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Abstract

Federated learning methods enable us to train machine
learning models on distributed user data while preserving
its privacy. However, it is not always feasible to obtain
high-quality supervisory signals from users, especially for
vision tasks. Unlike typical federated settings with labeled
client data, we consider a more practical scenario where
the distributed client data is unlabeled, and a centralized
labeled dataset is available on the server. We further take
the server-client and inter-client domain shifts into account
and pose a domain adaptation problem with one source
(centralized server data) and multiple targets (distributed
client data). Within this new Federated Multi-Target Do-
main Adaptation (FMTDA) task, we analyze the model per-
formance of existing domain adaptation methods and pro-
pose an effective DualAdapt method to address the new
challenges. Extensive experimental results on image classi-
fication and semantic segmentation tasks demonstrate that
our method achieves high accuracy, incurs minimal com-
munication cost, and requires low computational resources
on client devices.

1. Introduction
Federated Learning (FL) [4, 28, 36, 27] aims to train a

model using the data and computational resources on lo-
cal devices to preserve privacy. While most existing FL
methods assume labeled client data at our disposal, the as-
sumption may be impractical for numerous computer vision
tasks as it is difficult to obtain the ground-truth annotations.
For instance, typical mobile phone users are unlikely to la-
bel object segmentation masks or bounding boxes on their
abundant photos. Although many large-scale datasets for
such tasks have been created and labeled by the vision com-
munity, storing and using them on local devices can cause
memory, communication, or computational overload. Fur-
thermore, there usually exists a large domain gap between
the curated dataset and on-device user data.

To deal with the scenarios discussed above, we study a
practical FL setting in this work. The server hosts a large-
scale labeled dataset, viewed as the source domain, and each

Figure 1. Federated Multi-Target Domain Adaptation
(FMTDA), a new problem setting this work studies. The client
models are trained in a distributed, privacy-preserving manner
and aggregated on the server. Unlike typical FL scenarios, we
aim to train a model using unlabeled client data and a labeled
dataset available only on the server. The server and clients are
data providers with distinct characteristics, resulting in both
server-client and inter-client domain gaps. Therefore, it naturally
forms a problem of single-source-multi-target domain adaptation.

client is considered a distinct target domain with unlabeled
data. The client data has different underlying distributions
due to various factors, e.g., user habits, locations, and de-
vices. The goal is to train a model that performs well for
the clients by utilizing both the server data and distributed
client data. We approach the server-client and inter-client
domain mismatches by formulating the problem as feder-
ated multi-target domain adaptation (FMTDA), illustrated
in Figure 1. Compared to typical FL or domain adaptation
(DA), FMTDA introduces several new challenges. First, it
prohibits the use of raw client data on the server. Most ex-
isting DA methods are not applicable to FMTDA since they
directly access the target domain data by design. Second,
the inter-client domain discrepancies increase the difficulty
to perform FedAvg [26], a de facto algorithm in FL to ag-
gregate client models on the server. Since each client model
carries the idiosyncrasies of a distinct target domain, aver-
aging the client models tends to cancel out or negatively af-
fect the adaption efforts made on the client devices. Third,
unlike the large-scale and representative target domain data
in common DA frameworks, each client owns a limited
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amount of data. This implies that the adaptation methods
cannot rely on a single client. Instead, they need to exploit
the common properties underlying all client data while ac-
knowledging individual data distribution. Finally, FMTDA
should take into consideration the server-client communica-
tion overhead and the imbalanced computational resources.
It is of great interest to develop an algorithm that requires
low communication overhead and minimal computation on
client devices. We highlight the aforementioned challenges
by “federating” several popular DA methods [7, 25, 34], i.e.,
modifying them so that they do not access the target domain
data on the server end. Our analyses show that these meth-
ods do not account for the inter-client discrepancies, strug-
gle with limited client data, and incur high computational
cost on client devices.

