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Abstract

Proxy-based metric learning losses are superior to pair-
based losses due to their fast convergence and low train-
ing complexity. However, existing proxy-based losses focus
on learning class-discriminative features while overlooking
the commonalities shared across classes which are poten-
tially useful in describing and matching samples. More-
over, they ignore the implicit hierarchy of categories in real-
world datasets, where similar subordinate classes can be
grouped together. In this paper, we present a framework that
leverages this implicit hierarchy by imposing a hierarchical
structure on the proxies and can be used with any existing
proxy-based loss. This allows our model to capture both
class-discriminative features and class-shared characteris-
tics without breaking the implicit data hierarchy. We evalu-
ate our method on five established image retrieval datasets
such as In-Shop and SOP. Results demonstrate that our hi-
erarchical proxy-based loss framework improves the perfor-
mance of existing proxy-based losses, especially on large
datasets which exhibit strong hierarchical structure.

1. Introduction
Learning visual similarity has many important applica-

tions in computer vision, ranging from image retrieval [10]
to video surveillance (e.g., person re-identification [5]). It is
often treated as a metric learning problem where the task is
to represent images with compact embedding vectors such
that semantically similar images are grouped together while
dissimilar images are far apart in the embedding space. In-
spired by the success of deep neural networks in visual
recognition, convolutional neural networks have also been
employed in metric learning, which is specifically called
deep metric learning (DML) [2, 4, 5, 8, 19, 24, 25, 41].

In recent years, a number of DML loss functions [17,
22, 32] have been developed to guide network training for
visual similarity learning. The two dominant groups of
these DML loss functions are pair-based losses and proxy-
based losses. Pair-based losses (e.g., contrastive loss [11]
and triplet loss [32]) directly compute the loss based on
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Figure 1. Hierarchical proxies. Traditional proxy-based losses
seek to learn an embedding space where each class is well sep-
arated (see bottom-left where different colors denote different
classes). However, real-world data often have implicit hierarchies.
For example, classes 1-3 might belong to one super category while
classes 4-6 belong to another (top panel). Our proposed HPL
learns to separate the classes and captures this hierarchy to pull
samples in the same super category closer (bottom-right).

pairs of samples with the goal of encouraging samples in
the same class to be close to each other and samples from
different classes to be far apart. This is different from clas-
sification losses which are computed individually for each
training sample. Pair-based losses compute loss for each
tuple of samples formed in a training batch. Hence, a ma-
jor drawback of pair-based losses is that for a fixed number
N of training samples there is a prohibitively large num-
ber of tuples (i.e., O(N2) or O(N3)) including many non-
informative tuples, which leads to slow convergence and de-
graded performance. In contrast, proxy-based losses (e.g.,
proxy-NCA [22] and proxy anchor loss [17]) try to learn a
set of data points, called proxies, to approximate the data
space of the training set. At each iteration, triplets are
formed between samples from a local training batch and the
global proxies to train the embedding networks as well as
to update the proxies. Since the number of proxies is often
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orders of magnitude smaller than the number of samples in
the training set, proxy-based losses significantly reduce the
high training complexity of pair-based losses.

In the image retrieval context, where the task is to find
visually similar images in a large gallery of seen and un-
seen classes given a query image, real-world datasets, like
SOP [25], ImageNet [30], often contain an implicit hierar-
chy of categories, e.g., huskies can be categorized as spitzs,
as simply dogs, or more broadly as animals. Common fea-
tures shared across the finer-grained classes often character-
ize their superordinate category. However, existing proxy-
based losses ignore this hierarchy, focusing on extracting
class-discriminative features and overlooking features that
are shared across classes that could be useful for describing
and retrieving images. Taking dogs as an example, collies
and German shepherds are medium-sized dogs with thin
snouts and upright ears, while collies are distinctive from
German shepherds in their long hair. Given a training set of
collie and German shepherd images, a typical proxy-based
model might only learn features related to long hair while
overlooking features shared among classes such as medium
size which is helpful in discerning collies from shelties.

In this paper, we propose a simple method that imposes
a hierarchical structure on the proxies (see Fig. 1 for il-
lustration) and can be combined with existing proxy-based
losses. We name our method Hierarchical Proxy-based
Loss (HPL). Building on top of existing proxy-based losses,
our HPL creates a pyramid of learnable proxies where the
lowest/finest level of proxies are created similarly to the ex-
isting proxy-based losses (i.e, one proxy per class). The
higher-level proxies are learned in an unsupervised man-
ner. Each coarser level of proxies are the cluster centroids
of its lower level of proxies. Hence, each sample is asso-
ciated with one proxy at every level in the proxy pyramid
and the losses are computed for each level independently.
In experiments, we demonstrate that our HPL improves
traditional proxy-based loss performance on several pub-
lic image retrieval benchmarks including Stanford Online
Products (SOP) and In-Shop Clothes Retrieval (In-Shop),
CUB200, Cars-196 and iNaturalist. Verifying our initial
motivation, larger performance improvements are observed
for datasets with a larger number of classes and a more
complex hierarchical structure—Recall@1 is increased by
+2.50% on SOP and +2.87% on In-Shop. Performance
still matches the state-of-the-art in the case of the CUB200
dataset which contains 200 fine-grained bird categories with
subtle differences, lacking a strong hierarchy.

In summary, our contributions are: 1) We propose a
novel hierarchical proxy-based method which is applicable
to all existing proxy-based losses; 2) We demonstrate that
the proposed method improves the performance of tradi-
tional proxy-based losses on several image retrieval bench-
marks, especially for datasets with strong and complex hi-

erarchical structure; 3) We also show that the hierarchy
learned by our method outperforms a human-curated hier-
archy for image retrieval.

2. Related Work

Proxy-based losses. Proxy-NCA [22], the first proxy-based
DML loss, addressed the slow convergence of pair-based
losses (e.g. Triplet loss [32]). The main idea is to create one
proxy for each class (by default) and use the Neighborhood
Component Analysis (NCA) loss [28] to pull samples close
to its assigned proxy while pushing samples away from
non-assigned proxies. Proxy-NCA++ [34] further improves
Proxy-NCA with several training improvements. Proxy An-
chor [17] uses proxies as anchors to leverage the rich image-
to-image relations that are missing in Proxy-NCA. Other
methods like SoftTriple loss [26] and Manifold Proxy loss
[1] respectively extend the Softmax and N-pair losses to
proxy-based versions. To an extent, all these proxy-based
losses treat deep metric learning as a classification task by
using the proxies to separate samples from different classes,
and thus they focus on extracting class-discriminative fea-
tures. In contrast, our proposed HPL builds on existing
proxy-based losses and explicitly models the class-shared
features by imposing a hierarchical structure in the prox-
ies. This helps to regularize the embeddings and prevent
the model from overfitting to the training classes.

Modeling the data distribution. Similar to our approach,
hierarchical triplet loss (HTL) [9] and HiBsteR [36] also try
to leverage the underlying data hierarchy for DML. How-
ever, HTL has been developed for the Triplet loss and uses
the data hierarchy to mine good training samples, while
our method is designed for proxy-based losses and aims
to learn class-shared information by modeling the data hi-
erarchy. HiBsteR requires ground-truth hierarchical labels
which limits its applicability, while our method does not.
Divide and Conquer (DC) [31] tries to adapt the embed-
dings to a nonuniform data distribution, while we aim to
learn embeddings that capture the underlying data hierar-
chy. Moreover, DC needs to cluster the entire dataset re-
peatedly which can be prohibitively expensive for large
datasets, while our method operates on proxies which are
often orders of magnitude smaller than the whole dataset.
In addition, our HPL also resembles PIEs [13] in learn-
ing from different groups of data, but PIEs aims to learn
a pose-invariant embedding from different views of objects
in each class and requires additional pose labels while our
HPL learns from groups of classes and does not require ad-
ditional annotation.

Modeling class-shared information. MIC [27] and DiVA
[21] also try to learn features shared across classes. How-
ever, both MIC and DiVA formulate a multi-task learning
problem and seek to learn separate embeddings for class-
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specific information and class-shared information. Instead,
our HPL imposes additional regularization on top of the
original proxy-based losses by explicitly modeling class-
shared information. Moreover, MIC clusters over the en-
tire dataset which is not scalable to large datasets, while we
cluster on the proxies whose number is much smaller than
the size of the entire dataset. DiVA is based on triplet loss
while our HPL is developed for proxy-based losses and is
compatible with multiple proxy-based losses. Our HPL also
shares a similar motivation with another line of research
[16, 23, 42] which aims to design better image classifiers by
leveraging the hierarchical structure in data. However, they
focus on the network architectures design to better separate
the classes, while our work aims to design a better met-
ric learning loss function which takes advantages of class-
shared information.

3. Method
In this section, we briefly review two popular proxy-

based losses: Proxy-NCA and Proxy Anchor. Then we in-
troduce our hierarchical proxy-based loss.

