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Abstract
We propose a novel approach to visual geo-localization

in natural environments. This is a challenging problem due
to vast localization areas, the variable appearance of out-
door environments and the scarcity of available data. In
order to make the research of new approaches possible,
we first create two databases containing “synthetic” im-
ages of various modalities. These image modalities are ren-
dered from a 3D terrain model and include semantic seg-
mentations, silhouette maps and depth maps. By combining
the rendered database views with existing datasets of pho-
tographs (used as “queries” to be localized), we create a
unique benchmark for visual geo-localization in natural en-
vironments, which contains correspondences between query
photographs and rendered database imagery. The dis-
tinct ability to match photographs to synthetically rendered
databases defines our task as “cross-modal”. On top of this
benchmark, we provide thorough ablation studies analysing
the localization potential of the database image modalities.
We reveal the depth information as the best choice for out-
door localization. Finally, based on our observations, we
carefully develop a fully-automatic method for large-scale
cross-modal localization using image retrieval. We demon-
strate its localization performance outdoors in the entire
state of Switzerland. Our method reveals a large gap be-
tween operating within a single image domain (e.g. pho-
tographs) and working across domains (e.g. photographs
matched to rendered images), as gained knowledge is not
transferable between the two. Moreover, we show that mod-
ern localization methods fail when applied to such a cross-
modal task and that our method achieves significantly better
results than state-of-the-art approaches. The datasets, code
and trained models are available on the project website:
http://cphoto.fit.vutbr.cz/crosslocate/.

1. Introduction
Visual geo-localization aims to estimate the geographi-

cal origin of a visual document, i.e. a photograph or a video.

Figure 1. CrossLocate localizes ground-level photographs cap-
tured in diverse environments across the Alps. Our new databases
of rendered image modalities enable the implementation of cross-
modal image-retrieval (i.e. matching real photographs to rendered
imagery). Out of several assessed modalities, we select depth
maps and train a cross-modal global descriptor for large-scale im-
age localization outdoors.

The ability to localize (ground-level) photographs enables
many applications including autonomous navigation, aug-
mented reality, advanced image enhancements, automatic
organization of photo collections, and other historical and
forensic tasks, where geographical information has been
lost or intentionally removed. The ultimate goal is to ac-
curately determine the position and orientation of an image
captured anywhere in the world. Unfortunately, this is far
from possible with current methods. The complexity of the
task leads to the fact that localization methods need to focus
on a specific environment and specific scale.

Visual localization has been researched for several
decades [21, 44, 3]. While tremendous progress could be
observed in the localization focused on outdoor urban ar-
eas [9, 17], localization targeted in nature remains an open
problem. Existing methods localize with an error in order of
kilometers at best [35, 6], or assume a good initial pose esti-
mate and only attempt to refine the camera pose [7, 33, 12].
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Natural environments introduce a number of specific
challenges. They are highly variable, as both their appear-
ance and geometry change with weather and seasons [5].
The amount of available data (i.e. user-taken photographs),
is low compared to urban areas, and the spatial coverage
is sparse and uneven. Accordingly, it is often impossible
to localize in nature using only real photographs. Existing
localization approaches, therefore, operate across multiple
domains or image modalities, such as cross-view methods
[25, 29, 30] utilizing satellite and aerial imagery or cross-
modal methods utilizing 3D terrain models [35].

We focus on visual geo-localization of ground-level pho-
tographs captured in large natural areas, such as the Alps,
without the use of additional sensors. We utilize a digital
elevation model for building databases of rendered views to
be later matched with query photographs (a “cross-modal”
setup) (Fig. 1). We claim the following contributions:

• We create two unique databases by rendering image
modalities (semantic segmentations, silhouette maps,
depth maps) from the entire Alps. We combine
these databases with query photographs to form a new
benchmark for localization in natural environments.

• We provide an insight into the localization perfor-
mance of the image modalities, and suggest depth in-
formation as the best choice.

• We carefully design a cross-modal deep learning
method for localization within mountains (the Alps),
based on a weak localization supervision. Comparison
with previous work shows that our method achieves
state-of-the-art results.