To address the issues, we propose a dual adaptation (Du-
alAdapt) approach which decouples the training framework
into two parts: local adaptation on the client devices and
global adaptation on the server. On a client device with low
computational resources, we freeze the feature extractor in
a deep neural network and learn a lightweight local classi-
fier to capture the target characteristics. Meanwhile, we fit
a parametric Gaussian mixture model (GMM) on the client
data to encode its statistical distribution. The GMM param-
eters and local classifier respectively carry generative and
discriminative information of the target domain, which are
then uploaded to the server for the computationally heavy
feature adaptation. On the server side, we jointly update
the feature extractor and a global classifier after receiving
the adapted local classifiers. Since the server cannot access
client data, we design a proxy set to approximate the data
distribution of target domains. We treat the source domain
dataset as basis and apply a mixup [44] approach to con-
struct a diverse and large-scale domain. The mixup set pro-
vides a wide support that covers the target domains, over
which we can weight the instances by a GMM fitted on
client data to approximate the corresponding target domain.
To evaluate the model performance, we conduct extensive
experiments on three image classification tasks and two se-
mantic segmentation tasks. We compare our method with
multiple centralized or federated DA baselines in terms of
accuracy, communication overhead, and computational cost
on client devices. The main contributions of this work are
as follows:

• We introduce a new problem setting, FMTDA, for
practical FL vision tasks. It deals with the domain gaps
between the unlabeled, distributed client data and a la-
beled, centralized dataset on the server.

• We identify the key challenges in FMTDA and em-
phasize them by showing the degraded performance of
prior DA methods as well as their “federated” version.

• We propose the DualAdapt approach to address the
new challenges. The main idea is to self-train the local

classifiers on client devices and adapt the heavy feature
extractor on the server without accessing client data.

2. Related Work
Peng et al. [31] introduce a multi-source-single-target

DA problem in the FL setting, which is closely related to
our work but deals with an opposite scenario. They as-
sume that the client data is labeled and the unlabeled server
data is available on all local devices. With this setting, the
whole model can be simultaneously trained on local devices
but it poses heavy communication and computational de-
mands on the clients. As such, this method cannot be ap-
plied to FMTDA for practical vision tasks. To the best of
our knowledge, Peng et al. [31] are the first to study vi-
sual domain adaptation in FL, and our work is the first to
formalize FMTDA with the consideration of memory, com-
munication, and computational costs.

2.1. Unsupervised domain adaptation
Unsupervised Domain Adaptation (UDA) addresses the

domain mismatch problem between labeled source data and
unlabeled target data. Numerous UDA methods have been
proposed to transfer the knowledge learned from a source
domain to a target domain via centralized training. Exist-
ing approaches can be broadly categorized into divergence-
based [2, 8, 39, 37, 25, 33, 3, 18], reconstruction-based [9,
40, 45, 19, 14], domain adversarial [7, 23, 38, 22], classi-
fier discrepancy [34, 21], and self-training [45, 46] meth-
ods. In [2], Ben-David et al. introduce a divergence criteria
to evaluate the domain shift and provide a generalization
error bound for domain adaptation. Ghifary et al. [9] pro-
pose deep reconstruction-classification networks to address
domain adaptation by learning an additional reconstruction
task. Based on adversarial learning, Ganin and Lempit-
sky [7] design a gradient reversal layer to train a domain
discriminator, which is widely used in the domain adapta-
tion literature. Saito et al. [34] propose the MCD method to
align source and target features by maximizing the discrep-
ancy of two classifiers. Another group of methods utilize
a model trained on source data to generate pseudo label on
the target data in a self-training (ST) manner. Instead of
assuming that the target data comes from a single domain,
Yu et al. [42] and Gholami et al. [10] address a challenging
multi-target UDA problem. However, these methods are not
directly applicable to the FMTDA setting since they assume
centralized data on a server. In addition, reconstruction-
based and domain adversarial approaches require additional
network modules such as domain discriminators or encoder-
decoder architectures, which increase computational cost if
applied to the client devices.

2.2. Federated learning
Federated learning [4, 28, 36, 27] is proposed to train a

model in a distributed and privacy-preserving manner. The
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decentralized learning approaches enable multiple clients
to collaboratively learn a model while keeping the training
data on local devices. GiladBachrach et al. [11] propose
CryptoNets to improve FL performance by enhancing the
efficiency of data encryption. In [4], Bonawitz et al. intro-
duce a secure aggregation method to update the machine
learning models. Mohassel and Zhang [28] propose Se-
cureML to support privacy-preserving collaborative train-
ing in a multi-client FL system. These methods mainly aim
to learn a single global model that works well on centralized
data within a single domain. Recently, several methods are
proposed to address the non-i.i.d distribution of client data.
Smith et al. [36] introduce federated multi-task learning,
which learns a separate model for each node. In [24], Liu et
al. propose semi-supervised transfer learning in a privacy-
preserving setting. Hsu et al. [15, 16] analyze the effect of
non-i.i.d client data in classification tasks and propose to
improve the federated aggregation methods. On the other
hand, Yu et al. [43] focus on the model performance on in-
dividual client data and train personalized models via local
adaptation. Nonetheless, the models discussed above re-
quire full or semi-supervision on the client data. In [17],
Jeong et al. deal with a disjoint FL scenario where server
data is labeled and client data is partially labeled or unla-
beled, but the server-client and inter-client domain gaps are
not addressed.