3.1. Preliminaries

Given a training set D = {(xi, yi)}Ni=1 where N is the
number of data samples, xi and yi are the i-th training im-
age and its class label, respectively. The goal of deep metric
learning is to learn a similarity function s(xi, xj) such that

s(xi, xj) ≥ s(xi, xk) ∀i, j, k, yi = yj ̸= yk. (1)

In DML, the similarity function is often learned via a deep
neural network parameterized by θ which maps the image
xi to an embedding vector Φθ(xi). For simplicity, we omit
Φ in the notation and denote the similarity function with
s(xi, xj ; θ) which is equivalent to s(Φθ(xi),Φθ(xj)). In
the following, xi and Φθ(xi) will be used interchangeably.
There are two popular similarity function choices which are
the Euclidean distance, i.e., s(xi, xj) = −||xi − xj ||2 and
the cosine similarity, i.e., s(xi, xj) =

xi·xj

||xi||2||xj ||2 .

3.2. Existing Proxy-based Losses

Similar to a classification network whose last weight ma-
trix connects all samples in the training set by mapping
them to a universal vector of class logits, proxy-based losses
link samples across batches by using a set of learnable prox-
ies P = {pi}Ci=1. One proxy is usually created for each
class1, hence, C is the number of classes in the training set.
Each proxy is a vector of the same size as the embedding
vector. Hence, Eq. (1) is transformed as

s(xi, pyj
; θ, P ) ≥ s(xi, pyk

; θ, P ),∀i, j, k, yi = yj ̸= yk.
(2)

1The analysis can also carry over for losses that assign multiple proxies
to a class such as SoftTriple [26].

Proxy-NCA [22] optimizes P and θ by minimizing the
following approximated NCA [28] loss

ℓ(X,Y, P ) = −
∑

(xi,yi)∈B

log
es(xi,pyi

)∑
yj ̸=yi

es(xi,pyj
)
, (3)

where B = {X,Y } is a batch of training samples and s(·, ·)
is the cosine similarity function.

As opposed to Proxy-NCA which uses images as an-
chors, Proxy Anchor [17] uses proxies as anchors and forms
a positive set X+

p and a negative set X−
p from samples in a

batch for each proxy p according to their class labels:

ℓ(X,Y, P ) = 1
|PB |

∑
p∈PB

log
(
1 +

∑
x∈X+

p

e−α(s(x,p)−δ)
)

+ 1
|P |

∑
p∈P

log
(
1 +

∑
x∈X−

p

eα(s(x,p)+δ)
)
,

(4)
where α and δ are the scaling factor and the margin, re-
spectively. PB denotes the set of proxies with at least one
positive sample in the batch B.

Different from classification tasks, it is crucial for the
learned embeddings to generalize to unseen classes in
DML. Therefore, although the use of proxies reduces the
high sampling complexity, it raises another issue: class-
specific proxies make the embedding networks focus only
on learning class-discriminative features while overlooking
class-shared information, which makes the learned repre-
sentation vulnerable to overfitting and undermines its gener-
alization to unseen classes. To overcome this shortcoming,
we introduce the hierarchical proxy-based loss below.

3.3. Hierarchical Proxy-based Loss

To leverage the implicit data hierarchy, we enforce a hi-
erarchical structure in the proxies by creating a proxy pyra-
mid with L levels of proxies P = {P0, · · · , PL−1} where
(L ≥ 1). The 0-th level of (fine) proxies P0 are created the
same as existing proxy-based losses—one proxy per class.
Every proxy pli ∈ Pl is exclusively assigned to one proxy
pl+1
j ∈ Pl+1, where 0 ≤ l < L− 1,

Given a batch of samples B = {(xi, yi)}, each xi is
associated with one and only one proxy at every level. In
other words, a label yli is assigned to each sample xi at every
level of proxies Pl. The label is assigned according to proxy
membership. Namely, if yli = j and plj is assigned to pl+1

k ,
then yl+1

i = k. Note that y0i = yi. During training, the loss
is not only computed for the fine proxies at 0-th level, but
also for all coarse proxies at higher level(s) (see Fig. 2 for
illustration). Formally, our HPL seeks to learn a similarity
function that satisfies

s(xi, pyl
j
; θ,P) ≥ s(xi, pyl

k
; θ,P),

∀i, j, k, l, yli = ylj ̸= ylk.
(5)
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Figure 2. The framework of our hierarchical proxy-based loss. HPL builds on top of existing proxy-based losses and computes the loss
for each level of proxies separately. HPL learns an embedding space with small within-class distance but also small within-cluster (i.e.,
coarse proxies) distance. For illustration clarity, the full interactions between fine proxies and samples are presented for only class 1, class
2-6 are similar. Each color represent a category or super category.

Note that Eq. (5) is a generalization of Eq. (2) and is equiv-
alent to Eq. (2) when L = 1. Thus, we extend existing
proxy-based losses and formulate the HPL loss as:

L =

L−1∑
l=0

ωlℓ(X,Y l, Pl), (6)

where ωl is the loss weight for the i-th level of proxies and
Y l = {yli}. ℓ(X,Y l, Pl) can be any existing proxy-based
loss function such as Proxy-NCA loss (i.e., Eq. (3)) and
Proxy Anchor loss (i.e, Eq. (4)).

In this way, our HPL not only learns the class-
discriminative features through the fine proxies as existing
proxy-based losses do, but also captures class-shared infor-
mation through higher-level coarse proxies. Moreover, the
proxy hierarchy helps better represent the real-world data
space, thus our HPL is more resilient to overfitting in real-
world applications.

3.4. Learning Proxies via Online Clustering

Higher-level proxies (i.e., coarse proxies) represent su-
per categories of the training data. Obviously, these coarse
proxies can be similarly learned as the fine proxies if ad-
ditional supervisory signals such as the super category la-
bels are available. In this paper, we develop a method that
works without additional supervision. Particularly, we cre-
ate pseudo super categories by grouping the lower level of
proxies into clusters using an unsupervised clustering al-
gorithm (e.g., k-means), and use the cluster centroids as
higher-level proxies. We adopt an online clustering ap-
proach [44] to update higher-level proxies.

We outline the training procedure in Algorithm 1. Start-
ing with the fine proxies P0, we perform offline k-means
clustering on every lower-level proxy Pl where 0 ≤ l <
L− 1 and use the cluster centroids to initialize higher-level
proxies (i.e., Pl+1). At each iteration, we sample a batch

Algorithm 1: HPL with Online Clustering

for 0 ≤ l < L− 1 do
Cluster Pl and set Pl+1 to be the cluster
centroids and denote Ql the cluster assignment

end
for k = 1, 2, · · · ,K do

Sample a batch B = {xi, yi} from D
Assign labels to xi according to Q = {Ql}L−1

l=0 :
B = {xi, y

0
i , · · · , y

L−1
i }

Update θ and P0 with Eq. (6)
if k mod T == T − 1 then

for 0 ≤ l < L− 1 do
for i = 1, 2, · · · , |Pl| do

Update the assignment:
Qi

l = argminj ||P i
l − P j

l+1||22
end
for j = 1, 2, · · · , |Pl+1| do

Update the proxies:
P j
l+1 =

∑
Qi

l=j

P i
l

/
|1Ql=j |

end
end

end
end

of training data and compute the proxy labels y0i , · · · , y
L−1
i

for each sample xi according to the mechanism described
in Sec. 3.3. Then the weights of the embedding network θ
and fine proxies P0 are updated with our hierarchical proxy
loss (i.e., Eq. (6)) through back-propagation [29]. Every T
iterations, we update the higher-level proxies Pl+1 based
on the lower-level proxies Pl. Namely, we first update
the cluster assignment Ql by assigning each lower-level
proxy to its the nearest higher-level proxy P i

l , i.e., Qi
l =
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argminj ||P i
l − P j

l+1||22. Then, we update the higher-level
proxies by taking the average of the lower-level proxies
that are assigned to them, i.e., P j

l+1 =
∑

Qi
l=j P

i
l

/
|1Ql=j |,

where 1Ql=j is a vector with all ones at the location where
Qi

l = j and zeros elsewhere. Note that our method can
be easily adapted to work with other clustering algorithms
such as Gaussian Mixture models [43].

4. Experiments
To evaluate the proposed hierarchical proxy-based loss

(HPL), we follow both a recently proposed standardized
evaluation protocol proposed in [24] and the traditional
evaluation protocol as in [17, 22]. We compare our HPL
against existing proxy-based losses including Proxy-NCA
[22] and Proxy Anchor [17] on several public benchmark
datasets on image retrieval. We denote our HPL imple-
mented based on Proxy-NCA loss and Proxy Anchor loss by
HPL-NCA and HPL-PA, respectively. In addition, we also
study the impact of different hyper-parameters to the per-
formance of HPL as well as the effectiveness of the online
clustering module of HPL. Recall@K, Mean Average Pre-
cision at R (MAP@R) [24] and R-precision (RP) are used
to measure the image retrieval performance

4.1. Datasets

Five popular benchmark datasets are used to evaluate our
method: In-shop Clothes Retrieval (In-Shop) [20], Stanford
Online Products (SOP) [25], CUB-200-2011 (CUB) [40],
Cars-196 [18] and iNaturalist [14]. In-Shop [20] contains
72,712 clothes images of 7,986 classes, among which, the
first 3,997 classes are used for training and the remaining
3985 classes for testing. Note that the testing data is split
into a query set and a gallery set which contain 14,218 im-
ages and 12,612 images, respectively. SOP [25] consists of
120,053 online product images of 22,634 classes and 24 su-
per classes. We use the first 59,551 images (11,318 classes,
12 super classes) for training and the remaining 60,502
(11,316 classes, 12 super classes) for testing. Cars-196 [18]
is composed of 196 car models (i.e., classes) with 16,185
images. We train the models on the first 98 classes (8,054
images) and test on the remaining 100 classes (8,131 im-
ages). CUB-200-2011 [40] contains 11,788 images of 200
bird species (i.e., classes). We train the models on the first
100 classes (5,864 images) and test on the remaining 100
classes (5,924 images). iNaturalist [14] is a fine-grained
dataset of animal and plant species with human-curated hi-
erarchy of categories. We use iNaturalist 20192 which con-
tains 1,010 species, spanning 72 genera, combining a total
of 268,243 images in the training and validation set. Each
genus contains at least 10 species, making the dataset well-

2We choose iNaturalist 2019 over iNaturalist 2018 because the former
is more balanced in its category hierarchy.

balanced in its category hierarchy. We follow [3] and use
the first 656 species (48 genera) for training and the remain-
ing 354 species (24 genera) for testing. We will make the
train/test splits publicly available.

4.2. Implementation Details

Embedding network. We use the Inception network with
batch normalization (BN-Inception) [15] and ResNet-50
[12] as the backbone networks. Both backbone networks
are pretrained on ImageNet [6] for the classification task.
We append a max pooling layer in parallel with an average
pooling layer to the penultimate layer of the backbone net-
work as in [17] and replace the final fully-connected (fc)
layer of the backbone network with a new fc layer (i.e., em-
bedding layer) which projects the network output to a de-
sired embedding space.

Structure of the hierarchical proxies. The structure of the
hierarchical proxies varies for different datasets as different
datasets have different hierarchical characteristics. How-
ever, to keep the analysis simple, we evaluate our model in a
simple conceptual structure, a two-level hierarchy. Namely,
the number of fine (i.e, lower-level) proxies is set as the
number of classes in the dataset. While the coarse (higher-
level) proxies is chosen differently for different datasets as
the number of classes in each dataset varies significantly.
Please find the detailed study of the impact of the hierarchi-
cal structure at Sec. 4.5.

Training setting. Different from HTL [9] which initializes
the hierarchical tree by clustering the whole datasets, which
is expensive and infeasible for large datasets, we train the
finest level of proxies P0 and the embedding network with
standard proxy losses (i.e., Proxy-NCA or Proxy Anchor)
for the first 3 epochs to prevent the model from capturing
wrong data hierarchy during the early stage of training. The
higher level of proxies are updated at every epoch. The
loss weights in Eq. (6) are set as ω0 = 1.0 and ω1 = 0.1.
Under the standardized evaluation protocol [24] all hyper-
parameters of the models are determined using Bayesian
Optimization [33] and cross validation and the training ter-
minates once the validation error plateaus. The embedding
size is set to 128 and BN-Inception is used as the backbone
networks. During testing, two modes are used for eval-
uation: Concatenated where 128-dim embeddings of the
4 models trained with 4-fold cross validation are concate-
nated (512-dim) and Separated where the 4 models are eval-
uated separately (128-dim) and the average performance is
reported. Under the traditional evaluation protocol, we train
the baseline models using ResNet-50 as backbone with both
Proxy-NCA loss and Proxy Anchor loss by following the
standard hyper-parameters settings in [22] and [17], respec-
tively. Each model is trained for 30 epochs with learning
rate 10−4 and batch size 128. The embedding dimension is
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Concatenated (512-dim) Separated (128-dim)
MAP@R P@1 RP MAP@R P@1 RP

Contrastive [11] 44.51± 0.28 73.27± 0.23 47.45± 0.28 40.29± 0.27 69.28± 0.22 43.39± 0.28
CosFace [37] 46.92± 0.19 75.79± 0.14 49.77± 0.19 40.69± 0.21 70.71± 0.14 43.56± 0.21
ArcFace [7] 47.41± 0.40 76.20± 0.27 50.27± 0.38 41.11± 1.22 70.88± 1.51 44.00± 1.26
MS [38] 46.42± 1.67 75.01± 1.21 49.45± 1.67 41.24± 1.89 70.65± 1.70 44.40± 1.85
SoftTriple [26] 47.35± 0.19 76.12± 0.17 50.21± 0.18 40.92± 0.20 70.88± 0.20 43.83± 0.20
Proxy-NCA++ [34] 46.56 75.10 49.50 41.51 70.43 43.82
Proxy-NCA [22] 47.22± 0.21 75.89± 0.17 50.10± 0.22 41.74± 0.21 71.30± 0.20 44.71± 0.21
HPL-NCA 47.97 76.60 50.87 42.06 71.77 45.06
Proxy Anchor [17] 47.88 76.12 50.82 43.97 72.79 47.00
HPL-PA 49.07 76.97 51.97 45.11 73.84 48.10

Table 1. Results on the SOP dataset. All hyper-parameters are selected by Bayesian Optimization as in [24]. Average performance across
10 runs and the 95% confidence interval are reported whenever applicable. The best numbers in each block are marked as bold and the best
numbers in the table are highlighted in blue. Cont. + XBM is not included because it failed to converge under this training setting.

Concatenated (512-dim) Separated (128-dim)
MAP@R P@1 RP MAP@R P@1 RP

Contrastive [11] 25.49± 0.41 81.57± 0.36 35.72± 0.35 17.61± 0.24 69.44± 0.24 28.15± 0.21
CosFace [37] 26.86± 0.22 85.27± 0.23 36.72± 0.20 18.22± 0.11 74.13± 0.21 28.49± 0.14
ArcFace [7] 27.22± 0.30 85.44± 0.28 37.02± 0.29 17.11± 0.18 72.10± 0.37 27.29± 0.17
MS [38] 27.84± 0.77 85.29± 0.31 37.96± 0.63 18.77± 0.69 73.73± 0.96 29.38± 0.60
SoftTriple [26] 26.06± 0.19 83.66± 0.22 36.31± 0.16 18.72± 0.11 72.98± 0.16 29.39± 0.10
Cont. + XBM [39] 26.04± 0.24 83.67± 0.35 36.10± 0.19 18.07± 0.11 72.58± 0.21 28.55± 0.10
Proxy-NCA++ [34] 26.02± 0.26 82.09± 0.41 36.31± 0.24 18.63± 0.09 70.60± 0.18 29.35± 0.08
Proxy-NCA [22] 25.56± 0.15 83.20± 0.22 35.80± 0.12 18.32± 0.12 73.34± 0.13 28.87± 0.11
HPL-NCA 27.47± 0.20 84.54± 0.25 37.56± 0.20 18.87± 0.13 72.27± 0.18 29.45± 0.15
Proxy Anchor [17] 27.77± 0.20 86.38± 0.15 37.53± 0.17 19.82± 0.10 76.85± 0.13 30.12± 0.10
HPL-PA 28.67± 0.22 86.84± 0.31 38.36± 0.18 19.83± 0.10 76.12± 0.34 30.13± 0.09

Table 2. Results on the Cars-196 dataset. All hyper-parameters are selected by Bayesian Optimization as in [24]. Average performance
across 10 runs and the 95% confidence interval are reported.

Concatenated (512-dim) Separated (128-dim)
MAP@R P@1 RP MAP@R P@1 RP

Contrastive [11] 26.19± 0.28 67.21± 0.49 36.92± 0.28 20.73± 0.19 58.63± 0.46 31.48± 0.19
CosFace [37] 26.53± 0.23 67.19± 0.37 37.36± 0.23 21.25± 0.18 59.83± 0.30 32.07± 0.19
ArcFace [7] 26.45± 0.20 67.50± 0.25 37.31± 0.21 21.49± 0.16 60.17± 0.32 32.37± 0.17
MS [38] 25.16± 0.10 65.93± 0.16 35.91± 0.11 20.58± 0.09 58.51± 0.18 31.36± 0.10
SoftTriple [26] 25.64± 0.21 66.20± 0.37 36.46± 0.20 21.26± 0.18 59.55± 0.35 32.10± 0.19
Cont. + XBM [39] 26.85± 0.63 68.43± 1.18 37.66± 0.56 21.78± 0.35 60.95± 0.76 32.69± 0.33
Proxy-NCA++ [34] 23.53± 0.12 64.69± 0.40 34.37± 0.13 18.76± 0.15 57.13± 0.36 29.52± 0.16
Proxy-NCA [22] 23.85± 0.24 65.01± 0.27 34.79± 0.26 19.15± 0.15 57.49± 0.35 29.99± 0.15
HPL-NCA 24.95± 0.21 65.22± 0.23 35.70± 0.21 20.04± 0.21 57.45± 0.13 30.79± 0.21
Proxy Anchor [17] 26.47± 0.21 67.64± 0.42 37.29± 0.19 21.57± 0.15 60.59± 0.24 32.45± 0.15
HPL-PA 26.72± 0.18 68.25± 0.29 37.57± 0.18 21.90± 0.19 61.31± 0.25 32.81± 0.19