• We demonstrate the difficulty when moving from a
single-domain approach (i.e. photographs) to the pro-
cessing of multiple domains (i.e. photographs and ren-
ders). The behavior observed within a single domain is
not directly transferable to multiple domains, and there
is only a small benefit to synthetic pre-training.

2. Related work
Two significant aspects that influence the design of lo-

calization methods are target environment (urban [3, 43, 27,
10, 40, 4], natural [35, 12, 7, 33], global [21, 22, 44, 41])
and spatial scale (city-scale [3, 43, 30], large-scale [35],
planet-scale [21, 22, 44, 41]). The vast differences be-
tween the individual environments and scales lead to di-
verse approaches. As a result, many underlying localization
principles may be observed (classification [44, 19, 4], re-
trieval [3, 35, 21, 22, 41, 40, 34, 32], regression [27, 9, 10],
structure-from-motion [20, 1, 24, 18]).

Global planet-scale approaches [21, 22, 44, 41] attempt
to localize images captured anywhere in the world, no mat-
ter the environment, which usually leads to localization er-
rors in hundreds of kilometers. Therefore, these methods
may be useful for space pruning and scene type recognition.

Specifically, PlaNet [44] is a deep learning classification ap-
proach to geo-localization. The classification approach was
later shown inferior to the image retrieval utilized by Re-
visited IM2GPS [21, 41]. This highlights the advantage of
building a general image descriptor in comparison to trying
to memorize the entire world within a classification model.
Furthermore, the retrieval approach required less data while
providing better performance. This is an important obser-
vation with respect to natural environments where data is
extremely scarce.

Approaches aimed at outdoor (sub)urban environments
[40, 4] are much more advanced and precise, as they have
gained a lot of attention in recent years. They are typ-
ically used for city-scale localization [3, 43, 30], though
some are precisely tuned for specific places or landmarks
[9, 27]. While these city-scale approaches were designed
for urban areas, they might represent a potential avenue to
the solution of localization in nature. NetVLAD [3] suc-
cessfully utilizes the retrieval approach. It combines custom
feature aggregation with weakly supervised learning to per-
form place recognition despite changes in appearance over
time. Unfortunately, the NetVLAD aggregation results in
large descriptors, which are not ideal for our large-scale lo-
calization, even after the proposed dimensionality reduction
to 4096 dimensions. However, a further reduction at the
cost of accuracy might be possible. HOW [39] is the state-
of-the-art instance-level recognition (retrieval/localization)
method trained on datasets of outdoor photographs of land-
marks and buildings. It uses learned internal local descrip-
tors (HOW) combined with an ASMK image search [38]
approach to perform search and classification in the domain
of landmarks, where it outperforms existing global and lo-
cal descriptors. To a certain extent, the ASMK is considered
a replacement of traditional spatial verification. DELG [14]
is another state-of-the-art large-scale image retrieval ap-
proach. Contrary to HOW, it utilizes both the global and
local descriptors learned within a single model to perform
two-step retrieval and instance-level recognition for outdoor
landmark scenes.

Regression approaches to urban localization [9, 27] can
provide sub-meter spatial precision, but they are usable
only on small areas. Urban localization is often solved
through structure-from-motion (SfM) [20, 1, 24]. SfM ap-
proaches [26, 46, 18] perform localization using 3D mod-
els acquired from many overlapping photographs. This
requires millions of photographs, which makes SfM ap-
proaches unsuitable for large-scale localization in nature.

Methods focusing specifically on natural environments
are far less explored. They often operate at a large scale
[35], corresponding to an area of a country or mountain
range. A separate group of methods focuses only on cam-
era pose refinement from a good initial estimate [7, 33].
Global and urban approaches typically utilize only ordinary
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photographs for localization. However, in natural environ-
ments, the number of user-taken photographs is low and the
spatial coverage is sparse and uneven. This leads to var-
ious methods of cross-view or cross-modal character. The
cross-view methods [25, 29, 30, 42, 31, 37] utilize databases
of satellite or aerial imagery for the localization of ground-
level queries. The cross-modal methods make use of digi-
tal elevation models to create databases of various synthetic
modalities, such as skylines [35]. Synthetic modalities (e.g.
horizon lines and silhouette maps) were successfully used
for a camera pose estimation in nature [7, 33]. Semantic
segmentations were used for camera pose estimation both
in nature [12, 8] and in a city [4]. Assuming that local-
ization methods are powerful enough to work across image
domains, synthetic modalities might offer a solution to the
localization in nature.

Close to our work, horizon-based localization [6, 35]
(abbreviated HLoc) localizes photographs captured in
mountains by extracting visible skylines and comparing
them with synthetic horizon curves stored in a database.
While skylines arguably carry useful information, we show
that other features might be more efficient, especially in sit-
uations where the horizon is obscured or not visible.

3. CrossLocate datasets
Existing datasets of photographs captured in nature [35,

11, 13] are rare and provide photographs usable only as
queries, as they are typically few in number (hundreds
or low thousands) and sparsely distributed. To enable
the development of novel visual geo-localization meth-
ods in natural environments, and to complement the ex-
isting query datasets, we created two novel databases of
“synthetic” ground-level views – spatially non-uniform
“sparse” database and “uniform” database. Each view is
accompanied by detailed information about its position and
orientation. The sparse database serves for fast and sim-
ple experiments, while the uniform database represents the
real-world scenario of localization across a large area of
hundreds of thousands of square kilometers and millions
of images (see Fig. 2). Each of these databases contains
three rendered image modalities – semantic segmentations,
silhouette maps and (absolute) depth maps. Other modali-
ties can be derived, such as previously used horizon lines or
relative depth maps, thus enabling diverse tasks.

In our terminology, a “dataset” consists of “queries” to
be localized and a “database” to be searched. Detailed
dataset information and the procedure behind the creation
of the image modalities are presented in the supplementary
material (Sec. 2).

3.1. Query photographs

In order to avoid a need for the creation of custom
datasets of query photographs, and to design our databases

fittingly, we first choose two existing datasets of pho-
tographs captured in the region of the Alps – the Geo-
Pose3K dataset [11] and the Landscape AR dataset [13].

The GeoPose3K dataset consists of 3111 photographs
with a manually verified position and orientation of each
image. We use all the images as queries to be localized.

The Landscape AR dataset consists of 16K photographs
automatically collected from the Internet, with their po-
sitions and orientations estimated using Structure-from-
Motion. We use 9K of these photographs and combine them
with the GeoPose3K dataset, thus creating a “CrossLocate”
query dataset of 12353 photographs from across the Alps.

We introduce geographically disjoint splits into training,
validation and testing sets, where the area of Switzerland
(40,000 km2) is put aside for testing. The same testing area
was also used by HLoc [35].

3.2. Sparse dataset

The sparse database is aimed at small, fast and simple
experimentation. We use all the 3111 query positions from
the GeoPose3K dataset and render synthetic views at these
positions. At each of these positions, we render 12 views
of resolution 500×500 pixels, each with a 60◦ field of view.
There is a 30◦ difference in the yaw angle of the individual
views, thus covering the whole 360◦ view range. This re-
sults in 37332 views forming the sparse database. In this
way, the sparse database represents the smallest possible
database created without sacrificing any of the 3111 value-
able query photographs.

Since the query positions correspond to the database po-
sitions, the contents of query photographs and correspond-
ing database views are of a similar scale. Therefore, the
localization task is simplified. There is, however, an ex-
pected difference in pitch, roll and especially yaw angle,
which leads to natural misalignment between the queries
and the database, which is left for localization methods to
solve.

We also propose a split into training, validation and test-
ing sets, where the area of Switzerland is assigned to the
testing set. Tab. 1 shows the pairing of the sparse database
with the query photographs from the GeoPose3K dataset,
and the resulting splits. We designate this as the Sparse
dataset.

Sparse dataset train val test total
sparse database 16908 6192 14232 37332
queries (GeoPose3K [11]) 1409 516 1186 3111

Table 1. Numbers of query and database images in the Sparse
dataset, and their split into training, validation and testing sets.
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Figure 2. Our datasets at various zoom levels. Zoom 0 shows positions of query photographs within the delimited area of the Alps. The
testing area of Switzerland is marked as well. Green, orange and pink colors distinguish the proposed training, validation and testing sets,
respectively. The query photographs are paired with our synthetically rendered databases. The sparse database contains rendered views
at positions identical to the query positions. The uniform database has positions defined by a uniform grid with 500 m spatial sampling
across the whole Alps area. Zoom 1 provides a closer look. For simplicity of illustration, only the testing area is densely covered by the
uniform grid of database positions (purple). To speed up the training process, we additionally provide the uniform compact database used
(only) for training (dark green), where only grid positions that are within 1 kilometer from any query position are kept. Zoom 2 offers a
detailed look at a specific position, where a query photograph is complemented by rendered image modalities (semantic segmentations,
silhouette maps and depth maps). There is a total of 12 views (3 shown) at each position for each modality, covering the 360◦ field of view.

3.3. Uniform dataset

The uniform database is designed to enable the real-
world task of localization across a large natural area – the
Alps. The geographical positions included inside the uni-
form database are defined by a dense uniform grid with
a step of 500 meters at both axes. As the database cov-
ers approximately 250 000 square kilometers, this results
in nearly 1 million positions. As in the case of the sparse
database, at each of these positions we render 12 synthetic
views of 500×500 resolution, each with 60◦ field of view
and 30◦ separation in yaw angle. This results in nearly 12
million database views inside the uniform database.

When using the uniform database, the localization task
is much more challenging than in the case of the sparse
database. Not only is the number of potential database
candidates much bigger, but the database positions are not
adjusted to any distribution of query positions. Therefore,
localization methods have to exhibit a sufficient level of ro-
bustness. It also means that this database can be paired with
any dataset of query photographs from the Alps region.

We propose to pair the uniform database with the
“CrossLocate” query dataset of 12353 query photographs
described in Sec. 3.1, forming the Uniform dataset. Consis-
tently with the Sparse dataset, we propose a split into train-
ing, validation and testing sets, with the area of Switzerland
put aside for the testing set, as summarized in Tab. 2.

Working with all 8 million database images assigned to
the training set can lead to excessive processing times. To
make this process faster, we propose a compact version
of the training part of the uniform database. In the com-
pact uniform database (Fig. 2, zoom level 1), the training
database positions are filtered so that only the grid posi-
tions that are within 1 kilometer from some query posi-
tion are kept. This drastically reduces the size of the train-
ing database, while preserving all the database images that
might be required to construct (“positive”) pairs of queries
and their corresponding database counterparts.

Uniform dataset train val test total
uniform database 7.85M 0.89M 1.98M 10.72M
uni. comp. database 161K 0.89M 1.98M 3.03M
queries (CrossLocate) 8324 516 3513 12353

Table 2. Numbers of query and database images in the Uniform
dataset, and their split into training, validation and testing sets.

4. CrossLocate method
To cope with the low amount of available data, i.e. user-

taken photographs, and its sparse and uneven distribution
across natural environments, we propose a retrieval-like lo-
calization method that builds a powerful image representa-
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tion. We design our localization method as a cross-modal
image retrieval and aim to represent each image (place) by
a single global descriptor. This representation is learned
automatically in an end-to-end manner. Each component of
our architecture is carefully selected and empirically vali-
dated (see Sec. 5.4).

4.1. Architecture

The basis for the architecture of our method are stan-
dard convolutional blocks. We use 5 convolutional blocks,
with each block consisting of 2-3 convolutional layers with
ReLU units, and each block is ended with max-pooling. In
the last block, we do not use any pooling, and we also do
not use the ReLU activation in the very last convolutional
layer in order to not restrict the resulting representation to
be non-negative. A detailed description of our architec-
ture is available in the supplementary material. Assuming
a (three-channel) input image I , we obtain a 3D activation
tensor T ∈ RH×W×D seen as H ×W D-dimensional fea-
tures. We apply channel-wise L2 normalization to this ten-
sor at each of the H ×W spatial positions separately.

To produce a single global descriptor as a representation
for each image, we end the architecture with a global max-
pooling layer, and apply another L2 normalization. The re-
sulting descriptor has D = 512 dimensions. As illustrated
in Sec. 5.4, the replacement of any of these components
leads to a significant drop in localization performance. We
specifically stress the importance of the final max-pooling
in our cross-modal task.

Our single (single-branch) model is capable of extracting
the deep representations for both query RGB photographs
and rendered database views. When working with multiple
database modalities, each modality takes one input channel.

4.2. Training process

We initialize our architecture with weights pretrained on
the ImageNet dataset [16] to better cope with the low num-
ber of available images and to combat overfitting. We work
with input images scaled to a unified resolution of 500×500
pixels. This resolution corresponds to the 60◦ field of view
covered by the database views. Therefore, we scale the con-
tent of each query photograph according to its actual field of
view. For example, the useful content of a query photograph
with 30◦ field of view would be 225×225 pixels. In this
way, we preserve the correct scale of the scene and enable
precise localization. Taking different scales into considera-
tion is one of the key aspects that differentiates localization
from general retrieval.

We train our method using a variant of the triplet loss ob-
jective [36], similar to [3], i.e. training is done by present-
ing the method with triplets of so-called query (anchor) im-
ages together with corresponding positive and negative ex-
amples. This loss function is combined with the euclidean

metric, which measures the distance between extracted im-
age representations. The goal is to learn a representation
where the distances between a query and its positive exam-
ple(s) are smaller than the distances between the query and
its negative examples.

We provide technical details and thoroughly describe our
three-step supervision process of selecting the positive and
negative examples in the supplementary material (Sec. 1).

5. Experiments
5.1. Evaluation protocol

We measure the performance of all considered methods
through the recall metric. For each query, a specific number
N of the nearest database candidates is retrieved, and we
measure the percentage of successfully localized query im-
ages (recall). A query is considered successfully localized
if at least one of the retrieved database candidates is within a
specific location distance from the query ground-truth. We
provide results for a wide range of location thresholds, but
emphasize the results at 1 kilometer tolerance.

Since existing methods typically evaluate only the cor-
rectness of the position estimate and ignore the correctness
of the estimated orientation, we do not consider the orien-
tation (yaw angle). However, we show that incorporating
an orientation restriction (30◦) results only in a negligible
performance decrease for our approach. Our main goal is
to measure the capabilities of our method as a standalone
approach. Therefore, we mainly report the recall at N = 1
database candidate retrieved for each query image. How-
ever, retrieval methods may also be followed by a geometric
verification (reranking) of the retrieved candidates. Accord-
ingly, we report the recall at N = 100 database candidates
retrieved for each query too.

5.2. Testing sets

We evaluate our and existing methods mainly on the test-
ing sets of the Sparse dataset (Sec. 3.2) and Uniform dataset
(Sec. 3.3). The uniform database can also be combined with
other datasets of query photographs. Specifically, we use
the CH1 dataset [35] of 203 photographs. We also use the
CH2 dataset [35] of 949 photographs with known positions.
The proposed pairing between queries and databases for the
purpose of testing is shown in Tab. 3.

Testing sets query database
Sparse dataset 1186 14232 (sparse database)
Uniform dataset 3513 1979160 (uniform database)
CH1 [35] 203 1979160 (uniform database)
CH2 [35] 949 1979160 (uniform database)

Table 3. Summary of testing sets used for evaluation and compar-
isons with other methods.
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5.3. Modalities evaluation

To provide an insight into the localization potential of
image modalities, we measure the localization performance
with the individual database modalities. We also measure
results for horizon lines (used in [35]), which we derive
from semantic segmentations. A result for the combination
of the three base modalities is also included. All the exper-
iments were trained on the Sparse dataset (Sec. 3.2), using
the same database modality both in training and testing.

