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Abstract

Multi-Task Learning (MTL) aims to enhance the model
generalization by sharing representations between related
tasks for better performance. Typical MTL methods are
jointly trained with the complete multitude of ground-truths
for all tasks simultaneously. However, one single dataset
may not contain the annotations for each task of interest. To
address this issue, we propose the Semi-supervised Multi-
Task Learning (SemiMTL) method to leverage the available
supervisory signals from different datasets, particularly for
semantic segmentation and depth estimation tasks. To this
end, we design an adversarial learning scheme in our semi-
supervised training by leveraging unlabeled data to optimize
all the task branches simultaneously and accomplish all tasks
across datasets with partial annotations. We further present
a domain-aware discriminator structure with various align-
ment formulations to mitigate the domain discrepancy issue
among datasets. Finally, we demonstrate the effectiveness
of the proposed method to learn across different datasets on
challenging street view and remote sensing benchmarks.

1. Introduction

Multi-Task Learning (MTL) aims to leverage information
contained in multiple related tasks to improve the perfor-
mance of each single task [66]. The potential advantages of
MTL over separate learning of each task can be attributed to
the generalization ability by sharing representations among
related tasks as well as the benefit of multiple sources with
supervision. It has been widely used in numerous tasks in
computer vision [28], natural language processing [12], and
speech recognition [29], to name a few.

Recently, deep convolutional neural networks (CNNs)
have been successfully applied to dense prediction tasks such
as semantic segmentation [37, 7] and depth estimation [14,
16]. One of the reasons for this success is the construction of

Figure 1. Problem illustration. Given two datasets A and B, each
of which only provides the annotation for partial tasks, we ex-
ploit the multi-tasking across datasets and mitigate the domain
discrepancy to learn a more generalized model for all tasks on both
datasets.

large-scale and diverse datasets with pixel-wise annotations.
Typical MTL methods train all tasks simultaneously within
one dataset that contains the complete multitude of ground-
truths. However, in the real-world scenario, a single dataset
usually does not contain all necessary ground-truths. In
addition, annotating the dataset for missing tasks entails
significant effort and time, especially for the dense prediction
tasks. To tackle this issue, one can leverage different datasets
that contain the corresponding annotations for each task.
Therefore, it is of great interest and importance to enable the
network to leverage different supervision information from
diverse datasets in the MTL framework [28, 35].

We consider the setting where only disjoint datasets are at
our disposal with partial ground-truths, e.g., dataset A devel-
oped for semantic segmentation and dataset B collected for
depth estimation, as shown in Figure 1. It is in line with our
intuition that a model can learn generalized representations
from different datasets while ensuring at least one reliable su-
pervision to train each task. To this end, one straightforward
approach is to learn from one dataset for one task at a time,
and alternatively train the joint model for MTL [28]. Nev-
ertheless, such a learning scheme does not consider domain
gaps across datasets [56, 44].
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In this work, we propose a Semi-supervised Multi-Task
Learning (SemiMTL) method to expand the MTL setting for
training the joint model across different datasets with partial
annotations. One challenge is how we train a multi-task
model from diverse datasets, where each may only con-
tain partial ground-truths for one task. Here, the problem
can be treated within the semi-supervised learning (SSL)
paradigm where the labeled data in one dataset is fully su-
pervised and the unlabeled data in other datasets is used in
a semi-supervised manner. Specifically, we use the adver-
sarial learning [18] in the structured prediction space for
semi-supervised training and iterate a similar scheme on all
datasets and tasks. As such, all tasks are accomplished in the
MTL setting. The second challenge arises from the domain
discrepancy across diverse datasets as the data distributions
often vary significantly. Therefore, it is important to align
features across domains to learn a model that generalizes to
different datasets. However, unlike the common setting us-
ing adversarial alignment [8, 56] that considers two domains
to distinguish the real-fake distributions, we have multiple
prediction distributions from diverse datasets. Therefore, we
propose a domain-aware discriminator structure and analyze
various learning modes to mitigate the domain discrepancy.
The strategy differentiates the prediction distributions from
multiple domains, which in turn enforces the generator to
produce more plausible results to confuse the discriminator.

In practice, we focus on two fundamental yet challenging
pixel-wise prediction tasks: semantic segmentation [37, 7]
and depth/height estimation [14, 16]. These two tasks learn
the semantic and geometric properties for scene understand-
ing, where their correlation has been explored by joint train-
ing [67, 2]. We validate the effectiveness of our SemiMTL
method in the challenging autonomous driving and remote
sensing scenes, under various settings including the cross-
city, cross-dataset, and cross-domain scenarios.

