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Abstract

Recent work reports disparate performance for intersec-
tional racial groups across face recognition tasks: face ver-
ification and identification. However, the definition of those
racial groups has a significant impact on the underlying
findings of such racial bias analysis. Previous studies de-
fine these groups based on either demographic information
(e.g. African, Asian etc.) or skin tone (e.g. lighter or darker
skins). The use of such sensitive or broad group defini-
tions has disadvantages for bias investigation and subse-
quent counter-bias solutions design. By contrast, this study
introduces an alternative racial bias analysis methodology
via facial phenotype attributes for face recognition. We
use the set of observable characteristics of an individual
face where a race-related facial phenotype is hence spe-
cific to the human face and correlated to the racial profile
of the subject. We propose categorical test cases to inves-
tigate the individual influence of those attributes on bias
within face recognition tasks. We compare our phenotype-
based grouping methodology with previous grouping strate-
gies and show that phenotype-based groupings uncover hid-
den bias without reliance upon any potentially protected at-
tributes or ill-defined grouping strategies. Furthermore, we
contribute corresponding phenotype attribute category la-
bels for two face recognition tasks: RFW for face verifica-
tion and VGGFace2 (test set) for face identification.

1. Introduction
An increasing number of automated face recognition

systems have been deployed by companies, nonprofits and
governments to make autonomous decisions for millions of
users [1]. Such wide-scale adoption within real-world sce-
narios brings with it valid concerns on the potential abuse of
face recognition due to the presence of data and algorithmic
bias [2, 3]. The most common issue pertaining to such bias
arises in racial groups [4]. Subsequently, the research com-
munity have been focused on methods that rely on demo-
graphic or skin type group annotations drawn from public
face recognition benchmark datasets [5, 6]. This provides
algorithmic performance on such predefined groupings to

measure bias. However, current grouping annotations and
related bias evaluation strategies may lead to unintended
negative implications- each of which we now detail to il-
lustrate our motivation clearly.

Ambiguous Definition of Race: The historical and bio-
logical definitions of race vary and racial context is not fixed
over time [7]. Such ambiguity becomes more problem-
atic for the face recognition literature, as many researchers
do not provide any related background about the details
of their racial categorisation design process [8]. However,
racial groupings are critical to the effective evolution of
face recognition methodologies as they often represent the
all-important means of quantitative evaluation. As in any
recognition task, poorly defined groupings result in skewed
mean and standard deviation measures of relative perfor-
mance due to the ill-posed boundary conditions on mem-
bership of each group that can cause a given an example to
justifiably transit from one group to another.

Privacy of Protected Attributes: Auditing benchmark
datasets can cause potential privacy and consent violations
[9] for dataset subjects. For example, exposing demo-
graphic origin may enhance the representations of a group
under threat, leading to the potential for racial profiling and
associated targeting [10]. As information of racial or eth-
nic origin is sensitive [11], researchers should either avoid
revealing such sensitive data or provide an appropriate con-
text for use [9].

Confined Groupings: Skin or racial grouping strategies
such as binary {light vs. dark; black vs. white} for evalu-
ating racial bias limits the scope of any study as they fail to
capture the whole aspect of the bias problem where it needs
to consider both multi-racial or less stereotypical members
of such groups instead [12, 13] use Fitzpatrick skin type
groupings to evaluate racial bias, but one such skin-tone
based racial grouping contains multidimensional traits in-
cluding nose, hair type, eye, and lips [14]. Leveraging all
such traits together instead brings improved interpretations
and derivations to address racial bias.

Racial Appearance Bias: Maddox [15] explains racial
appearance bias as a negative disposition toward phenotypic
variations in facial appearance. He also [16] discusses how
race-conscious social policies may fail to address racial bi-
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Study Dataset
Name

Release
Year Racial Grouping Strategy Number of

Image Source

[17] MORPH 2006
Caucasian, Hispanic, Asian,

or African American 55K Public Data

[18] UTK Face 2017
Asian, Black, Indian, Others (like Hispanic,

Latino, Middle Eastern) and White 20K
MORPH, CACD

Web
[19] RFW 2019 African,Asian, Caucasian,Indian 45K MS-Celeb [6]
[20] BUPT-Balanced 2020 African,Asian, Caucasian,Indian 1.3M MS-Celeb [6]

[21]
Fair Face
Challenge 2020

Light skin-toned (Fitzpatrick I-III),
Dark skin-toned (Fitzpatrick IV-VI) 152K

IJB-C [22] and
public domain images

[23]
Casual

Conversations 2021 Fitzpatrick Skin Types 45K* Vendor data

[24] FairFace 2021
Black, East Asian, Indian, Latino,

Middle Eastern, Southeast Asian, and White 108K
Flickr, Twitter

Newspapers, Web

Ours VGGFace2 [5] 2018 (2021) Fitzpatrick Skin Types, Nose Shape,
Eyelid Type, Lip Shape, Hair Type 3.3M Google Image Search

Ours RFW [19] 2019 (2021) Fitzpatrick Skin Types, Nose Shape,
Eyelid Type, Lip Shape, Hair Type 45K MS-Celeb [6]

Table 1. Publicly available face datasets for different types of facial analysis tasks and their grouping strategies to address racial bias.
*Casual Conversations dataset provides videos.

ases in the treatment and outcomes of disadvantaged
groups. Many studies show that individuals with more
stereotypical racial appearance suffer poorer outcomes than
those with less stereotypical appearance for their race [16,
25, 26]. On the other hand, a better understanding of the
role of phenotypic variation complements solutions for both
racial bias [15]. By way of phenotype, we mean the set
of observable characteristics of an individual face where a
race-related facial phenotype is hence specific to the human
face and correlated to the racial profile of the subject.

Accordingly, we propose using race-related facial (phe-
notype) characteristics within face recognition to investi-
gate racial bias. We categorise representative racial char-
acteristics on the face and explore the impact of each char-
acteristic phenotype attribute: skin types, eyelid type, nose
shape, lips shape, hair colour and hair type. We audit these
attributes for two different publicly available face datasets:
VGGFace2 (test set) and RFW. We assess the impact of both
attribute-based and subgroup-based evaluations on racial
bias of face recognition tasks. We utilise two different train-
ing setups for face verification to compare performance dis-
parities between imbalance and racially balanced training
datasets. We compare our phenotype-based evaluation strat-
egy with race or skin type based grouping evaluation. We
show that our strategy provides a more elaborate percep-
tion of bias without revealing any potentially protected or
ill-defined information.

This study presents a new evaluation strategy using facial
phenotype attributes to investigate and measure racial bias
with greater granularity within face recognition tasks. In
this paper, our key contributions are as follows:

• we propose a new evaluation strategy that uses facial phe-
notype attributes rather than race labels to measure racial
bias within both attribute-based and subgroup-based per-
formance of state-of-the-art face recognition algorithms.

• we contribute additional facial phenotype attribute la-
belling for the VGGFace2 (face identification) and RFW
(face verification) benchmark face datasets.

• we uncover the potentially hidden source of bias within
the evaluation of racial groups, which is supported by
quantitative evidence.

2. Related Work
Automated facial recognition encompasses two different

tasks: face identification and face verification. For both
tasks, studies present approaches that achieve overall per-
formance on public benchmark datasets [22, 27] whilst the
racial diversity within these datasets is often limited, biased
and overlooked [28]. Consequently, numerous studies audit
publicly available face datasets to demonstrate the dataset
bias in face recognition [19, 29, 30]. However, the group
definitions in use vary, meaning that a lack of consensus
makes it significantly harder to tackle bias collaboratively
due to an inconsistent problem definition across the litera-
ture.

We show leading benchmark face datasets with their
grouping strategies in Table 1 to tackle racial bias. As a
subset of MS-Celeb-1M, the RFW dataset [19] measures
the racial performance of face verification on four different
racial groups: {African, Asian, Indian, Caucasian}. Fair-
Face [29] is another dataset drawn from the YFCC-100M
Flickr dataset, providing additional group labels, {Middle
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East, Latino} to evaluate bias on wider groupings. UTK-
Face [31] is a large-scale face dataset with five different
ethnicity categories for a variety of tasks, such as face detec-
tion, age estimation, age progression/regression, etc. More
recently, The Casual Conversations Dataset [23] yielded
from vendor data contains 45K videos with corresponding
Fitzpatrick skin type labels. We subsequently categorise
studies in the literature according to grouping strategies they
adopt and explain each category below.

Racial Groupings: Although the definition of race car-
ries a large amount of complexity and ambiguity, an increas-
ing number of studies adopt various racial groupings and
show performance disparities among them [4, 32]. The un-
derlying reasons for such disparate results are summarised
into two categories by [33]. Both the distribution of data on
pre-defined racial groups and how we measure the bias play
a major role in the results [33]. However, the majority of
racial bias research rarely contains underlying details about
how racial groups are determined or how racial bias eval-
uation metrics are designed [8]. Furthermore, [34] showed
that non-explicit racial factors (accessories, hairstyles or fa-
cial anomalies) conflates with explicit racial factors (skin
tone, nose shape or eye shape) and both factors strongly af-
fect the recognition performance. He discusses the need to
investigate each factor in order to have robust, fair, and ex-
plainable face recognition solutions. