted to form exactly two clusters (XA and XB). The cost
function should ensure that the clusters A and B, which rep-
resent the two teams, are about the same size and that there
are as few as possible unassigned detections (X(O)ther).

4. Experimental Results
All individual components are evaluated individually,

while the main task of player position estimation is eval-
uated at the end. The main test sets that are used both to
evaluate the sports field registration and player position es-
timation are introduced in Section 4.1. As shot boundary
and shot type classification (Section 3.1) are common pre-
processing steps in video data, we refer to the supplemen-
tal material. Section 4.2 and 4.3 focus on the evaluation
of player detection and team assignment, while the evalua-
tion of sports field registration is reported in Section 4.4.
Finally, the main task is evaluated by comparing the es-
timated positional data with the ground-truth data (Sec-
tion 4.5). Further implementation details, supplemental ma-
terial, and source code are provided at https://github.com/
MM4SPA/vid2pos_soccer.

4.1. Main Datasets

To evaluate the main task of player position estimation,
synchronized video and positional data are needed. To in-
dicate the generalizability, we use a total of four datasets
that are primarily designed only for testing, i.e., no training
nor fine-tuning of individual modules is performed on this
or closely related data.

Common broadcast videos of different resolutions (SD
and HD) and seasons (2012, 2014) are available as well
another type of video – the tactic-cam (TC): this camera
recording is without any cuts and usually covers a wider
range of the pitch. Since the tactic-cam is located next to the
main TV camera and usually covers the majority of players,
it is usually used for video analysis. In general, each dataset
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contains four halves from four matches from the German
Bundesliga in 25 Hz temporal resolution with synchronized
positional data. Our datasets are referred to as TV12 (2012,
SD resolution), TV14 (2014, HD), TC14 (HD), and TV14-
S that covers the broadcast videos of the same matches as
TC14. Due to temporal inconsistencies in the raw video of
TV14-S to the positional data, these videos are synchronized
using the visible game clock. The position data are consid-
ered as ground truth since they are generated by a calibrated
(multi-)camera system that covers the entire field. However,
this system can be inaccurate in some cases [39]. An error
of one meter is to be assumed in the data provided to us.

The quality of the field registration is essential for the
accurate prediction of the player positions, but as there is
only one limited dataset for sports field registration in soc-
cer [16], we manually estimate ground-truth homography
matrices for a subset of our datasets. In particular, 25 rep-
resentative and challenging images per match are chosen to
cover a wide range of camera settings resulting in 100 anno-
tated images per test set. The remaining modules, i.e., shot
boundary and shot type classification, player detection, and
team assignment are trained and evaluated on other pub-
licly available datasets and introduced in their respective
sections.

4.2. Evaluating Player Detection

Player detection and the usage of the homography ma-
trix enable the extraction of two-dimensional coordinates
for players. While a general object detector like Faster R-
CNN [42] localizes the bounding box for each object, this
information is not necessarily needed, rather the exact po-
sition is of interest. To assess the performance of Center-
Track [61] on soccer data, we compare it to another special-
ized network [21] for this domain and to a general object
detection framework that is fine-tuned [42] for the soccer
domain. We note that alternative solutions such as [28] ex-
ist and a comparison is generally possible. However, it is
out of scope of our paper to re-implement and test several
variants especially if a satisfactory quality is achieved with
the selected solution.

Datasets & Setup: Due to the lack of publicly avail-
able datasets for training and evaluation, Komorowski et al.
[21] train their network on two small-scale datasets [9, 28]
where the training and test data is separated by frame-wise
shuffling and subsequential random selection (80% training,
20% test). CenterTrack can exploit temporal information to
track players. However, to the best of our knowledge, there
exists only one dataset in the domain of soccer with track-
ing information (ISSIA-CNR [9]), but it contains a very lim-
ited number of scene perspectives from multiple static cam-
eras and is thus inappropriate for our system. For a fair
comparison with the alternative approach, we follow the
train-test split of Komorowski et al. [21] where individual

ISSIA-CNR [9] Soccer Player [28]

