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Figure 1: StyleGAN representations enable a range of important and useful artist edits in numerous image domains including
card art. However, current practices make changing creature identity difficult, often altering card style without materially
affecting identity (left pair). Our approach addresses this issue, enabling meaningful edits to card identity (right pair).

Abstract

The state-of-the-art StyleGAN2 network supports power-
ful methods to create and edit art, including generating ran-
dom images, finding images “like” some query, and modi-
fying content or style. Further, recent advancements enable
training with small datasets. We apply these methods to syn-
thesize card art, by training on a novel Yu-Gi-Oh dataset.
While noise inputs to StyleGAN2 are essential for good syn-
thesis, we find that coarse-scale noise interferes with latent
variables on this dataset because both control long-scale
image effects. We observe over-aggressive variation in art
with changes in noise and weak content control via latent
variable edits. Here, we demonstrate that training a mod-
ified StyleGAN2, where coarse-scale noise is suppressed,
removes these unwanted effects. We obtain a superior FID;
changes in noise result in local exploration of style; and
identity control is markedly improved. These results and
analysis lead towards a GAN-assisted art synthesis tool for
digital artists of all skill levels, which can be used in film,
games, or any creative industry for artistic ideation.

1. Introduction

We show that a change in StyleGAN training procedure
results in significant improvements in properties valuable to
artists when training on small and sparse datasets. We pro-

pose a new dataset, the Yu-Gi-Oh card art dataset, that con-
sists of approx. 11k samples spanning dozens of classes and
styles (including humanoid characters, machines, weapons,
natural scenes, animals, and mythical beasts). The sheer di-
versity in identity, pose, lighting, texture, and style makes
the dataset appealing but also challenging to model, leading
to a natural next step for generative modeling to tackle.

In an artist-based workflow, a key user need is to control
content, in this case creature identity. Conventional meth-
ods for doing so are ineffective for small datasets as we
show in Section 4. This is because coarse-scale noise be-
haves like a latent variable, controlling long-scale features
of the image and strongly influencing creature identity as
Fig. 7 demonstrates. We show that by suppressing coarse-
scale noise variables we obtain significant improvements in
quality of synthesis (Section 4.1) and control (4.3).

In the remainder of this paper, we first discuss related ap-
proaches using GANs and sparse datasets (Section 2). We
then describe our data preparation process as well as train-
ing details in Section 3. In Section 4, we explain why our
approach is needed to maximize synthesis quality and con-
trol, using both quantitative and qualitative metrics. From
there, we show in Section 5 that key properties inherent
in StyleGAN like GAN inversion and style-mixing are re-
tained - these will be useful in any production scenario. We
then document how to build an artist workflow to synthe-
size new art in a controlled fashion in Section 6. Such a
workflow can be used by artists to quickly generate new
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Figure 2: Curated samples generated by a GAN trained on card art. No latent truncation or subsequent editing was applied.
AI-assisted art can be used for exploration and even for final quality products. All figures best viewed online, zoomed-in.

character concept art. Finally, we end with a discussion and
conclusion in Sections 7 and 8 respectively.

2. Related Work
2.1. Image Modeling with GANs

Since the introduction of GANs [10, 27], generative
models have shown to be highly fruitful in synthesiz-
ing novel samples from many distributions including faces
[15, 16], landscapes [24], animals [31], and anime [14].
In many of these domains, the quality of the synthesis has
reached a level that is indistinguishable from the training
set as measured by FID [11] and other image quality met-
rics. In nearly all these domains, the dataset consists of
a single class that is well-posed. For example, the FFHQ
dataset includes 70k nicely-cropped human faces. Even in
the low-data regime, GANs have have successfully modeled
the distribution as long as the dataset is class-consistent and
well-posed. However, there is limited work on modeling
distributions with diverse poses and identities as we do here.

In a StyleGAN model, a random vector controls the iden-
tity of the image; the code is fed into a mapping network
consisting of fully connected layers to obtain a latent code
in an extended space. A CNN synthesis network consists
of a 4 × 4 layer and two layers each from 8 × 8 resolution
up to the target resolution. The extended latent code is fed
in at each layer to control the synthesis via weight demod-
ulation. StyleGAN also possesses several desirable prop-
erties including projection (also known as GAN inversion)

whereby the latent code of an existing image can be recov-
ered [1, 21]; style-mixing whereby portions of the latent
codes from different images can be mixed; and controlled
synthesis by perturbing latent codes in important directions
like the network weights’ eigenvectors to obtain semanti-
cally meaningful changes in the output [13, 25].