Image modalities. Fig. 3 shows the results for the eval-
uation on the testing sets of the Uniform dataset (left) and
Sparse dataset (right). The worst performance is gener-
ally obtained with horizon lines and semantic segmenta-
tions. This aligns with our expectations, as horizon lines
intuitively contain the least amount of information. While
semantic segmentations theoretically contain more infor-
mation in the form of spatial segments, we attribute their
weak performance to the bad correspondence between the
ideal synthetic segments and the real contents of query pho-
tographs, whose appearance is very variable. Silhouette
maps provide slightly better results as they carry informa-
tion about all terrain discontinuities, not limited to hori-
zon lines. The best performance by a significant margin
is achieved with depth maps. This shall be intuitive, as they
not only include all the information from horizon lines and
silhouette maps, but also offer depth information in each
pixel. The combination of segments, silhouettes and depth
maps (seg-sil-dep) achieves only a minor improve-
ment on the Sparse dataset, which is in agreement with the
mentioned reasoning. The only exception to the described
behavior is observable on the CH1 dataset, where horizon
lines are nearly as good as depth maps (shown in the supple-
mentary material). Therefore, we use depths maps as the
database image modality in the rest of the experiments.

Synthetic modalities. We performed identical exper-
iments with the individual modalities in a fully synthetic
scenario, where the query photographs were replaced with
synthetic views at the corresponding locations (not shown
in plots). These synthetic query images are part of the Geo-
Pose3K dataset [11]. While the depth maps prove to be
the best choice again, the difference between the individ-
ual modalities is much less apparent and often negligible.
This suggests that the gap between single-domain problems
(e.g. synthetic data only) and cross-domain problems is sig-
nificant, as the observations cannot be directly transferred
between these tasks.

Synthetic pre-training. In order to further support the
previous statement, we used the models trained in the fully
synthetic scenario as an initialization point for our training
with real photographs (used as queries). This does not bring
any performance improvement compared to the initializa-
tion based on the ImageNet dataset. This suggests that the
synthetic pre-training does not offer additional knowledge
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Figure 3. Localization performance of different image modalities.
Results are measured on the testing sets of the Uniform dataset
(left) and Sparse dataset (right).

that could be utilized in our cross-modal task.
Cross-modal training. The insufficiency of any of the

single-domain initializations, together with the importance
of our cross-modal training, is further apparent from Fig. 5.
We measure the localization performance when models are
only initialized and directly evaluated, without our cross-
modal training. Both the intialization based on the Ima-
geNet dataset (ImageNet) and the initialization based on
pretraining on the synthetic datasets (not shown) exhibit
weak localization performance compared to the results ob-
tained after our cross-modal training (Our).

5.4. Architecture components evaluation

To emphasize the importance of the design decisions re-
lated to our method’s architecture, we provide results ob-
tained when replacing our base convolutional architecture
with a different one, or when removing the important com-
ponents of our solution. All the experiments were trained
on the Sparse dataset and use photographs as the queries
and depth maps as the database image modality. Results for
the testing set of the Sparse dataset are shown in Fig. 4.

Base architecture. We replaced our base architecture
with the simple architecture of AlexNet [28], as well as mul-
tiple variants of ResNets [23] to represent more advanced
architectures. None of these provided better results. Apart
from the difference in the architecture sizes, the worse re-
sults could be attributed to the local response normaliza-
tions of AlexNet and the batch normalizations of ResNets.
These normalizations are not suitable for the cross-modal
character of our data (photographs and rendered views).

Two-branch architecture. Surprisingly, we found only
a minor benefit in using a two-branch modification of our
architecture (Two-branch). This is an interesting result
as cross-view and cross-modal approaches tend to employ
two-branch architectures [25, 30, 13]. Unfortunately, they
typically do not provide results for a single-branch vari-
ant. According to our observations, the performance of
the cross-modal approach is much more dependent on the
choice of an appropriate architecture (both in terms of layer
types and numbers of parameters) than on providing a sep-
arate branch for each input modality.
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Figure 4. Importance of individual design choices in our approach.
Results measured on the testing set of the Sparse dataset.

Deep representation. Both the first L2 normalization
and the subsequent global max-pooling proved to be cru-
cial to enable our cross-modal localization. The often-used
sum-pooling [45] does not work in our cross-modal sce-
nario. In addition, the removal of the ReLU activation from
the last convolutional layer is important for the richness
of the resulting deep representation. Individual results ob-
tained while keeping the final ReLU unit (ReLU), removing
the first L2 normalization (no-pre-norm) or using sum-
pooling (SPoC), are shown in Fig. 4. We also experimented
with the NetVLAD aggregation, however, the required di-
mensionality reduction, combined with the low amount of
training data, led to a generally bad performance in our task.

Input resolution. Our choice of higher input image res-
olution also leads to better results than those obtained with
the usual input resolution of 224× 224 pixels (res-224).
This is mainly due to the input images being scaled accord-
ing to their field of view, which might result in the down-
scaling of the image content. Our increased resolution helps
balance out this effect.

Field of view information. We also demonstrate the
benefit of scaling the content of input images according to
their field of view, in comparison to discarding the field of
view information and scaling all the images so that they
fit the input resolution. Fig. 4 shows the clear benefit of
working with scaled images, as discarding this information
in training and evaluation leads to a drop in performance
(no-FOV). However, while the scaling is beneficial for
training, it is not essential for evaluation, as our method still
exhibits satisfactory performance when the field of view is
not known (eval-no-FOV).

6. Comparison with state-of-the-art methods

We compare our approach with other methods on the
task of localization of photographs captured within the
mountainous areas across Switzerland. We provide re-
sults for the HLoc method [35], which uses horizon lines
for localization. We further show results for state-of-
the-art single-domain retrieval methods DELG [14] and
HOW [39]. The methods were trained on the Uniform
dataset with 8324 query photographs and depth maps were
used as the database image modality.

6.1. Setup of competing methods

HLoc [35] localizes photographs by first detecting and
encoding horizon lines. Subsequently, it matches them
with a uniform database of synthetic horizon lines, which
are extracted from a digital elevation model. As the au-
thors [35] did not provide the code, we used the published
re-implementation [11]. For a fair comparison, the ge-
ographic positions used for the creation of the synthetic
horizon lines are the same as the positions in the Uni-
form dataset. The original work relied on the user support
and guidance for successful detection of (query) horizon
lines. The authors only provided such semi-automatically
extracted horizon lines for the CH1 dataset. To examine
the method’s behavior on other datasets, and in a fully au-
tomatic scenario, we used a state-of-the-art segmentation
method Deeplab v3+ [15] and a dedicated Edge-Less de-
tection algorithm [2] to detect horizon lines for the query
photographs of the Uniform dataset, as well as the CH1 and
CH2 datasets. We show (see the supplementary material)
that this automatic detection does not lead to a dramatic
decrease in the localization performance compared to the
human guided detection on CH1.

Although the DELG method [14] is defined as a retrieval,
it is trained as a classification task. Therefore, we needed to
adapt our Uniform dataset in the corresponding way. We
created geographical clusters containing both query pho-
tographs and rendered database views from the same loca-
tions while also sharing a similar orientation. The clusters
have a radius of 1 kilometer and views are within 15◦ from
one another. Each cluster is represented by one class for a
total of 2598 classes used during the training.

The HOW method [39] was originally trained in a sim-
ilar way to our approach, as it utilized positive and neg-
ative examples for each query image in combination with
a contrastive loss. However, it is designed to work with
datasets created by structure-from-motion, where 3D point
correspondences between images are known and used for
the selection of positive and negative examples. To enable
the comparison, we replaced their supervision with our lo-
calization supervision which provides training examples in-
cluding augmentation. This puts both methods on a com-
mon ground, leaving emphasis on the method architectures.

6.2. Discussion

We show detailed results for the comparison with our
method on the testing set of the Uniform dataset in Fig. 5.
Additional results on the Sparse, CH1 and CH2 datasets are
available in the supplementary material (Sec. 3).