Faster R-CNN [42] 87.4 92.8
FootAndBall [21] 92.1 88.5
CenterTrack [61] 90.1 90.2

Table 1. Performance evaluation for player detection: The average
precision in percent is measured on two subsets from the ISSIA-
CNR and Soccer Player dataset.

frames are used for training. The publicly available ISSIA-
CNR [9] dataset contains annotated sequences from sev-
eral matches captured by six static cameras (in 30Hz and
FHD resolution) comprising 3000 frames per camera. Soc-
cer Player [28] is a dataset created from two professional
matches where each match is recorded by three HD broad-
cast cameras with 30Hz and bounding boxes are annotated
for approximately 2000 frames. For evaluation, we report
the average precision (AP) according to [38]. In the final
step of CenterTrack bounding boxes are estimated, which
makes AP a suitable metric to compare the performance of
object detectors, even though the size of the bounding box
is not relevant to extract positional data. We refer to the sup-
plemental material for details about the training process.

Results: The results on the test set for our fine-tuned
Faster R-CNN [42], Komorowski et al. [21]’s model and
the fine-tuned CenterTrack [61] are reported in Table 1.
Since Faster R-CNN and FootAndBall perform well on only
one test set and perform significantly worse on the other,
this suggests a lack of generalizability whereas CenterTrack
achieves good results on both data sets. As CenterTrack
benefits from training with tracking data [61], we are con-
fident that results can further be improved, but choose this
model for our pipeline as it already provides good results.

4.3. Evaluating Team Assignment

In this experiment, we evaluate the team assignment that
relies on detected bounding boxes.

Dataset & Setup: In contrast to very small datasets [9,
28], Yu et al. [59]’s dataset provides a good diversity regard-
ing the environmental setting (camera movements, lighting
conditions, different matches, jersey colors, etc.). There-
fore, a subset from their dataset is manually annotated with
respect to team assignment. To bypass errors in the player
detection, bounding boxes and player assignment are man-
ually annotated for a set of frames containing multiple shot
perspectives and matches. Team assignment is annotated
for three categories, team A, team B, and other including
referees and goalkeepers (due to its sparsity). We randomly
select one frame for a total of ten shots captured by the main
camera for each match. We took 20 matches that were al-
ready used to evaluate the temporal segmentation resulting
in 200 frames for evaluation. As mentioned before, the aim
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is to find two main clusters, and we found empirically that
ncls = 0.2 provides good results for this task.

Metrics: Istasse et al. [18] proposed micro accuracy for
this task, but this metric only considers labels from both
teams and is insufficient in our case, since it can be mis-
leading when the algorithm assigns uncertain associations
to the class other. To prevent this, referees and goalkeepers
must be excluded from the object detection or an alternative
metric needs to be defined. For this reason, we additionally
consider the macro accuracy for all three classes.

Results: Our simple method performs well, both in
terms of macro accuracy (0.91) for the three classes and mi-
cro accuracy (0.93) for the two team classes. We found that
most errors are players that are assigned to other (goalkeep-
ers, referees). This leads to the conclusion that field players
are assigned correctly with a high probability in most cases.
In comparison to an end-to-end approach for team assign-
ment of Istasse et al. [18], where the overall performance
is evaluated on basketball data, a similar micro accuracy
(0.91) is reported. However, the domain basketball differs
much from soccer making a direct comparison difficult.

4.4. Importance of Sports Field Registration

As already introduced, many approaches rely on
manually annotated ground-truth data for training.
There exist only one public benchmark dataset (World-
Cup2014 (WC14) [16]). While the test set follows the
same data distribution as the training data, in particular,
the camera hyper-parameters (location, focal-length,
etc.), generalization capabilities are not investigated by
existing solutions [4, 19, 37, 46]. Primarily, to indicate the
adaptability of Chen and Little [4]’s approach (Section 3.2)
to different environmental settings, we explore several
hyper-parameters on our target test sets (see Section 4.1).
Additionally we compare them with recent work.