Table 3. Results on the CUB dataset. All hyper-parameters are selected by Bayesian Optimization as in [24]. Average performance across
10 runs and the 95% confidence interval are reported.
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In-Shop SOP
R@1 R@10 R@1 R@10

Proxy-NCA 87.21 96.57 77.63 89.29
HPL-NCA 88.70 96.83 80.13 91.07
Proxy Anchor 89.85 97.14 79.38 90.44
HPL-PA 92.46 97.97 80.04 91.05

Table 4. Recall@K (%) on the In-Shop and SOP datasets.
ResNet-50 is used as the backbone and we set |P1| = 500 for
both In-Shop and SOP.

set to 512. More details can be found in the supplement.

4.3. Comparing Deep Metric Learning Models

Main Results. To eliminate the bias incurred by the choice
of hyper-parameters, we follow a stringent evaluation pro-
tocol proposed in [24] and compare our method based on
Proxy Anchor loss (HPL-PA) with existing metric learn-
ing losses including Contrastive [11], CosFace [37], Arc-
Face [7], MultiSimilarity (MS) [38], SoftTriple [26], Con-
trastive with Cross-Batch Memory (Cont. + XBM) [39] and
Proxy-NCA++ [34]. Table 1-3 shows the MAP@R, P@1
(i.e., Recall@1) and RP on the SOP, Cars-196 and CUB
datasets, respectively. The results demonstrate the effec-
tiveness of our proposed HPL. One can see that our HPL
consistently improves both Proxy-NCA loss and Proxy An-
chor loss in most metrics across all three datasets. Ob-
serve that HPL improves the MAP@R of Proxy-NCA from
25.56% to 27.47% and from 47.22% to 47.92% on the Cars-
196 and SOP datasets, respectively, making Proxy-NCA
comparable with or even better than a recent proxy-based
loss—Proxy Anchor. This suggests that the improvement
of HPL over Proxy-NCA is significant. Comparing with
Proxy Anchor, our HPL-PA boosts the MAP@R by 1.19%,
0.9%, and 0.23% on SOP, Cars-196 and CUB, respectively.
This could imply that HPL tends to work better on large
datasets with stronger data hierarchy (e.g., SOP) than on
small ones (e.g., CUB and Cars-196) which lack hierarchy.
Moreover, HPL-PA achieves state-of-the-art performance
on all three datasets comparing with all other approaches
in most of the scenarios. In the CUB dataset, our HPL-PA
is slightly worse than XBM with Contrastive loss, but HPL-
PA is much more stable than XBM as one can see from the
confidence interval.

We further compare our method with ResNet-50 as the
backbone on two large datasets: In-Shop and SOP, using
the traditional evaluation protocol. The number of coarse
proxies in our HPL for the In-Shop dataset and SOP dataset
are set to 500. The results in Table 4 show that our HPL
improves the traditional Proxy-NCA and Proxy Anchor on
both benchmarks consistently. Especially, HPL-PA sur-
passes Proxy Anchor by 2.87% on the In-Shop dataset and

query rank 1 rank 2 rank 31 rank 32

Ours

Proxy
NCA

Ours

Proxy
NCA

Figure 3. Qualitative results on SOP. Odd rows are the results of
our HPL-NCA loss; even rows are the results from the Proxy-NCA
loss. Green box indicates correct match, while red box indicates
wrong match.

HPL-NCA outperforms Proxy-NCA by 2.50% on the SOP
dataset in Recall@1. This implies that the inclusion of
class-shared information boosts the image retrieval perfor-
mance and our HPL helps to capture this information as
well as the class-discriminative features. More results can
be found in the supplement.

Qualitative analysis. To further evaluate our method, we
qualitatively compare our HPL-NCA with the Proxy-NCA
loss by presenting the image retrieval results. In Fig. 3, we
present the rank-1, 2, 31, and 32 retrieval results on SOP
to illustrate the improvement on the embeddings quality.
One can see our HPL-NCA is better than Proxy-NCA in
both overall quality of the image retrieval results and accu-
racy. Specifically, Fig. 3 reveals that despite both methods
finding the correct matches, the retrieval results from our
method are more similar to the queries. For example, on the
left panel of Fig. 3 Proxy-NCA returns a yellow kettle as
the 31th match, while our HPL-NCA returns a brown wood
cabinet which is much more similar to the query image—a
yellow wood hutch. Please find more qualitative results in
the supplement.

Furthermore, in Fig. 4 we visualize the embeddings of
the test set of Cars-196 (98 classes) learned by our HPL-
NCA (10 coarse proxies) and Proxy-NCA with t-SNE [35].
As highlighted in red boxes, our method groups similar car
categories (e.g., pickup trucks) into a larger cluster, while
still maintaining good separability between classes. The
learned common truck features help discern trucks from un-
seen car categories like SUVs.

4.4. Learning with a Human-curated Hierarchy

Our method learns the data hierarchy in an unsupervised
manner (see Sec. 3.4 for details). To demonstrate its effec-
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Figure 4. Visualization of the embedding space. We visualize
the learned embeddings of the Cars-196 test set of our HPL-NCA
(left) and Proxy-NCA (right) using t-SNE.
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Figure 5. Impact of loss weight (left) and number of coarse
proxies (right). Left: Recall@1 on the Cars-196 dataset of models
that are trained with 20 coarse proxies but different loss weights
ω1. Right: Recall@1 on the SOP dataset of models that are trained
with different number of coarse proxies (ω1 = 0.1).

tiveness, we replace the online clustering module in Algo-
rithm 1 with a ground-truth class hierarchy. To this end,
we use the SOP and the iNaturalist datasets where human-
curated hierarchical labels are available. In particular, in-
stead of performing online clustering with the fine proxies,
we use a fixed assignment of the fine proxies to coarse prox-
ies given by the ground-truth class hierarchy. The results in
Table 5 show that both HPL-NCA and HPL-NCA-GT (i.e.,
HPL-NCA with ground-truth hierarchy) outperform Proxy-
NCA, and surprisingly, HPL-NCA surpasses HPL-NCA-
GT even when given the same number of coarse proxies.
This might be due to the fact that the human-curated cat-
egory hierarchy may not fully reflect the visual similarity
among classes, whereas, our method automatically learns
the hierarchy based on visual similarity between classes,
making it more favorable for metric learning. Please see
the supplement for full results and further discussion.

4.5. Impact of Hyperparameters

Loss weight. In Eq. (6), we combine losses contributed
by different levels of proxies using a weighted summation
with the weights ω as hyper-parameters. We fix ω0 = 1.0
and train the embedding networks on Cars-196 by varying
ω1. As shown in Fig. 5, the model performs best when
ω1 = 0.1. Note that when ω1 = 0 our HPL-NCA loss
is equivalent to the standard Proxy-NCA loss. Hence, for
all ω1 > 0, our HPL-NCA loss consistently beats the stan-

SOP iNaturalist
|P1| R@1 |P1| R@1

Proxy-NCA - 77.63 - 51.32
HPL-NCA-GT 12 78.69 48 51.63
HPL-NCA 12 79.33 48 51.95
HPL-NCA 500 80.13 500 52.26

Table 5. Learned hierarchy vs human-curated hierarchy. HPL-
NCA-GT denotes PL-NCA with ground-truth class hierarchy.

dard Proxy-NCA loss (i.e., ω1 = 0). This further demon-
strates the superiority of our HPL over standard proxy-
based losses.

Hierarchical structure. To better study the impact of the
hierarchical structure, we use the SOP dataset which con-
tains 11,316 training classes—much more than the other
four datasets. Specifically, we train models on the SOP
dataset using HPL-NCA loss with a variable number of
coarse proxies |P1| = 0, 10, 100, 500 and 1000. Note
that when |P1| = 0 HPL-NCA is equivalent to Proxy-NCA.
The results in Fig. 5 show that our method outperforms the
baseline under different numbers of coarse proxies and the
performance of our method is shown to be robust with re-
spect to the number of coarse proxies. In general, having
more coarse proxies is beneficial as more accurate class-
shared information can be learned from the coarse prox-
ies. However, an excessively large number of coarse prox-
ies would possibly reduce the strength of the signal shared
across classes. More hyperparameter analysis can be found
in the supplement.

5. Conclusion

In this paper, we have demonstrated the effectiveness of
a hierarchical proxy-based loss (HPL), which enforces a hi-
erarchical structure on the learnable proxies. In this way, we
are able to not only learn class-discriminative information,
but also capture the features that are shared across classes,
which improves the generalizability of the learned embed-
dings. As a result, our proposed HPL improves standard
proxy-based losses, especially on large datasets where a
clear hierarchical structure exists in the data space. In future
work, we will explore more configurations of our method,
e.g., instead of using a simple two-level hierarchy and k-
means where the number of clusters has to be predefined,
we can use hierarchical clustering algorithms to automati-
cally learn a multi-level hierarchy to better fits the data.
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