A follow-up work to StyleGAN dubbed FastGAN [22]
proposes reduced capacity and an architectural modification
called “skip layer excitation modules” which are variants
of skip connections for faster training and smaller data re-
quirements. That work also suggests using discriminator
augmentations which have shown to significantly reduce
the number of training samples required for GAN conver-
gence from the hundreds of thousands to just a few hun-
dred [15, 32]. Our testing of this work did not show any
quality improvements over StyleGAN2, but we did observe
drastically faster training times as promised.

Transformers [26] have also produced convincing re-
sults for image synthesis tasks by predicting tokens in a la-
tent code for a convolutional decoder to use for generation
[8]. Transformer-based synthesis can condition the input
on edges, semantic maps, or other class-conditional cues.
Our testing of Transformer-based synthesis on the Yu-Gi-
Oh dataset did not yield material improvements over Style-
GAN2, and key paradigms like style-mixing and PCA edit-
ing are not as transparent in this work.

3893



Figure 3: Example images from the Yu-Gi-Oh card art dataset (approx. 11k total samples; 7k monsters-only). Diverse
identities, poses, and styles make the dataset appealing but also difficult to model.

2.2. GAN-Assisted Artist Workflows

Developing artist-friendly workflows for GANs to assist
in image synthesis is a recent and fast-growing area. ThisX-
DoesNotExist, where X could be faces, dogs, pottery, or a
host of other image domains, is a family of websites that
randomly generate fake images from a target domain. Art-
breeder productionizes a handful of GAN models (anime,
human faces, animals, real-world objects) using BigGAN
and StyleGAN. Users can randomly generate, interpolate,
and project existing images for subsequent editing in an
easy to use web app. Artbreeder is closest to the work-
flow we describe here, the key differences being the choice
of dataset, our proposed workflow exposing more controls,
and this paper’s documentation of how to productionize a
GAN. Further, this work identifies and addresses a problem
with previous approaches to noise injection without which
GAN editing would be hindered with sparse datasets.

2.3. Sparse Anime Datasets

Modeling card art is extremely challenging due to the
limited data and massive diversity in creature identity and
style, as we show in Fig. 3. Consequently, the sparsity and
absence of a perceptually-aligned classifier means that In-
stance Selection does not work as shown in Section 3.1.

On the Yu-Gi-Oh dataset specifically, each card has sev-
eral metadata associated with it including card type (spell,
trap, monster) and description (which is the card effect for
all but normal monsters). If the card is a monster, meta-
data include number of stars, attack & defense, attribute
(light, dark, wind etc.), and monster type (warrior, zom-

bie, dragon, spellcaster etc.). Artistically, monsters gen-
erally have a creature overlaid on a colorful background.
Spell and trap card art is much more sparse, often including
creatures, natural scenes, and weapons. Our highest quality
networks use monsters only, as we describe in Section 3.2.

We are aware of one other attempt at using GANs to
model Yu-Gi-Oh art from 2018, for which the quality is not
strong [18], and no dataset nor quantitative metric was re-
leased. There was also a recent attempt at modeling a simi-
larly sparse dataset of Pokemon (animated creatures) using
StyleGAN2 [17] which shows some promise but is nowhere
near solved in terms of visual fidelity [19]. In particular,
capabilities of the GAN like projection, style-mixing, and
latent perturbation were not analyzed as we do here. The
Danbooru2017 dataset of 220k well-posed (human) anime
faces has been successfully modeled with StyleGAN with
very strong quality [4]. Follow-up work has expanded the
dataset to more than 4M images, with the subject matter
largely focused on humans.

3. Dataset and Training
3.1. Data Collection and Processing

Collection: To obtain data, we downloaded 11k Yu-
Gi-Oh cards from the YGOPRO database https://db.
ygoprodeck.com/api-guide/. We then extracted a
320 × 320 square with just the art, and downsampled to
256×256 since powers of two are required for StyleGAN2.

Cleaning: We resorted to manual cleaning because In-
stance Selection [6], a technique that identifies sparse re-
gions of the data manifold, was not successful. Instance
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(a) Sparse samples detected by Instance Selection

(b) Manually pruned samples

Figure 4: Instance Selection did not suggest helpful sam-
ples to prune (4a), so we manually pruned samples (4b).
We hypothesize that the absence of a perceptually-aligned
embedding function accounts for the poor IS results.