3. Approach
Given a centralized, labeled dataset on the server as

source domain DS and the unlabeled data from multiple
clients as target domains (DT

i, . . . , DT
N ), our goal is to

train a model that performs well on the target data. Un-
like centralized DA, the server cannot access the client data
due to privacy concerns. We further prohibit the use of
server dataset on client devices considering the limitation
of local storage, computation, and communication. These
constraints lead to a multi-party learning framework where
all participants keep their data private and only interact via
model parameters. While the server and client models share
the same input and output space, their data exhibit domain
discrepancies due to various client characteristics.

3.1. Preliminaries
In order to minimize the computational cost on client de-

vices, we do not consider resource-consuming DA modules
such as adversarial domain discriminators [7, 23, 38, 22] or
encoder-decoder architectures [9, 40, 45, 19, 14]. Instead,
we exploit maximum classifier discrepancy (MCD) [34],
which only requires one additional classifier for domain
alignment. A deep neural network classifier can be viewed
as a classification head F stacking on top of a feature extrac-
tor G. MCD introduces a second classifier to identify the
target data in DT that is excluded by the support of source
domain DS . The objective of the classifiers F1, F2 can be

expressed as:

min
F1,F2

Lce(DS)− Ladv(DT ), (1)

where Lce(DS) is a cross-entropy loss for classifying the la-
belded source data, and Ladv(DT ) = Ex∼DT

∥F1(G(x))−
F2(G(x))∥1 is the discrepancy between the classifier pre-
dictions over target data. Next, the feature extractor G is
updated to align the classifier discrepancy as:

min
G

Ladv(DT ). (2)

These training steps are applied alternately and repeated un-
til convergence.

3.2. Dual adaptation for FMTDA
The decoupling of classifier and feature extractor in

MCD makes it a natural fit for FMTDA. Since it is rela-
tively lightweight to adapt a classifier to the target domain
(Eq. 1), we assign it to the client devices and update the
feature extractor G on the server (Eq. 2). In addition to
the computational efficiency, this design also effectively re-
duces the communication overhead. The server broadcasts
the whole model to the clients, while the clients only need
to upload the classifiers to the server. Nonetheless, in this
vanilla MCD method, the clients need access to the source
data to update F1, F2 (Eq. 1) and the server requires the tar-
get data to adapt G (Eq. 2). Neither of the requirements
satisfies the FMTDA constraints. More importantly, each
client in FMTDA observes a distinct source-target domain
pair due to the non-i.i.d. data of different clients. Simply
averaging the feature extractors and classifiers on the server
can easily lead to canceling effect or negative transfer. We
address the issue by designating a unique local classifier Fl

i

to each client i. Meanwhile, we maintain a global classi-
fier Fg to account for the discriminative properties shared
by the source and all target domains. To tackle the data
privacy constraints, we propose a self-training approach on
the client end and a proxy target domain on the server. The
DualAdapt framework is illustrated in Figure 2.

3.2.1 Self-training local classifiers on the clients.
In Eq. 1, the term Lce(DS) is meant to preserve the dis-
criminative power of classifiers and avoid trivial solutions
caused by the discrepancy term Ladv(DT ). However, it
is infeasible to update the local classifiers {Fl

i} on client
devices since minimizing Lce(DS) requires the source do-
main data. We propose the following variations to self-train
classifiers without copying the source data to client devices.
First, we freeze the global classifier Fg and only adapt the
local classifier Fl

i for client i. As a result, the domain dis-
crepancy loss for client i only applies to the local classifier
Fl

i, which can be written as:

Li
adv(x) = ∥Fg(G(x))− Fl

i(G(x))∥1, (3)
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Figure 2. DualAdapt framework overview (best viewed in color). Our model consists of a feature extractor G, a global classifier Fg , and
a local classifier Fl for each client. G and Fg are updated on the server and broadcast to the clients. Each client then updates its Fl during
local adaptation. We also fit a GMM model on both the target (WT ) and source (WS) data features to weight the examples for training.

It not only reduces the communication and local computa-
tional costs but stabilizes the local adaptation process. Sec-
ond, we preserve the discriminativeness of local classifiers
via a self-training loss Lst. It is defined as the cross-entropy
between the prediction of the local classifier Fl

i and the
pseudo label generated by the global classifier Fg . The
pseudo label ŷ of class c of input x is given as:

ŷc(x) =

{
1, argmaxk[Fg(G(x))]k = c

0, otherwise
, (4)

where [p]k is the k-th element of a probability vector p.
Since the prediction of Fg may not be perfect due to do-

main mismatch, we use a GMM model fitted on the source
data to weight the target examples. Intuitively, we give more
confidence to the prediction of Fg if the example lies closer
to the source distribution. Thus, we send the source GMM
parameters WS from the server to each client. For each ex-
ample x in the target domain, we calculate the GMM prob-
ability WS(x) as the confidence of Fg and weight the self-
training loss accordingly. The local optimization objective
for client i can be expressed as:

min
Fl

i
Ex∼DT

i − Li
adv(x) + λst WS(x) Li

st(x), (5)

where λst is a weighting hyper-parameter. Note that the fea-
ture extractor G and global classifier Fg are both fixed on
the client devices. Therefore, the local computation and up-
loading costs are lightweight as both involve the local clas-
sifier Fl

i only. In addition to the local classifier that captures
the discriminative properties of client data, we fit a GMM to
describe its generative statistics, thereby allowing the server
to construct a proxy set to the client data. After local adap-
tation, each client uploads its local classifier F i

l and GMM
parameters WT

i to the server.

3.2.2 Feature alignment via mixup on the server.

Ideally, the server gathers the local classifier and data from
the clients and adapts the feature extractor G as described in
Eq. 2. However, the server cannot access target data in the
FL settings. To align features from two domains, we need
a certain proxy to approximate the target distribution using
only the server data. In addition to widely-used image trans-
formations, e.g., flipping, cropping, and color jittering, we
construct a proxy of the target domains by re-weighing the
mixup [44] of abundantly available server data. Mixup is
developed to regularize neural network training by densely
sampling the convex combinations of training examples.
The convex hull of large-scale source data likely overlaps
with the support of target domains considerably. Moreover,
the relationship between empirical risk minimization and
mixup is derived [44] and empirically shown to effectively
improve model generalization, robustness to adversarial ex-
amples, and training stability. These properties are of par-
ticular importance in FMTDA since decentralized training
with non-i.i.d. and unlabeled client data tends to be un-
stable. By fitting a GMM on each target domain, we can
further sample a proxy set according to the data density of
each client. Note that GMM encodes global statistics in the
feature space, which carry less private information than the
parameters/gradients of a client model.

Specifically, we randomly average two source instances
xm,xn ∼ DS in a data batch as a mixup instance xmn =
(xm+xn)/2. Given the GMM parameters WT

i from client
i, the server uses it to weight each mixup example xmn,
denoted by WT

i(xmn). The objective for the server-side
adaptation is a weighted average over the mixup examples:

min
G

N∑
i=1

Ex∼mixup(DS)WT
i(x) Li

adv(x), (6)
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Algorithm 1 DualAdapt
Input: Source domain DS = {(xs, ys)}, target domains
(DT

1, ..., DT
N ) = ({xt

1}, ..., {xt
N}), Number of client iterations

Rc, Number of server iterations Rs

Output: Feature extractor G, global classifier Fg , local classifiers
(Fl

1, ..., Fl
N )

1: Pre-train G and Fg on server with cross-entropy loss
2: repeat
3: Fit global GMM WS on source data
4: Broadcast server models G,Fg ,WS to each client
5: # Local adaptation for client i :
6: Initialize local classifier Fl

i ← Fg

7: Initialize local GMM WT
i

8: for r = 1 : Rc do
9: Sample mini-batch xt

i from DT
i

10: Update Fl
i on xt

i with Eq. 5
11: Update WT

i on xt
i

12: Upload Fl
i and WT

i to the server
13: # Server optimization:
14: for r = 1 : Rs do
15: Sample mini-batch (xs, ys) from DS

16: Generate mixup data xs′ from xs

17: Update G on xs′ with Eq. 6
18: Fine-tune G and Fg on (xs, ys) with cross-entropy loss
19: until convergence

where N is the total number of clients. The weighting
mechanism allows the feature extractor G to focus on the
mixup instances that are closer to a target domain when
adapting the extracted features.