For the evaluation, we provide recall values at 1 database
candidate retrieved for each query (recall@1, plotted as
solid lines), and also recall values at 100 database candi-
dates retrieved (recall@100, plotted as dashed lines). Re-
call@100 represents the best possible results obtainable
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Figure 5. Localization performance of our approach and state-of-
the-art methods. Solid lines: recall at 1 database candidates re-
trieved for each query, dashed lines: recall at 100 candidates. Our
approach outperforms the state-of-the-art methods in both cases.

with a perfect geometric verification applied to the top 100
database candidates of each query.

For DELG, we provide results for the retrieval step based
on global descriptors (DELG(global)) and for the geo-
metric verification with local descriptors (DELG(local)).
For HOW, we show retrieval results with global descrip-
tors (HOW (global)). We provide results for ASMK
aggregation used in HOW only on the Sparse dataset
(HOW (ASMK)), because of the high memory requirements
of ASMK descriptors in combination with our Uniform
dataset. For HLoc, we provide results for the retrieval step
done based on (query) horizon lines detected by the Edge-
less method (HLoc-E) and Deeplab method (HLoc-D).

The results for recall@1 (solid lines) show that our
CrossLocate approach (Our) is the only one among the
competing methods reaching a reasonable localization per-
formance on the challenging Uniform dataset.

In our setup, the accuracy reached by DELG on the vali-
dation classification set did not translate to the performance
during the retrieval evaluation on the testing set. We at-
tribute this mainly to the unsuitability of the classification
training for localization in natural environments, where data
is scarce. Classes created from such data contain only low
numbers of images which make it difficult for the method to
properly learn the appearance of a given place, and to build
a robust representation as a result.

We attribute the failure of the HOW approach to the dif-
ferent architecture decisions. We show that our L2 nor-
malization of activations, omitted ReLU unit, as well as
max-pooling are crucial for our cross-modal localization,
while the sum-pooling (used in HOW) fails. In addition, the
choice of the ResNet backbone architecture with batch nor-
malizations in HOW is not appropriate for our cross-modal
task. Both HOW and DELG were originally trained on hun-
dreds of thousands of images. Our method does not require
such a large dataset.

Among the compared state-of-the-art methods, the HLoc

approach performs the best. However, its results are still
weak, hinting at the low amount of information available
in horizon lines when localizing the challenging query pho-
tographs of the Uniform dataset across hundreds of thou-
sands of square kilometers and millions of places.

For our CrossLocate approach, the recall@1 signifi-
cantly outperforms the recall@100 of other methods, up to
approximately a 5 kilometer localization tolerance. Beyond
this threshold, the other methods arguably benefit from ran-
domly guessing correct places. At the strict 1 kilome-
ter threshold, we report 38.66% recall@1 and 72.62% re-
call@100. Additional values, as well as qualitative eval-
uation with localization examples, can be found in the
supplementary material (Sec. 4). We also provide a re-
sult for the combination of the database modalities (Our
(seg-sil-dep)), which brings no benefit compared to
our choice of depth maps. Furthermore, we evaluate our
approach when taking orientation into consideration (Our
(orient)). When correct localization is required to be
within 30◦ from ground-truth yaw angle, the performance
of our method is nearly unchanged. We also show that
discarding the field of view information used for the scal-
ing of query photographs leads only to a small decrease
in performance on the challenging Uniform dataset (Our
(eval-no-FOV)). Finally, we provide results for the case
when our method is initialized based only on the ImageNet
dataset (ImageNet), but our cross-modal training is not
performed. Results for obtaining database candidates for
each query by random guessing (chance) are also shown.

7. Conclusions

We addressed multiple aspects of the open and challeng-
ing task of visual geo-localization in natural environments.
We built a large benchmark dataset of various rendered im-
age modalities spanning the whole range of Alps, which
opens the way for future research in the field. The dataset
enabled our ablation studies, where we provided an insight
into the difficulty of this cross-modal task, as well as into
the important specifics of our architecture. The analysis of
the modalities revealed a profound effect of depth informa-
tion on localization performance. Finally, we introduced
a cross-modal retrieval-based localization method, which
matches query photographs to rendered databases and de-
livers state-of-the-art results.
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