Selection applied to card art tends to identify samples, that
to a human observer, should not be removed (shown in
Fig. 4a), and fails to identify samples that should be re-
moved (Fig 4b). This is true for multiple embeddings
and pretraining configurations (including Inception and
ResNet50). We speculate that this is because card art is
not perceptually-aligned with the images used to train these
classifiers. We thus manually removed approx. 500 samples
with unwanted overlaid text or poor scanning (Fig. 4b).

Post-Processing: Since StyleGAN2 requires image res-
olutions in powers of 2, we bicubic downsample the im-
ages to create a 256-res dataset. We also create a 512 ver-
sion by running a 2x super resolution network [2, 7] trained
on anime and downsampling from 640 to 512. These net-
works simultaneously perform jpeg denoising/deblocking
as shown in Fig. 5. While early super resolution work
did not generalize well to real-world images due to their
emphasis on a single degradation operator (typically bicu-
bic) [28, 29], recent work (dubbed blind super resolution)
employs multiple degradations like Lanczos and bilinear
that produce networks with better performance on real-
world images [5].

3.2. Training Details

For implementation we start with the official NVIDIA
StyleGAN2 repository in PyTorch: https://github.

(a) Source jpeg at 320-res
shows noise/block artifacts

(b) Upscaled + denoised 640-res
output

Figure 5: In addition to training a 256-res network, we ap-
plied jpeg denoising/deblocking and super resolution on in-
puts (5a) to obtain a clean high res output at 512-res (5b).
Note that the 256/512 res training samples were generated
by bicubic downsampling the 320/640 sources.

com/NVlabs/stylegan2-ada-pytorch, which
uses mixed precision training. We train a 512-res network
on monsters only (7k samples) using four NVIDIA A100
40GB GPUs with a batch size of 96 and 227 hours of train-
ing time for 25M images. The generator and discriminator
have 28.7M and 28.9M params respectively, and we choose
the default hyperparameter for R1 regularization. We found
it useful to implement some learning rate decay to help the
network converge. Our best run achieved a FID of 10.73
(Table 1). Our inference time on one A100 GPU is < 0.05
sec per image, which is suitable for interactive workflows.

Until recently, hundreds of thousands of samples were
required for GAN convergence. However, in the past year
multiple labs independently converged on a set of data aug-
mentations that drastically reduces the amount of data re-
quired (to as low as a few thousand or even a few hun-
dred) [15, 32]. These augmentations are called discrimi-
nator augmentations since they are applied to discrimina-
tor inputs instead of generator inputs (preventing augmen-
tations from “leaking” into the generator). Augmentations
like color jittering, affine transformations, cutout, and noise
can be applied with fixed probability or adaptively. We
found modest improvements in visual fidelity with adaptive
discriminator augmentations (ADA) as compared to with-
out. Our experiments also suggest that ADA is generally su-
perior to augmenting with fixed probabilities on this dataset.
We only use blitting, geometric, and color transforms as
suggested in the ADA literature.

4. Training the GAN & Experimentation

For small, diverse datasets, we show that our proposed
training procedure that suppresses noise in coarse-scale lay-
ers is superior to previous techniques in three ways funda-
mental to real-world use cases: (4.1) higher quality synthe-
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(a) (b)

Figure 6: StyleGAN2 does not always behave as desired in the low-data regime, and coarse-scale noise variables appear
to be the problem. (a) Changing coarse-scale noise variables can cause large variations in identity, which is undesirable in
practice. We show samples produced by a standard StyleGAN2. Samples are obtained by fixing latent variables, and using
distinct noise instances. We expect images whose content is consistent, but instead the samples vary quite strongly. (b)
Coarse-scale noise variables interfere with content control. We show samples obtained by varying a latent variable along a
principal component of the latent distribution (as in [25]). The expected behavior is a strong change in content, with minor
style changes; but the samples vary substantially in style, and minimally in content.

sis; (4.2) more stable exploration in the neighborhood of an
existing image; and (4.3) stronger control over content.

4.1. Better Synthesis

We evaluate StyleGAN2 configurations via FID, sum-
marized in Table 1. All FID’s are computed comparing 50k
synthesized samples with the monsters-only training set of
6800 images (which the variants were trained on).

We compare a standard StyleGAN2 with our model,
which uses noise weights fixed to 0 for coarse-scale noise
during training and inference (specifically, layers of resolu-
tion 42−322). Our model is significantly better for card-art.
We believe our simple modification obtains superior synthe-
sis quality because in the standard model, there are insuffi-
cient samples to control the coarse-scale noise weights. As
a result, the coarse-scale noise becomes entangled with the
latents and both affect the long-scale structure of the image
(see Fig. 6). Our method forces the model to control long-
scale image behavior using only latents and not noise.

Our procedure produces better models for card art.
A standard StyleGAN2 network (noise in all layers) pro-
duces a FID of 12.75; our model produces a FID of 10.73.

Noise has important effects for card art. The impor-
tance of noise is documented in Fig. 5 of the original Style-
GAN work [16]. Noise buffers were shown to enrich high
frequency details at high-resolution layers, and can enable
more complex low-frequency features at the low resolution
layers [9]. Noise is important for card art, too: a Style-
GAN trained with no noise in all layers produces a FID of
72.82 (which is very bad; Table 1). Qualitatively, we found
that the latent maintained complete control over the synthe-
sis, but we observed flatter textures and overall reduction in
richness and dynamic range that is characteristic of card art.

For standard models, fixing noise at inference is
harmful. A standard StyleGAN2 network (noise in all lay-
ers) produces a FID of 12.75. This network relies on ran-
dom noise at inference time. By modifying inference such
that each latent variable uses the same noise buffers, we ob-
tain a much worse FID of 34.42. This suggests strongly that

Configuration FID
No Noise 72.82

Noise all layers, constant noise at inference 34.42
Noise all layers, different noise at inference 12.75

Noise in layers above 32-res, const noise 10.73
Noise in layers above 32-res, random noise 10.75

Table 1: FIDs for various network configurations when
comparing 50k synthesized samples against the training set.
No noise performs worst (first row). The previous off-the-
shelf technique of adding noise to all layers is the next
best (rows 2 and 3). In this case, changing the noise from
constant for each sample (row 2) to different (row 3) dra-
matically improved FID, suggesting that selection of noise
materially affects the generated distribution. Our proposed
method of disabling noise in coarse-scale layers (specifi-
cally, 32-res and lower, rows 4 and 5) best captures the train-
ing data and offers superior GAN editing capabilities.

the noise is controlling long-scale aspects of the synthesis.
For our model, fixing noise at inference has minimal

effect. Our model produces a FID of 10.73 with constant
per-latent noise, and 10.75 with random per-latent noise -
both of which significantly exceed the previous method.

4.2. Fine-Scale Exploration

It is useful for artists to explore the data manifold near a
sample, which changing the noise can achieve. We show
different noise realizations for the same latent in Fig. 7a
(previous network, noise all layers) and Fig. 7b (new net-
work, no noise in coarse layers). Using the old technique,
the identity of the creature dramatically changes based on
the particular noise parameters. In contrast, creature iden-
tity is maintained with our approach. Only high frequency
details change when updating the noise.

Thus using an off-the-shelf network would give unpre-
dictable results when attempting local exploration, which is
undesirable for artists. Our proposed network does not suf-
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(a)

(b)

Figure 7: Our approach of suppressing coarse-scale noise
variables during training results in less aggressive local ex-
ploration, which is more useful in practice. (a) Samples
produced by a standard StyleGAN2. Samples are obtained
by fixing latent variables, and using distinct noise instances,
resulting in large content changes and minor style changes.
An artist cannot use noise changes to explore minor varia-
tions in card appearance because the changes are too drastic.
(b) Samples with the same latent and different noise real-
izations produced by our modified GAN show small high
frequency changes in appearance (e.g. white dots between
the character’s knees), allowing local exploration.

fer from this problem. Though we acknowledge that only
changing finer-scale noise parameters could improve local
exploration of the old network, synthesis quality and control
are still superior with ours (Sections 4.1 and 4.3).

To further validate that our proposed network is con-
trolled by the latent and not noise, we generate 50k latents,
and two sets of noise per latent. The first set of images
uses constant noise for all latents, the second set of im-
ages uses random noise per latent. Thus, the only differ-
ence between the two sets of generated distributions is the
selection of noise buffers, not latents. We perform this ex-
periment independently for both the old and new networks.
After comparing the two distributions generated for each
network, the traditional network with noise in all layers ob-
tained a FID of 21.1, whereas the new network without
noise in low res layers produced a FID of 0.221, suggest-
ing that our new method generates images far less sensitive
to particular noise instances.