3.3. Model training and inference
Algorithm 1 describes the algorithmic details of the Du-

alAdapt method and Figure 2 illustrates the main steps. We
first pre-train the server model (G, Fg , WS) on the labeled
source data DS . Then, the model is broadcast to all clients
and each local classifier Fl

i is initialized by Fg . After local
optimization (Eq. 5), each client uploads its local classifier
and GMM parameters WT to the server. The server first up-
dates the feature extractor and global classifier (Eq. 6) and
then fine-tune the model (G,Fg) using a cross-entropy loss
over the source data before broadcasting them back to the
clients. When fitting the GMM models, we reduce the fea-
ture dimension with PCA to preserve at least 80% of the
original energy and empirically choose the number of mix-
ture components as twice the number of classes. The client
models are trained with mini-batch gradient descent and the
server model is updated by a momentum optimizer to sta-
bilize the training. In the inference phase, we ensemble the
predictions of global and local classifiers as:

ỹ(x) = (Fg(G(x)) + Fl
i(G(x)))/2, (7)

where x is a test example from client i.

4. Experiments and Analyses
Datasets. We experiment with three FMTDA tasks: digit
classification on the Digit-Five dataset [31], image clas-

sification on the DomainNet dataset [30], and semantic
segmentation with adaptation from the synthetic GTA5
dataset [32] to the real-world CrossCity dataset [6]. Fig-
ure 3 shows some sample images from these datasets. Digit-
Five is composed of five benchmarks for digit recogni-
tion: MNIST [20], Synthetic Digits [7], MNIST-M [7],
SVHN [29], and USPS. The DomainNet dataset contains
596K images of 345 classes from 6 modalities: clipart,
inforgraph, painting, quickdraw, real, and sketch. Each
modality is viewed as a domain in this paper. The GTA5
dataset contains 25k street-view images simulated from
computer games. It provides dense pixel-wise labels for se-
mantic segmentation with 19 classes. The CrossCity dataset
consists of real-world street scenes collected from four dif-
ferent cities: Rio, Rome, Taipei, and Tokyo. There are
3.2k training images and 100 testing images for each city.
Since the CrossCity dataset is labeled with only 13 classes,
we train and evaluate the models using the overlapped 13
classes between GTA5 and CrossCity. To simulate a prac-
tical scenario, we assume that each client (target domain)
only possesses a limited amount of data. The main results
presented here use 10% data from each target domain in
the large-scale Digit-Five and DomainNet datasets, and the
supplementary material contains results of other settings.
Baselines and upper bounds. Since FMTDA is new in
the literature, we mainly evaluate our approach, DualAdapt,
with the following methods: 1) centralized models trained
on the source data only, 2) centralized MCD [34] (Cent-
MCD) using centralized training in a multi-target DA set-
ting, 3) federated versions of several DA methods (Fed-
DAN [25], Fed-DANN [7], Fed-MCD [34]), and 4) fed-
erated oracle (Fed-oracle), which assumes that DualAdapt
can access the target data on the server.
Implementation details. We use the standard FL protocol
to extend the centralized DA methods to our setting, i.e.,
updating models locally and aggregating them on the server
using the Federated Averaging (FedAvg) algorithm. Note
that the federated DA baselines require a copy of the source
dataset for every client, which gives these schemes some
advantage over our method. The federated oracle model
replaces the mixup data on the server with the target do-
main examples and discards the GMM weighting mecha-
nism. We implement our model using TensorFlow [1]. The
supplementary material contains more implementation de-
tails, model architecture, and additional experimental re-
sults on two other adaptation tasks: image classification on
the Office-Caltech10 dataset [12] and semantic segmenta-
tion on the BDD100k dataset [41].

4.1. Task accuracy
Digit-Five. We use the MNIST dataset as the source do-
main and the rest as the target domains (i.e., one-to-four
adaptation task). Our models include 4 convolutional lay-
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Figure 3. We evaluate the model performance on three different datasets: Digit-Five, DomainNet, and CrossCity. First, we adapt
from MNIST to four other datasets for digit classification. Second, we take turn adapting from one image modality in DomainNet to the
rest. Finally, we perform cross-city adaptation in semantic segmentation from the synthetic GTA5 dataset to real-world street images.