The contributions of this work are summarized as follows:
1) We propose a multi-task learning setting that leverages su-
pervisory signals from diverse datasets in a semi-supervised
paradigm; 2) We introduce a domain-aware adversarial learn-
ing approach to address the domain discrepancy problem dur-
ing training across different datasets; 3) We demonstrate the
effectiveness of our proposed method for semi-supervised
multi-tasking across datasets in challenging street view and
remote sensing scenarios.

2. Related Work
Multi-task Learning. MTL has been widely used in vision
tasks, such as instance segmentation [17], semantic segmen-
tation [36, 70], and face analysis [23]. As discussed in [52],
MTL is typically conducted with either hard or soft parame-
ter sharing of hidden layers in the context of deep learning
[42, 28, 61, 41, 68, 71, 58]. On the other hand, several ap-
proaches explore to adaptively calibrate the relative losses

of different tasks instead of a naive weighted summation
[9, 53, 26, 63, 4, 59]. MTL can also be integrated with
other learning paradigms, including unsupervised [72], self-
supervised [51], and transfer learning [64, 49, 6], to either
improve the performance of supervised MTL via additional
information or use MTL to facilitate other paradigms [66]. A
more comprehensive discussion of deep MTL methods can
be found in [57]. Note that this study aims to solve a new
learning paradigm for MTL rather than designing specific
MTL architectures, as our method is compatible with other
general MTL networks.

A few semi-supervised MTL methods have been devel-
oped [38, 10], but do not address the challenging pixel-level
tasks to train models across different datasets with the ab-
sence of ground-truths. While some efforts have been made
[35, 28, 46, 49, 6], these approaches do not conduct syn-
chronous MTL on different datasets. To optimize jointly
with the new labeled task, [35] preserves the models trained
on old tasks to provide pseudo-ground-truth for these un-
labeled tasks, where the joint training strategy can be seen
as an upper-bound of their performance. The UberNet [28]
model is proposed to update network parameters after ob-
serving sufficient samples to simulate asynchronous joint
training. However, it does not account for domain gaps
across diverse datasets. On the other hand, several recent ap-
proaches [46, 49, 6] mainly tackle knowledge transfer across
tasks rather than across datasets with partial annotations.
Semi-supervised Learning. SSL methods leverage the vast
amount of unlabeled data for classification and regression
problems. Perturbation-based methods [45, 39] aim to utilize
a teacher model to teach a student module whose predictions
should be consistent. Similarly, several approaches exploit
the fusion strategy by stochastic feature selection [33] or
learning from multiple regressors [34]. Another line of re-
search in SSL encourages the model to generate confident
predictions on unlabeled data, e.g., entropy minimization
[19] and pseudo-labeling [24]. Auxiliary tasks can also
be applied for SSL to integrate supervised and un-/weakly-
supervised learning [50, 22]. More recently, several models
in the adversarial setting [18] have been developed to ei-
ther generate realistic samples for better discrimination [54]
or distinguish directly the prediction for better generation
[24, 31]. Nevertheless, the methods based on adversarial
learning are not designed within the MTL framework.
Dense Prediction for Scene Understanding. Scene under-
standing involves a group of regression and classification
tasks, and we discuss the most related work for semantic
segmentation and depth estimation. Semantic segmentation
can be treated as a pixel-wise classification problem tack-
led via deep models, such as the FCN [37] and Deeplab [7]
networks. The recent methods mainly emphasize on learn-
ing and assembling features from multiple scales [69, 20]
or multiple layers [3, 55], or leveraging global context in-
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Figure 2. Overview of the proposed SemiMTL method. We design the SemiMTL algorithm based on an adversarial learning framework.
During the training process within each dataset, we leverage the ground-truth to supervise the labeled tasks and construct one task-specific
discriminator for each unlabeled task to provide semi-supervisory signals. We optimize the MTL network simultaneously for all task
branches over all datasets. The discriminators can be updated after observing the ground-truth and predictions from different datasets to
learn the domain knowledge.

formation [25, 65]. Similarly, deep models have been suc-
cessfully applied to depth estimation [14, 16], and numerous
algorithms have been developed through supervised [62],
semi-/self-supervised [48, 15], unsupervised [16, 44] , and
multi-tasking [30, 11] settings. Since these two tasks are
closely related to learning the semantics and geometry of
scenes, it is of great interest to accomplish them in a unified
framework [67, 2].

3. SemiMTL

In this work, we treat the labeled and unlabeled tasks
as supervised and semi-supervised problems respectively
during the training process within one dataset, which al-
lows us to leverage unlabeled data to further train the task
branches without annotations. We propose the SemiMTL
method within the adversarial learning framework [24, 56],
where the discriminator and adversarial loss play the role of
training signals when the annotation is not available for the
training samples. In addition, we present a domain-aware
structure for the discriminator and analyze different align-
ment patterns to address the domain gap in multi-tasking
across datasets. This alleviates the domain discrepancy is-
sue while leveraging the supervision signals from diverse
datasets. In the remainder of this section, we formulate the
proposed SemiMTL framework for dense prediction tasks in
scene understanding.

3.1. Approach Overview

Problem Definition. We start with considering a typical
MTL problem over an input space X and a collection of task

output spaces {Yt}t∈T , where T is the total task set. Given
such a dataset, we wish to learn the prediction model per task
as Gt(x; θ

sh, θt) : X → Yt, where θsh are the shared pa-
rameters among tasks and θt are the task-specific parameters.
In this work, we address a different MTL setting for training
across datasets, where each dataset only contains annotations
for partial tasks. Therefore, we extend the setting in [28, 64]
and denote the input spaces

{
X k

}
k∈S , where S is the set of

all datasets. Here we assume to have two datasets (A and B)
and two tasks (Tseg and Tdepth) as semantic segmentation
and depth estimation. However, each dataset only has some
supervision, i.e., YAseg for task Tseg in dataset A and YBdepth
for task Tdepth in dataset B, as shown in Figure 2.

Baseline: Joint Training. We first apply a joint training
baseline method [28] that iteratively explores each dataset
and updates the model (i.e., θsh and θt) after observing suffi-
cient annotated samples for each task. However, leveraging
only partial annotations from each dataset may produce bias
in the shared encoder as it does not observe gradients from
unlabeled data. As a result, the model may perform well on
the labeled tasks while generalizing poorly on the unlabeled
tasks in each dataset.

Proposed Method. To address the above-mentioned issue,
we propose to train the model on one domain X k by mini-
mizing the supervised loss for labeled task Tt with annotated
samples (xk, ykt ) in (X k,Yk

t ), as well as the semi-supervised
loss for unlabeled tasks T \ Tt with identical samples xk

in X k that do not have corresponding annotations. To con-
sider all the input domains X , we iteratively apply the above
training scheme over each dataset X k to fully leverage the
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supervisory signals for each task.
With this formulation, our model is able to optimize all

the task-specific decoders {Ft; θ
t}t∈T simultaneously with

supervisions either from the supervised loss or the semi-
supervised one on unlabeled data. Therefore, the shared
encoder

{
E ; θsh

}
can also update with gradients accumu-

lated from the supervision of all tasks on both labeled and
unlabeled data, which avoids the bias only on labeled data.
We will describe the details about our proposed framework
and semi-supervised loss in the following sections.

3.2. Objective Function

We formulate our SemiMTL problem as an adversarial
learning framework, which consists of two modules: the
generator G and the discriminators {Dt}t∈T . The generator
G is a multi-task network that contains a shared encoder E
parameterized by θsh and task-specific decoders {Ft}t∈T
parameterized by θt.
Typical MTL Loss. Given an input image x ∈ RH×W×3,
the typical MTL loss function is defined by the task-specific
supervised loss Lt

gt for task t, with a weight wt to balance
the loss functions among tasks:

Lmtl =

|T |∑
t=1

wtLt
gt(Ft(E(x)), yt), (1)

where yt is the ground-truth for task t.
Discriminator Module. In our setting, each dataset may
not contain the label for all the tasks, indicating that the
task-specific branches cannot be supervised by unlabeled
data via Eq. (1). Here, our goal is to accomplish all tasks
to simultaneously update both the shared encoder and task-
specific decoders using both labeled and unlabeled data.
To this end, we utilize adversarial learning to construct a
semi-supervised objective for the data without ground-truths.
Our approach is motivated by the observation that the output
space is structured in dense prediction tasks such as semantic
segmentation and depth estimation [24, 56]. For example,
the street-view images might have significant differences in
appearance, but their outputs share many similarities such as
spatial layout and local context.

In [56], they introduce a discriminator to distinguish
whether the distribution is from the ground-truth or the pre-
diction of unlabeled data. Differently, our method deals with
the SemiMTL setting that contains labeled data from one do-
main and unlabeled data from other domains. Thus, we intro-
duce a discriminator module that can tell which domain that
the prediction comes from, i.e., either the ground-truth or the
prediction of the domain X k. Specifically, we first forward
the input image x to the generator network G = {E;Ft}
and produce the task-specific prediction ŷt = Ft(E(x)) for
task t, which is then taken as the input to the discriminator.
We minimize the cross-entropy loss Lt

D for the task-specific

Figure 3. Illustration of alignment strategies. In our setting, as-
sume only dataset A contains the annotations YA for task Tseg .
The predictions ŶA and ŶB are obtained from the labeled dataset
A and unlabeled dataset B respectively. For the alignment of this
task, we directly enforce ŶA as close to ground-truth distribution
as possible, while align ŶB with different strategies, that is, to the
distributions of (1) prediction ŶA, (2) ground-truth YA, or (3) their
intersection ŶA ∪ YA.

discriminator Dt :

Lt
D = Lce(zt, c) = −

∑
h,w

c log(Dt(zt)
(h,w,c)), (2)

where c is the one-hot domain label and zt denotes the input
to the discriminator, which could be the ground-truth yt
(c = 0) or the prediction ŷt from the c-th dataset (domain).
In this paper, c is a 3-dimensional one-hot vector, in which
a three-way classifier is utilized in the discriminator to tell
whether the input is from the ground-truth or the prediction
from dataset A or B.
Adversarial Loss. Based on the discriminator, our goal is
to provide training signals for unlabeled data and enforce the
prediction to be close to the ground-truth distribution. How-
ever, it is not trivial to directly apply conventional adversarial
alignment [24, 56] as our setting involves predictions from
multiple datasets. Here, we investigate several alignment
strategies that can achieve the desired goal, as shown in Fig-
ure 3. Suppose the dataset A is labeled for task t but not for
the dataset B, we note that there are three types of distribu-
tions for each task: the ground-truth yAt , the prediction from
the labeled dataset ŷAt , and the prediction from the unlabeled
dataset ŷBt . We can directly align the distribution of ŷAt to
yAt as they are from the same domain A (intra-domain loss):

Lt
intra = −

∑
h,w

log(Dt(ŷ
A
t )(h,w,0)), (3)

where label 0 indicates the ground-truth. For the inter-
domain loss, we exploit different training modes and con-
struct the corresponding loss function. Here, we can choose
to align the distribution of prediction ŷBt from the unlabeled
data to the one from the labeled domain, i.e., ŷAt (labeled as
1) as Mode 1:

Lt
inter = −

∑
h,w

log(Dt(ŷ
B
t )

(h,w,1)), (4)

or the ground-truth yAt as Mode 2:

Lt
inter = −

∑
h,w

log(Dt(ŷ
B
t )

(h,w,0)), (5)
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Algorithm 1 Training procedure of the SemiMTL method.
for iteration i = 1 to N do

for dataset k ∈ {1, ..., K} do
{Construct mini-batch}
for task t = 1, ...,m with ground-truth do
{calculate gradients for E and Ft}
Lt
G ← wtLt

gt + λintraLt
intra

{calculate gradients for Dt}
Lt,k
D ← Lt

D(yt, 0) + Lt
D(ŷt, k)

end for
for task t = m + 1, ..., |T | without ground-truth do
{calculate gradients for E and Ft}
Lt
G ← λinterLt

inter
{calculate gradients for Dt}
Lt,k
D ← Lt

D(ŷt, k)
end for
{Freeze {Dt}, and update G with}
LG =

∑|T |
t=1 Lt

G
end for
{Freeze G , and update {Dt} with}
Lt
D =

∑K
k=1 Lt,k

D
end for

or the joint distribution of yAt and ŷAt as Mode 3:

Lt
inter = −

∑
h,w

log(1−Dt(ŷ
B
t )

(h,w,2)), (6)

where label 2 denotes the prediction of unlabeled data ŷBt .
Hence we define the semi-supervised loss for task t as

Lt
semi = λintraLt

intra + λinterLt
inter, (7)

where λintra and λinter indicate the weight for the intra-
and inter-domain adversarial losses, respectively.

We denote the SemiMTL framework applying these
alignment modes as SemiMTL (M1), SemiMTL (M2), and
SemiMTL (M3), respectively. We utilize the SemiMTL (M2)
mode as our default implementation. Their effect on the per-
formance of tasks is illustrated in Section 4.3. Note that we
utilize the same adversarial training scheme to the task Tseg
and Tdepth, which is also applicable to other similar tasks.

3.3. Optimization

We apply the synchronous SGD for joint training [28] as
the baseline training method, where we extract mini-batches
from every dataset iteratively and optimize all parameters
synchronously using (1) after observing labeled samples for
each task. With the baseline training approach, we construct
our SemiMTL model, where the unlabeled tasks guided by
the discriminators can be optimized simultaneously with the
labeled ones. The main steps of this process are summarized
in Algorithm 1. Within each training iteration, we minimize
the overall objective functions for the generator:

LG =

|T |∑
t=1

wtLt
gt + Lt

semi, (8)

and for each discriminator Dt:

Lt
D = Lt

D(yt, 0) +

K∑
k=1

Lt
D(ŷt, k), (9)

where K is the number of datasets/domains. The SemiMTL
model is iteratively trained in a way similar to the GAN [18]
method: the discriminator Dt aims to classify the ground-
truth/predictions from different domain distributions, while
the generator G attempts to fool Dt by producing predictions
that are as indistinguishable to the ground-truth as possible.

3.4. Network Architecture

Encoder and Decoder Networks. The proposed SemiMTL
framework can integrate any type of deep MTL architectures.
Here we adopt the commonly utilized encoder-decoder MTL
model that consists of a shared encoder coupled with two
task-specific decoders to estimate segmentation and depth
tasks. We leverage the ResNet101 [21] backbone for the
shared encoder to obtain deep feature representations, which
are passed to two parallel branches for independent task de-
coding. The segmentation decoder is built upon the PSP
module [69] to increase contextual information for seman-
tics, followed by a softmax layer to predict semantic classes.
The depth decoder is constructed with several convolutional
layers and up-sampling operations to produce detailed depth
features and a regression layer to estimate depth. Finally, we
apply an up-sampling layer to the output maps for both tasks
to match the input image size. To optimize the network, we
adopt the cross-entropy loss for semantic segmentation and
the BerHu loss [32] for depth estimation.
Discriminator Networks. The structure of the discrimina-
tor network is similar to that in [47]. It consists of 5 convo-
lution layers with 4 × 4 kernel and {64, 128, 256, 512,K}
channels in the stride of 2. The first four convolution layers
are all followed by a spectral normalization layer [43] to
stabilize the training process and a leaky ReLU [40] unit pa-
rameterized by 0.2. We implement an up-sampling layer to
transform the output to the input size. The discriminators for
both tasks share the same architecture except for the input
layer which takes the segment and depth maps respectively.

4. Experimental Results and Analysis

To demonstrate the effectiveness of the SemiMTL
method, we carry out experiments on several publicly avail-
able datasets for scene understanding, including the ISPRS
Potsdam and Vaihingen [1] remote sensing datasets, and
the real-world Cityscapes [13] and synthetic Synscapes [60]
street-view datasets. In particular, we evaluate the algorithms
in three scenarios, including the cross-city, cross-dataset, and
cross-domain settings with various datasets. In the following,
we will describe the experimental details.
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4.1. Experimental Setup

Datasets. The Cityscapes dataset contains high-resolution
outdoor images for urban scene understanding, which is
collected from 50 diverse cities. It is annotated with pixel-
wise semantic labels, associated with pre-computed disparity
maps that can serve as pseudo depth ground-truth. The
Cityscapes-depth dataset is an additional train-extra set of
Cityscapes with disparity ground-truths, which is collected
from different cities with the Cityscapes. The Synscapes
dataset is generated by photorealistic rendering techniques
to parse synthetic street scenes, containing 25K RGB images
together with accurate pixel-wise class and depth annota-
tions. Since this dataset does not provide an official split,
we take the consequent 20K/1K/4K samples as our train-
ing/validation/test sets respectively. We estimate the inverse
depth to represent points at an infinite distance like the sky as
zero. As the images of these datasets are of high resolution,
we resize the images to 512×1024 for experiments.

The ISPRS Potsdam and Vaihingen datasets were ac-
quired by flight campaigns over German cities, accompanied
by digital images, semantic labels, and digital surface model
(DSM) height data. The digital images were captured by the
airborne color-infrared camera in different channels: near-
infrared (NIR)/infrared (IR), red (R), and green (G). The
DSM data was acquired by LiDAR and the normalized DSM
(nDSM) data was also made available, which is normalized
to the range [0,1] in our experiments. The images in Potsdam
and Vaihingen are composed of the IRRG bands at a ground
sample distance (GSD) of 5cm and the NIRRG bands at a
GSD of 9cm, respectively. We follow the official split for
training and testing set as in [1]. In our experiments, we re-
size the image data in Potsdam to the GSD of 9cm to match
with the Vaihingen dataset. We then extract patches of size
512×512 from the raw high-resolution images using a 50%
overlapped sliding window along both the row and column.
Evaluation Metrics. For the evaluation of segmentation,
we use the mean pixel accuracy (pAcc) and mean Inter-
section over Union (mIoU) metrics. The pAcc indicates
the total accuracy of pixels regardless of classes while the
mIoU is computed by averaging the Jaccard scores over all
predicted categories. To evaluate the depth task, we adopt
several quantitative metrics following [14, 16], including
(a) abs relative error (AbR), (b) root mean squared error
(RMSE), and (c) accuracy with thresholds: % of ŷn s.t.
max( ŷn

yn
, yn

ŷn
) = δi < 1.25i (i ∈ [1, 2, 3]), where ŷn and yn

denote the prediction and ground-truth of depth at the n-th
pixel. We also measure the multi-task performance ∆M
[41], i.e. the average per-task performance gain of multi-task
model m compared with the single-task baseline b :

∆M =
1

|T |

|T |∑
t=1

(−1)lt(Mm,t −Mb,t)/Mb,t, (10)

Table 1. Quantitative results on the Cityscapes dataset. We train
all methods with the training and train-extra sets, and evaluate them
on the validation set for both tasks. The cyan metrics indicate lower
is better while pink ones mean higher is better.

Method Segmentation Depth MTL

pAcc mIoU AbR RMSE δ1 δ2 δ3 ∆M(%)

STL Seg 94.8 71.4 - - - - - 0.0
STL Depth - - 0.414 6.744 67.6 84.5 92.0 0.0

JTL [28] 94.8 71.4 0.329 5.469 76.6 91.2 95.7 +9.4
SemiMTL 94.9 71.9 0.287 5.234 79.3 92.6 96.3 +11.5

where M indicates the representative measure for each task
and we adopt the mIoU and RMSE metric as in [41]. lt = 1
if a lower M means a better performance, and 0 otherwise.
Implementation Details. The SemiMTL method is imple-
mented with PyTorch using Nvidia Titan RTX GPUs. We
initiate the encoder backbone parameters with the ResNet101
[21] model pre-trained on ImageNet, and the decoders and
discriminators are randomly initialized. We perform the data
augmentation on the fly following [65] and fix the crop size
during the training process. The MTL network is trained
by the standard SGD optimizer [5] with momentum 0.9
and weight decay 10−4. The learning rate is initialized by
0.01 and decreased using the polynomial decay with power
0.9. We adopt the Adam optimizer [27] for training the
discriminators with learning rate as 10−4 and momentum
as (0.9, 0.99). In all experiments, we fix the task weights
as wseg = 1.0 and wdepth = 0.01 in the MTL loss and
set λintra = 0.001 and λinter = 0.0001 to balance the
semi-supervised adversarial losses. We use the same hyper-
parameters among all methods for fair comparisons.

4.2. Evaluation of SemiMTL Framework

We compare the experimental results of the SemiMTL ap-
proach with different baselines. We first build the models for
each task with identical encoder structure and task-specific
decoder head, termed as single task learning (STL). Then
we utilize the joint training algorithm [28], named joint task
learning (JTL), to train the MTL model across datasets. We
also apply a domain adaptation algorithm [56] to both STL
and JTL schemes, which does not consider the prediction
distributions from different domains. Extensive experiments
demonstrate the effectiveness of our method to leverage semi-
supervised information during multi-tasking across datasets.
Across Cities. In this setting, we conduct experiments on
the Cityscapes and Cityscapes-depth datasets where the for-
mer and latter only provide segmentation and depth ground-
truths, respectively. They are captured from different Euro-
pean cities at different seasons, which can verify our method
in a small domain gap scenario. We train the methods on the
training sets of two datasets while evaluating them on the
Cityscapes validation set containing the labels for both tasks.
We fix the crop size as 256×256 during the training step.

Table 1 shows the evaluation results of our proposed algo-
rithm against baseline methods, where our method achieves
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Table 2. Quantitative results on the Potsdam and Vaihingen
datasets. We train all the methods with the segmentation ground-
truth from Potsdam and depth ground-truth from Vaihingen, while
evaluating the performance of each task on both datasets to validate
whether the above trained models generalize well across datasets.

Method Segmentation Depth MTL

pAcc mIoU AbR RMSE δ1 δ2 δ3 ∆M(%)

Po
ts

da
m

STL Seg 89.5 79.7 - - - - - 0.0
STL Depth - - 6.926 4.686 16.1 24.8 33.7 0.0

DA Depth [56] - - 4.985 4.677 28.5 36.3 46.4 -
JTL [28] 90.0 80.7 2.517 4.430 31.2 41.7 52.3 +3.4

SemiSD [56] 90.2 80.8 2.695 4.322 34.1 44.7 55.3 +4.6
SemiMTL 90.5 81.4 2.420 4.217 38.4 47.0 57.3 +6.1

V
ai

hi
ng

en

STL Seg 64.3 42.4 - - - - - 0.0
DA Seg [56] 68.8 47.5 - - - - - -
STL Depth - - 1.324 1.899 48.7 68.9 78.5 0.0

JTL [28] 79.3 62.2 1.338 1.949 48.8 68.1 78.1 +22.1
SemiSD [56] 81.4 63.8 1.432 2.088 49.6 67.5 78.1 +20.4