Metrics: Since the visible part of the pitch is of
interest for application, we report the intersection over
union (IoUpart) score to measure the calibration accuracy.
It is computed between the two edge images using the pre-
dicted homography and the ground-truth homography on
the visible part of the image.

Camera Hyper-parameters: In general, we as-
sume that the recommended parameters [4] (derived from
WC14 [16]) for generating synthetic training data fit
for many soccer stadiums. However, we also evalu-
ate slight modifications of the base camera parameters
which are available in WC14: camera location distri-
bution N (µ = [52,−45, 17]T , σ = [2, 9, 3]T ) in me-
ters, i.e., the average location from all stadiums (ori-
gin is the lower left corner flag of the pitch); fo-
cal length (N (3018, 716)mm) and pan (U(−35◦, 35◦)),
tilt (U(−15◦,−5◦)) ranges. We extend the pan and tilt range
to (−40◦, 40◦) and (−20◦,−5◦), respectively, in all mod-

WC14 [16] TV12 TV14 TC14 TV-S
Approach Mean Med. Mean (std) Mean Mean Mean

[4] repr. w.o. refinement 88.3 90.2 63.6 (34.8) 80.2 82.7 84.5
[4] reproduced 93.6 96.5 66.5 (37.4) 85.2 88.7 90.2
Ufocal len. 92.2 96.6 64.3 (34.8) 85.5 92.5 89.6
Ufocal len. + 2x num. cam. 94.6 96.2 59.5 (39.1) 82.4 89.9 91.0
Ufocal length + Uxyz 92.2 95.6 61.1 (38.3) 87.4 87.1 89.8
Jiang et al. [19] (repr.∗) 95.1 96.7 72.1 72.5 65.0 76.6
CCBV [46] 94.2 95.4 - - - -
Student CCBV [5]† 88.5 92.3 - - - -
Teacher CCBV [46] [5] 96.6 98.7 - - - -
Nie et al. [37] keypoints 95.8 97.2 - - - -
Nie et al. [37] alignment 95.9 97.1 - - - -

Table 2. Evaluation of multiple candidates for the sports field
registration on several test sets using IoUpart. ∗official released
model; †no fine-tuning on WC14 but learned from private teacher
model; Gray colored: private training data.

els. As the tactic-cam obviously covers a wider range (es-
pecially focal length as seen in Figure 2 A,D,E), we also
test versions, where we uniformly sample from the focal
length parameters (Ufocal length(1000, 6000)) and from the lo-
cations (Uxyz([45,−66, 10]T , [60,−17, 23]T )), and double the
number of training images to 100 000. Training process for
line segmentation and homography estimation remain un-
changed and we refer to Chen and Little [4] for implemen-
tation details or the publicly available source code.

Results: As reported in Table 2 the reproduced re-
sults (base parameters) from Chen and Little [4] at WC14
are of similar quality compared to other methods [19, 37,
46]. We observe a noticeable drop in IoUpart on our test
sets where the camera parameters (especially the camera
position (x, y, z)) are unknown. For the TV12 test set all
configurations fail on challenging images. This further in-
dicates that the original parameters are optimized for the
camera dataset distribution in WC14. However, on the re-
maining three test sets, the approach of Chen and Little [4]
is able to generalize, whereas an alternative solution [20]
fails. Due to the non-availability of (private) training data
a comparison with [37, 46] is not fair (colored gray). Yet,
these approaches seem to yield comparable results. A (stu-
dent) CCBV [46] model from [5] is trained on the out-
put of a teacher model. As it was originally trained on
a large-scale and private dataset, noticeable lower transfer
performance is observed on WC14. In summary, with slight
changes in the hyper-parameters, the approach from Chen
and Little [4] is suitable for the applicability to new data
without fine-tuning by human annotations.