4.3. Better Control

Recent work has analyzed the GAN latent space and net-
work weights [13, 25]. By performing PCA, perturbing la-
tent codes in the directions of eigenvectors was shown to
correspond with meaningful changes in the resulting im-

(a) Latent variable control of identity is weak in StyleGAN2 in
sparse, low-data settings. The center column shows three samples
from StyleGAN2 (FID: 12.75) trained on our data. Columns to
the left (resp. right) show the effects of changes of fixed size in the
first principal component of the latent variable (as in [25]); desired
behavior is a change in identity. In practice, this component is
changing style.

(b) Suppressing coarse-scale noise improves latent variable con-
trol of identity. The center column shows three samples from our
variant of StyleGAN2 trained on our data (FID: 10.7). Columns
to the left (resp. right) show the effects of changes of fixed size
in the first principal component of the latent variable. Note how
the identity of the depicted creature is changing strongly. PCA
increments have the same magnitude as in (a).

(c) Same network as (b). Improvements in latent variable control
apply to other principal components, producing a different set of
changes that significantly change identity in contrast to (a)

Figure 8: Latent PCA results.
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Figure 9: Suppressing coarse-scale noise does not affect
other important editing functions. Here we show that pro-
jection and style-mixing still work in our approach. The
first column in dotted lines shows four images from the
training set. The second column shows the result of pro-
jecting those images into the latent space and recovering
the corresponding latent code. The first row shows five syn-
thesized images with known latents. The remaining images
show the result of style-mixing the fine-scale latents from
the first image in that column with the coarse-scale latents
from the first image in that row.

age. For FFHQ (human faces), gender, hair style, skin color
and much more can be independently edited using PCA.
In the context of sparse card art, PCA affects the synthesis
in a complex, at times input-dependent way as we show in
Fig. 8. Simply using previous techniques drastically dimin-
ishes the power of PCA to influence the input as shown in
Fig. 8a, where PCA affects art style but not identity. This is
undesired since we already have a mechanism to edit style
while retaining identity (style-mixing, Section 5). Instead,
by training a network without noise in low res layers, PCA
exposes meaningful controls over creature identity as shown
in Figs. 8b and 8c. Thus, PCA and style-mixing can work
in harmony to edit creature style and identity, which would
be much harder using previous methods.

5. Retaining Key GAN Properties

Latent Projection: One key capability of StyleGAN is
recovering a latent code given a target image [30]. Previous
work has done so quite successfully via an optimization-
based routine [12], favoring solutions that maintain fidelity
after editing. We show projection of images from the Yu-
Gi-Oh dataset and subsequent style-mixing in Fig. 9.

Style-Mixing: Because StyleGAN builds images in lay-
ers of increasing resolution, with each layer controlled by
a latent code, it is possible to mix the high res latents from
one image, defining the style, and the low res latents from

another image, defining the identity. We show that Yu-Gi-
Oh art possesses this capability in Fig. 9. Thus, in an artist
workflow, style-mixing enables creators to generate new art
that is consistent in style.

6. Artist Workflow

We have thus far described a neural network capable of
generating images in the manifold of card art. We now show
how to deploy the network such that it can be used by artists
in a production environment.

For optimal interactive speeds, we recommend deploy-
ing on a machine with a GPU. Considerable advancements
have been made in network quantization and pruning which
can accelerate inference speeds on any hardware [3, 33]
though we do not test them here. Running inference on an
A100 GPU takes 0.05 seconds per image on average, suit-
able for interactive performance.

For interactive viewing and editing of images, we rec-
ommend a GUI like streamlit, which can load, run, and
display StyleGAN2 outputs with minimal code. Stream-
lit also makes it easy to create sliders for editing various
network parameters as well as downloading/uploading la-
tent codes associated with images to ensure reproducibility.
Some use cases may require deploying multiple models -
a simple dropdown in streamlit enables easily selecting be-
tween multiple pretrained models.

The GUI can expose several controls for artists. A ran-
dom seed changes the initial latent code. Another seed is
associated with the noise buffers, which change high fre-
quency details as shown in Fig. 7b. A slider could be ex-
posed for latent truncation, a common technique to reduce
sample diversity in exchange for sample fidelity, by moving
the latent towards the mean of the latent distribution.

For style-mixing, we will need a scalar between 0 and the
number of layers as the cutoff between low res latents from
one image, and high res latents from another. We will need
a random seed for the high res latents to mix with, and a
percentage of style-mixing to apply between the source and
target latent codes for mixing (only at the high res layers).

To edit the latent codes in semantically meaningful direc-
tions, we can introduce a handful of sliders, each of which
corresponds with a PCA direction for the latents. For a 512
dimensional latent code, there will be 512 PCA directions.
To maintain a clean GUI, perhaps only 10 (or so) PCA slid-
ers at a time can be presented to the user, with the user hav-
ing the ability to edit the PCA index of any of the sliders.

Finally, to ensure reproducibility, buttons should be ex-
posed to download the latent and noise associated with the
current image, and upload a latent code (these can be saved
in .npz format). We list all these parameters in Table 2.
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Figure 10: Sequentially editing a random StyleGAN2 output, resulting in a highly stylized creation. Edits (4) and (5) would
have been much harder using previous techniques that fail to sufficiently decorrelate noise from latents as we address here.

Param Name dtype range
Latent Seed int64 [0,max(int64)]
Noise Seed int64 [0,max(int64)]
Truncation float32 [−2, 2]

Style-Mix Seed int64 [0,max(int64)]
Style-Mix Cutoff int32 [0, 15]

Style-Mix Strength float32 [0, 1]
PCA Direction (x10) int32 [0, 511]
PCA Weight (x10) float32 [−40, 40]

Download Latent & Noise N/A N/A
Upload Latent & Noise N/A N/A

Table 2: A list of parameters to control a deployed Style-
GAN in a production environment.

7. Discussion & Future Work

Our overall assessment is that StyleGAN2 does an out-
standing job capturing the vast array of styles - textures,
lighting, and patterns - of Yu-Gi-Oh cards, but shows
some shortcomings in creating structurally coherent crea-
tures with expressive high frequency details. The quality is
not yet indistinguishable from the training set visually and
quantitatively (we got a FID of 10.7). Constructing near-
perfect deepfakes has essentially been done in other well-
posed domains like human faces, anime, landscapes, and
pets. These datasets are class-consistent, train on a higher
volume of data, and produce denser data manifolds.

Our finding that noise and latents are not sufficiently
decorrelated using previous techniques, and subsequent
workaround of training without noise in low resolution lay-
ers, is critical to obtaining editable results that could be
used in a production workflow. We suspect the noise-latent
trade-off issue does not manifest in the well-posed large-
data regime, but will reappear in real-world low-data sparse
contexts like our card art dataset.

Recent work in generative modeling of sparse datasets
has proposed leveraging a pre-trained StyleGAN trained on
a similar domain to the (sparse) target dataset, and transfer-

ring the style [20, 23]. In the context of game art, such work
shows promise, particularly in more complex artist work-
flows where multiple GAN models can be maintained for
different data classes.

This work does not condition the output based on any
of the card attributes (aside from monsters-only), which
follow-up work may consider.

One avenue for improvement could come from applying
Instance Selection, which we hypothesize has failed due to
the absence of a perceptually-aligned embedding. Attempt-
ing to train a classifier on card art (to predict some attribute
of the card, for example) and using the classifier’s features
as an embedding function for Instance Selection could be a
useful experiment to improve quality.

We summarize our suggested art synthesis tool in
Fig. 10. We show how GAN paradigms like truncation,
style-mixing, and latent PCA edits can be applied sequen-
tially to create customized art. We emphasize that the final
PCA edit shown in the figure would have been much harder
using previous techniques that fail to sufficiently decorre-
late noise from latents as we address in this work.

8. Conclusion

We have presented a new card art dataset challenging
for generative networks to model. We showed that Style-
GAN2 can produce compelling creature art with control,
and analyzed the network’s capabilities and limitations. In
doing so, we demonstrated shortcoming of previous GAN
methods, that noise and latents are overly entangled in chal-
lenging image domains, and we successfully addressed this
problem here. We quantitatively and qualitatively showed
that training on this card art dataset without noise in low
res layers improves synthesis quality as well as subsequent
editing capability. Finally, we proposed how the trained net-
work can be deployed into an artist-friendly tool to assist in
designing new creatures.
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