SemiMTL 81.6 64.9 1.316 1.802 50.9 69.4 78.4 +29.2

Figure 4. Qualitative examples of the SemiMTL method on the
remote sensing scenario. The first and last four columns are the
examples from the Potsdam and Vaihingen, respectively.

the best performance on both tasks. It is worth noting that
compared with the separate training of each task, the joint
training of both tasks achieves identical results for the seg-
mentation task but obtains significant improvements on the
depth task. The results indicate that the high-level segmen-
tation task facilitates more on the low-level depth task. The
proposed SemiMTL method improves further on all tasks
compared with the JTL scheme.
Across Datasets. We conduct the cross-dataset experiments
on the Potsdam and Vaihingen remote sensing datasets,
which are collected with significantly different conditions
such as imaging sensors, GSD, and even color channel com-
positions. Only the ground-truths of Potsdam segmentation
and Vaihingen height are available during the training step.
We then evaluate each task on the validation set of both
datasets to verify the generalization ability, as the perfor-
mance boost of all tasks on all datasets is preferred rather
than improving only the specific tasks with supervision in
each dataset. We fix the crop size as 384×384 for training.

The quantitative results of each task on both datasets are
shown in Table 2. We adopt the domain adaptation (DA)

method [56] to the STL of each task, namely, DA Seg and
DA Depth. This method is originally proposed for semantic
segmentation, however, it is also applicable to other dense
prediction tasks with structured output space such as depth
estimation. In the STL experiments, the models perform
well on the supervised dataset but obtain poor results on
the unsupervised dataset, whereas the DA method is able
to improve the performance of every single task. The JTL
[28] algorithm leverages more comprehensive supervision
from related tasks in each dataset, which can learn useful
complementary features in the shared encoder. As such, it
achieves significant improvement for the task without super-
vision in each dataset, e.g., the depth task in Potsdam and
the segmentation task in Vaihingen.

Based on the above observation, we propose the
SemiMTL strategy to further improve the performance of
the unsupervised tasks in each dataset. We again employ the
adversarial algorithm [56, 24] within our framework, where
a task-specific discriminator provides the semi-supervisory
signals for each task, termed as SemiSD. With the help of
semi-supervision, the unsupervised tasks in each dataset are
boosted against the JTL scheme. However, this scheme only
transfers the features from the source dataset to target one,
namely, aligning the prediction and ground-truth distribu-
tions. As such, we further consider the multi-domain issue
and design the domain-aware discriminator to better differ-
entiate the predictions, which in turn forces the generator to
produce more realistic results to confuse the discriminator.
As a result, our SemiMTL method not only improves the
semi-supervised tasks with a large margin (4.0% mIoU gain
in Vaihingen and 4.8% RMSE gain in Potsdam against the
JTL baseline) but also achieves performance gains for the
fully supervised tasks. It is worth noting that the perfor-
mance of unlabeled tasks in each dataset is improved more
significantly, which is in line with our motivation to leverage
the semi-supervisory signals to improve the unlabeled tasks.
Across Domains. We further carry out experiments on the
real-world Cityscapes and synthetic Synscapes datasets. The
training on them is much more challenging to suffer from
not only larger domain discrepancy across datasets but also
differences between real and synthetic scenes. We perform
the experiments similarly by training with the ground-truths
of segmentation in Cityscapes and depth in Synscapes while
evaluating each task on the validation set of both datasets.

The quantitative results of each task on both datasets are
shown in Table 3. In the supervised experiments (segmenta-
tion of Cityscapes and depth of Synscapes), the JTL method
improves the depth task similar to the cross-city setting,
while degrading the segmentation mIoU due to the large
domain gap among real-synthetic datasets. In contrast, our
SemiMTL framework achieves mIoU performance gain by
1.2% and 1.8% against the STL and JTL baselines respec-
tively, and also improves all metrics in the depth task. In the
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Table 3. Quantitative results on the Cityscapes and Synscapes
datasets. We train all methods with the ground-truths of segmenta-
tion from Cityscapes and depth from Synscapes, while evaluating
each task on both datasets to validate the generalization ability.