Table 1. Quantitative evaluations on the Digit-Five dataset. We
report the classification accuracy (%) on the target domains. The
MCD method produces a clear accuracy gain from the source-only
baseline but does not perform well in the federated setting. Our
method improves the performance significantly compared to the
federated baselines.

Method MNIST-M SVHN Synthetic USPS Avg

Source only 26.1 10.4 26.9 57.7 30.3
Cent-MCD [34] 28.5 12.3 29.2 70.8 35.2
Fed-oracle 28.1 12.0 28.3 69.5 34.5

Fed-DAN [25] 26.6 10.4 27.1 59.4 30.9
Fed-DANN [7] 26.9 10.6 27.8 59.9 31.3
Fed-MCD [34] 27.2 10.7 27.4 61.6 31.7
DualAdapt (ours) 27.7 11.9 28.0 68.9 34.1

ers for feature extraction and two fully-connected layers for
each classifier. Table 1 reports the classification accuracy
on the target domains and Figure 4 shows the results with
various amount of target data for training. Compared to
the source-only baseline, Cent-MCD improves the classifi-
cation accuracy considerably (from 30.3% to 35.2%), con-
firming the efficacy of domain adaptation. Both Cent-MCD
and Fed-oracle access the client data on the server, which
serve as the upper bounds of our method. We emphasize
that DualAdapt can almost match the performance of Fed-
oracle (34.1% vs. 34.5% on average). In the FMTDA set-
ting, DualAdapt alleviates the inter-client and source-target
domain mismatches. While the other federated DA methods
additionally have access to the source data on client devices,
they only tackle the source-target domain discrepancy. The
results show that DualAdapt achieves much higher perfor-
mance (34.1%) than the federated DA methods (30.9%,
31.3%, and 31.7%), demonstrating the necessity of mod-
eling the inter-client domain gaps.

DomainNet. We perform cross-modality adaptation on the
DomainNet dataset [30] using ResNet101 [13] for feature
extraction. Each modality in the DomainNet is taken as the
source domain in turn. The quantitative results are shown
in Table 2. The performance of evaluated methods are sim-
ilar to that in the Digit-Five dataset. Adapting from “quick-

Figure 4. Quantitative evaluations of different DA methods on
the Digit-Five dataset. The solid lines show the federated DA
methods and the dash lines are the centralized MCD [34] method
under different training scenarios. We evaluate the models trained
with various amount of data per client. Our model achieves con-
sistently higher accuracy compared to the federated baselines, and
can perform better than several centralized methods when the tar-
get data on each client device is limited.

draw” and “sketch” to the rest are more challenging due to
their larger modality gaps than other domains. However,
DualAdapt is able to achieve consistent performance gains
over the other federated DA methods.
GTA5 to CrossCity. For this semantic segmentation
task, the domain adaptation is from the synthetic GTA5
dataset [32] to the four real-world cities in CrossCity [6].
We use the MobileNetv2 [35] with multiplier α = 0.5 as
backbone and DeepLabv3 [5] without decoder as our seg-
mentation model. Although GTA5 is a large-scale dataset,
the diverse scene structures across different target cities
pose a great challenge for adaptation. Table 3 shows the
quantitative results of the evaluated methods based on the
mean intersection-over-union (mIoU) metric. While Cent-
MCD achieves clear performance gain over the source-only
baseline in the centralized setting, the federated adaptation
methods do not preform as well in the FL setting. Our
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Table 2. Quantitative evaluations on the DomainNet dataset. We take turn using one domain as source and the rest as targets and report
the average accuracy (%) on the target domains. Our method (DualAdapt) achieves similar accuracy to the centralized and federated upper
bounds, which is significantly higher than the federated baselines.

Method Clipart→ Infograph→ Painting→ Quickdraw→ Real→ Sketch→ Avg

Source only 25.7 19.3 29.6 4.4 31.5 10.5 20.2
Cent-MCD [34] 29.6 23.4 34.1 7.2 36.1 14.2 24.1
Fed-Oracle 29.2 22.9 33.8 6.6 35.8 13.5 23.6

Fed-DAN [25] 25.9 19.7 30.3 4.6 31.1 11.4 20.5
Fed-DANN [7] 25.5 20.1 30.4 4.7 31.3 10.8 20.5
Fed-MCD [34] 27.1 19.9 31.4 4.7 32.5 10.4 21.0
DualAdapt (ours) 29.0 22.3 33.5 6.0 35.7 13.2 23.3

Table 3. Quantitative evaluations on GTA5-to-CrossCity. In
this challenging segmentation task, the federated baselines pro-
duce minimal mIoU gain on the target domains whereas our
method improves the performance by a clear margin.