4.5. Player Position Estimation

This section investigates the performance for player po-
sition estimation. Besides, errors of individual modules,
i.e., sports field registration, player detection, and team as-
signment as well as compounding errors of the system are
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discussed. We choose the full datasets as introduced in Sec-
tion 4.1. Despite the shot boundary and shot type classifica-
tion provide good results (see Appendix), we eliminate their
influence by considering manually annotated shots as the re-
sults for position estimation depend on this pre-processing
step. False-negative errors lead to a lower number of rel-
evant frames for the system’s output and for evaluation,
while false-positive errors (e.g., close-ups) primarily pro-
duce erroneous output for homography estimation.

Metrics: We measure the distance (in meters) between
the estimated positions and the actual positions by taking
the mean and median over all individual frames (dmean,
dmed.) and additionally report how many frames have an er-
ror of less or equal than l ∈ {2.0, 3.0} meters (al). As pre-
viously mentioned, the sensor devices that capture position
data (used as ground-truth also in other works [33]) can be
slightly inaccurate. A domain expert confirmed, that errors
in our system of less or equal than l ≤ 2m can be consid-
ered as correct results and that errors of less than 3m can
still be meaningful for some sports analysis applications.

Matching estimated positions to ground-truth: Most of
the time only a subset of players is visible in the broadcast
videos and there is no information about which player is
visible at a certain frame – making evaluation complex. As
there is no direct mapping between predicted and ground-
truth positions and the number of detections may vary, the
resulting linear sum assignment problem first minimized us-
ing the Hungarian Method [23]. Its solution provides a set
of distances for each field player visible in the frame t, for-
mally Dt = {d1, . . . , dn} where n is the number of players
and di = ‖p̂−p‖2 is the distance between the estimated po-
sition p̂ ∈ R2 for the i-th player to its actual (ground-truth)
position p. To aggregate the player distances of one frame,
the use of the average distance as an error metric can be
misleading as an outlier, e.g., a false-positive player detec-
tion (like a substitute player or goalkeeper) can be matched
to a ground truth position with high distance (Fig. 2 D,E,H).
These outliers can drastically affect the average distance
and lead to wrong impressions. To efficiently reject outliers
without using an error threshold as an additional system pa-
rameter, we propose to report the average distances of the
best 80-percent position estimates. Detailed results for this
aggregation are included in the supplemental material.

Player mismatch (pm) due to homography estimation &
player detection errors: Despite the self-verification (sv)
step (Section 3.3) that discards erroneous homography es-
timations, we cannot directly evaluate whether the remain-
ing homography matrices are correct, since some errors are
not considered (e.g., wrong focal length as in Fig. 2 D).
To analyze the impact of very inaccurate homography es-
timations and major errors in player detection, we utilize
ground-truth data to isolate these types of failures. We re-

Team Assignment Constraint
no yes

Dataset sv pm Ratio dmean dmed. acc2 acc3 dmean dmed. acc2 acc3

TV12
1.00 4.15 1.84 0.56 0.71 5.33 3.47 0.27 0.43

X 0.90 2.52 1.66 0.61 0.77 4.06 3.31 0.30 0.46
X X 0.79 2.10 1.55 0.64 0.80 3.39 2.99 0.34 0.51

TV14
1.00 3.33 1.78 0.56 0.70 4.95 2.20 0.31 0.46

X 0.84 2.82 1.71 0.55 0.71 3.57 1.81 0.34 0.51
X X 0.72 2.29 1.64 0.60 0.77 3.17 1.71 0.35 0.53

TC14
1.00 3.71 1.20 0.74 0.83 3.32 1.39 0.65 0.78

X 0.89 1.81 1.14 0.79 0.88 2.16 1.34 0.68 0.81
X X 0.78 1.66 1.13 0.79 0.88 1.92 1.29 0.71 0.81

TV14-S
1.00 2.47 1.36 0.69 0.81 3.19 2.44 0.43 0.58

X 0.92 1.89 1.29 0.73 0.85 2.89 2.34 0.44 0.59
X X 0.75 1.73 1.27 0.75 0.87 2.78 2.32 0.45 0.60

Table 3. Results regarding mean (dmean) and median error (dmed)
in meters and fraction of frames with an error of less or equal
than l meters (accl) of the total system on several datasets. Ratio
indicates how many frames are kept for evaluation after applying
different criteria (system output: only with sv).

project all ground-truth positions to the image space accord-
ing to the estimated homography matrix. If the number of
detected players differs significantly from the actual players
then the homography is probably erroneous (called player
mismatch: pm). We also define a tolerance range of 5% of
the image borders to include players that are at the boundary
to avoid penalizing smallest discrepancies in the estimation
of the homography matrix. Finally, we discard all frames
for evaluation that do not satisfy the following condition:

αt := 1− ζ < |D
real
t |
|Dgt

t |
< 1 + ζ (1)

αt is the indicator function whether a frame t is discarded
based on the ratio of detected players |Dreal

t | and expected
players |Dgt

t |. For example, assuming that ten players are
claimed to be visible, but only six are detected by the sys-
tem, then we want to discard such discrepancies and set
ζ = 0.3. Furthermore, we incorporate a constraint to mea-
sure the results after team assignment by differentiating be-
tween the teams before the linear sum assignment and report
the mean distance over both teams per frame.

Results: Table 3 shows the results for each dataset while
taking the best performing models from Table 2. The re-
sults are summarized for all matches by taking the mean of
the per match results. The results after self-verification sv
are the output of our system and set its tolerance area to
ρ = 3m. The results for other thresholds are reported in
the supplemental material. With the pm criteria the impact
of erroneous sports field registration is analyzed. As evalu-
ated, the applied model for sports field registration provides
good results, however, for a couple of frames the IoUpart
is below 90%. Our sv-process is able to discard some of
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Figure 2. Qualitative results of the proposed system for the extraction of positional player data ordered from low (left) to high error (right):
The top row presents the output without considering teams. The green triangles correspond to the predicted positions (5) of players and the
black points to the ground-truth positions (•); team assignments are colorized red and blue. For the input image the ground-truth positions
are re-projected according to the estimated homography matrix; in the sports field some grid points are highlighted.

these frames as the error drops significantly. For the re-
maining frames, the pipeline provides promising results on
all datasets. The pm criterion demonstrates the high im-
pact of the sports field registration. Even for marginal er-
rors in the homography estimation, i.e., ca. 95% IoU, the
absolute error in meter (mean) is about 1 m when back-
projecting known keypoints [37]. Hence, the applied re-
duction of bounding boxes to one point does not substan-
tially affect the error in meters. The qualitative examples
in Figure 2 (with applied sv) primarily show the output of
the pipeline and support the choice of our metrics. In Fig-
ure 2 (I, J), the output is obviously erroneous, but not dis-
carded in the sv process demonstrating the importance of an
accurate sports field registration. Furthermore, the influence
of false-positive field players (A,D,E), and incorrect team
identification is visible (G,H,I). Since the quantitative re-
sults are weaker with team assignment, this suggests a lack
of generalizability to the test data for the player detection
and team assignment module. Indeed, player tracking is not
covered which would lead to more stable predictions across
multiple frames, and temporal consistency of the sports
field registration is not evaluated quantitatively. However,
the sports field registration appears to provide stable results
even without explicitly treating the temporal component but
could be post-processed in an additional step [24, 47].

In summary, we claim that our system outputs promising
results in many cases providing a first baseline to conduct

various automatic analyses, for instance, regarding forma-
tion detection [2, 36] or space control [12, 41].

5. Conclusions & Future Work

In this paper, we have presented a fully-automated sys-
tem for the extraction of positional data from broadcast soc-
cer videos with interchangeable modules for shot bound-
ary detection, shot type classification, player detection, field
registration, and team assignment. All components as well
as their impact on the overall performance were evaluated.
We investigated which parts of the pipeline influence each
other and how they could be improved, e.g., by fine-tuning
a specific module with more appropriate data. A relatively
small error in meters should allow sports analysts to study
team behavior. Indeed, the adaptation to other sports would
definitely be interesting. In the future, we also plan to in-
tegrate a tracking module. However, additional steps for
player re-identification (within and across shots) are neces-
sary to allow player-based analysis across a match.
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