Method Segmentation Depth MTL

pAcc mIoU AbR RMSE δ1 δ2 δ3 ∆M(%)

C
ity

sc
ap

es

STL Seg 95.7 76.0 - - - - - 0.0
STL Depth - - 0.694 14.36 46.9 70.8 81.5 0.0

JTL [28] 95.6 75.5 0.372 8.646 56.4 81.1 91.0 +19.6
SemiSD [56] 95.6 75.8 0.349 7.893 59.3 81.6 91.5 +22.3

SemiMTL (M1) 95.7 76.2 0.356 7.959 58.8 81.4 91.3 +22.4
SemiMTL (M3) 95.7 76.4 0.341 7.645 59.5 81.9 91.7 +23.7

SemiMTL 95.8 76.9 0.334 7.558 61.4 83.0 91.9 +24.3

Sy
ns

ca
pe

s

STL Seg 90.9 61.9 - - - - - 0.0
STL Depth - - 0.505 6.214 85.4 94.1 96.8 0.0

JTL [28] 91.3 63.4 0.486 5.307 87.4 95.8 96.8 +8.5
SemiSD [56] 90.9 62.8 0.449 5.183 88.1 95.8 97.8 +9.0

SemiMTL (M1) 91.5 65.8 0.411 5.153 86.8 94.1 96.9 +11.7
SemiMTL (M3) 91.6 65.5 0.407 5.157 87.7 95.2 96.3 +11.2

SemiMTL 91.4 65.4 0.380 5.056 88.5 95.9 97.9 +12.1

Figure 5. Qualitative examples of the SemiMTL method on the
street-view scenario. The first and last three columns are the
examples from the Cityscapes and Synscapes, respectively.

semi-supervised experiments (segmentation of Synscapes
and depth of Cityscapes), the JTL method improves the
performance of both tasks significantly, indicating that the
observation of cross-domain samples can help the network
to learn more generalized features. Compared with the JTL
baseline, our SemiMTL framework further facilitates the seg-
mentation task with a performance gain of 3.2% in mIoU and
improves the depth task by 12.6% in RMSE. Figure 5 shows
the qualitative results of the proposed SemiMTL algorithm.
We also provide the comparisons for different methods in
Figure 6, which indicates that the proposed method predicts
more accurately for segmentation and estimates more sharply
along boundaries and smoothly within regions for depth.

4.3. Ablation Study

To analyze the proposed approach thoroughly, we present
the ablation study on the cross-domain setting in Table 3.
We consider two baselines (JTL [28] and SemiSD [56, 24])
and different variants of the SemiMTL approach. As stated
in Section 3.2 and Figure 3, the alternatives include (i)
SemiMTL (M1): aligning the task output in unlabeled
datasets to the prediction distribution in labeled datasets;
(ii) SemiMTL (M2): encouraging the output to be similar
to the ground-truth distribution, which is our default mode
denoted as SemiMTL; (iii) SemiMTL (M3): enforcing the
output to be close to the joint distribution of labeled predic-

Figure 6. Qualitative comparison for different methods. The
upper and lower examples are from the Cityscapes and Synscapes
datasets respectively. The improvements are highlighted with cyan
and red rectangles for segmentation and depth tasks respectively.

tion and ground-truth.
Effect of Adversarial Training. We first analyze the ef-
fect of directly utilizing the common adversarial learning
method into the SemiMTL framework. We apply the ad-
versarial scheme [56, 24] to construct the discriminators of
both tasks for semi-supervision, denoted as SemiSD, which
only distinguishes the ground-truth and prediction distribu-
tions without considering the domain gap problem. Table
3 shows that the SemiSD scheme performs better than the
JTL baseline on both tasks of the Cityscapes dataset, but
decreasing the segmentation IoU by 0.6% on the Synscapes
dataset. These results show that a direct adversarial training
lacks the generalization ability for tasks across domains.
Effect of Domain-aware Module. We further evaluate the
effect of three different domain-aware modules which incor-
porate the domain information into training the discrimina-
tors. Table 3 illustrates that these variants of the SemiMTL
model all perform better than the JTL and SemiSD meth-
ods on the segmentation task of both datasets. There is a
slight performance loss in the SemiMTL (M1) model for
the depth task, which shows that an ambiguous alignment
to non-ground-truth distributions may not an effective way
for the low-level tasks. However, the SemiMTL model per-
forms consistently better than all baseline methods for all
metrics on both datasets, indicating that the proposed semi-
supervised MTL framework and domain-aware discrimi-
nators can learn more effective features and improve the
performance of both tasks across domains.

5. Conclusions
In this paper, we present a new SemiMTL setting to

address the multi-tasking across datasets. The proposed
method is able to leverage the supervisory information from
different domains and optimize all tasks simultaneously in
a MTL model across datasets. We then introduce a domain-
aware adversarial learning approach and various alignment
modes to alleviate the domain discrepancy issue among
datasets. We apply our SemiMTL model to two dense pre-
diction tasks (semantic segmentation and depth estimation)
on different challenging benchmarks. Experimental results
demonstrate the proposed SemiMTL method performs favor-
ably against the state-of-the-art approaches.
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