Method Rio Rome Taipei Tokyo Avg

Source only 27.9 27.6 26.0 28.2 27.4
Cent-MCD [34] 31.1 30.6 28.8 31.6 30.5
Fed-oracle 30.3 28.4 28.3 30.7 29.4

Fed-DAN [25] 27.3 26.4 26.0 28.5 27.1
Fed-DANN [7] 28.6 26.0 26.6 28.6 27.5
Fed-MCD [34] 27.7 27.3 26.5 29.0 27.6
DualAdapt (ours) 29.2 28.0 27.6 30.7 28.9

method improves from the baseline by 1.3 mIoU, approach-
ing the oracle upper bound (28.9 vs. 29.4).

4.2. Communication and computational costs
In addition to measuring the task accuracy on target data,

we also evaluate the server-client communication and on-
device computational costs. For communication, we cal-
culate the number of model parameters that need to be
transmitted in two directions: upload (client to server) and
broadcast (server to client). Regarding the computational
cost, we emphasize the importance of low training cost on
the client devices since they are usually equipped with lim-
ited computational resources. Specifically, we estimate the
number of floating-point operations (FLOPs) incurred by a
data example in a forward pass and backpropagation dur-
ing training. Without loss of generality, we divide most
methods into a feature extractor G, a classifier F , and
optionally a domain discriminator D. For each module
m ∈ {G,F,D}, we denote by |m| the number of its pa-
rameters and by ∥m∥ the FLOPs of a forward pass of one
data example. The FLOPs in backpropagation are typically
similar to the forward pass FLOPs ∥m∥ in our experiments,
so we estimate the on-device training cost by 2∥m∥ if the
module is trainable.

We use the federated DA baselines and our method to
demonstrate how to calculate the communication and on-
device computational costs. Recall that in the federated DA
baselines, each client has access to its own target domain
data as well as the source data from server.

• The DANN method [7] aligns the source and target do-
mains by inserting a gradient reversal layer between
the feature extractor and domain discriminator. We
train a domain discriminator for each client and up-
date it locally with the main network. During local
optimization, each target domain example is passed
through G and D, and source domain example is
passed through all the modules (G, F , and D). Hence,
the on-device computational cost is 2(∥G∥ + ∥D∥) +
2(∥G∥ + ∥F∥ + ∥D∥) in Fed-DANN. For data com-
munication, each client uploads its G and F to the
server, and the server broadcasts the aggregated G and
F back to the clients. The communication overhead is
|G|+ |F | in both directions.

• Fed-MCD [34] trains a feature extractor and two clas-
sifiers for each federated client. The computational
cost is thus 2(∥G∥ + 2∥F∥) + 2(∥G∥ + 2∥F∥), and
the communication overhead is |G|+ 2|F |.

• In DualAdapt, the feature extractor and global classi-
fier are fixed on client devices, and we only pass the
target data through the local model. It reduces the com-
putational cost to ∥G∥+ 3∥F∥, including one forward
pass over G, Fg , and Fl and a backpropagation pass
over Fl. For data communication, we upload |F |+|W |
parameters and broadcast |G|+ |F |+ |W | parameters.

Generally, the communication and computational costs
are dominated by the feature extractor G of a model. Du-
alAdapt reduces the computational and upload costs con-
siderably compared to the federated baselines as we do not
update G on-device and do not pass the source data through
the local model. Fitting GMM models to the target data
barely creates additional costs per data example per itera-
tion since the feature dimension is reduced. In Table 4, we
show the communication and computational costs incurred
by our method and other federated baselines. In all three ex-
periments, DualAdapt requires approximately 1/4 FLOPS
of other methods during the client-end training. Moreover,
the number of model parameters that need to be uploaded to
the server is reduced considerably. The results demonstrate
that DualAdapt can perform the adaptation efficiently with
the minimal costs of communication and computation.
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Table 4. Evaluations of communication and computational costs. We calculate the client-end FLOPS as computational cost during
training and number of model parameters to upload + broadcast as communication overhead. Our method (DualAdapt) reduces the
communication and computational costs significantly compared to the other baselines.

Digit-Five DomainNet GTA5-to-CrossCity
Method Computation Communication Computation Communication Computation Communication

Fed-DAN [25] 314.0M 493K + 493K 36.1B 2.5M + 2.5M 31.5B 45.4M + 45.4M
Fed-DANN [7] 314.3M 493K + 493K 36.1B 2.5M + 2.5M 32.0B 45.4M + 45.4M
Fed-MCD [34] 314.6M 510K + 510K 36.1B 2.5M + 2.5M 32.6B 46.1M + 46.1M
DualAdapt (ours) 78.7M 18K + 494K 9.0B 0.02M + 2.5M 8.4B 1.6M + 46.2M

Table 5. Ablative evaluations on the Digit-Five dataset. We show that DualAdapt significantly reduces the communication and compu-
tational costs by decoupling client and server model training. The individual components of our framework like ST and GMM improve the
accuracy and barely require additional communication and computational costs.

Method Client Server Accuracy (%) Computation (FLOPS) Communication (# parameters)

Fed-MCD [34] MCD target - 31.7 314.6M 510K + 510K
DualAdapt MCD target MCD mixup 32.8 78.5M 17K + 493K
DualAdapt MCD target + ST MCD mixup 33.5 78.5M 17K + 493K
DualAdapt MCD target + ST MCD mixup + GMM 34.1 78.7M 18K + 494K

Fed-oracle MCD target + ST MCD target 34.5 78.5M 17K + 493K

4.3. Ablation studies
To evaluate the effectiveness and costs of individual

components in our framework, we perform ablation studies
on the Digit-Five experiment. Table 5 shows, by introduc-
ing local and global classifiers, we achieve a 1.1% accuracy
gain and require only a quarter of the computational cost
and half of the communication overhead compared to Fed-
MCD. Self-training (ST) further improves the accuracy by
0.7% and barely increases the computation overhead. With
the GMM weighting mechanism, the accuracy of our full
model is close to the oracle while having only 1K additional
parameters to upload and broadcast. It demonstrates the ef-
fectiveness of weighting mixup data as target proxy.

5. Centralized multi-target domain adaptation
Our work is closely related to centralized multi-target

DA. In a typical FL system, the client models are trained
on locally collected data which is non-i.i.d. due to differ-
ent user characteristics. The problem of domain mismatch
among multiple clients, or target domains, is challenging
even in a centralized training framework. Although some
methods have been proposed for centralized multi-target
DA [42, 10], the best way to adapt to diverse domains in
real-world scenarios remains unclear. To disentangle the
challenges of multi-target DA and distributed training, we
also look into the problem in a centralized setting. The
idea is to investigate how the performance of a DA method
changes after eliminating the federated setting.

When dealing with multiple target domains, some com-
mon solutions include 1) treating the adaptation to each tar-
get as a separate DA task (one-to-one), 2) combining all
target data into one domain and solving it as single-source-
single-target DA (one-to-combined), and 3) adapting to

multiple targets simultaneously by decomposing model pa-
rameters or feature representation into shared and private
components (one-to-multiple). We evaluate MCD [34] with
these settings using the Digit-Five experiment. In the one-
to-multiple setting, the model is decomposed into a shared
feature extractor and two classifiers for each target domain.
As shown in Figure 4 (dash lines), the one-to-one adap-
tation models perform better when sufficient training data
from the target domain is available. In a practical scenario
with fewer target examples, the one-to-multiple method can
more effectively adapt to the target domains. Note that the
one-to-one adaptation requires multiple copies of the model
parameters while one-to-combined needs only one. How-
ever, the one-to-combined method is not applicable in fed-
erated learning since the client data is private. The observa-
tions justify our one-to-multiple FL model design since the
federated clients usually possess limited data.

6. Conclusion
Multi-target domain adaptation is a natural and challeng-

ing problem in federated learning. While most existing
methods assume labeled and/or i.i.d client data, we consider
a practical setting: multi-target unsupervised domain adap-
tation. We show that naively applying centralized DA meth-
ods on federated client devices not only leads to poor per-
formance but also costs considerable communication and
computational overheads. To address this, we propose a
simple yet effective framework, DualAdapt, which requires
minimal FL training costs. Extensive experiments on im-
age classification and semantic segmentation demonstrate
that DualAdapt can achieve significant performance gain
compared to centralized and federated baselines. We hope
that this work will encourage more research attention to this
novel and crucial topic.
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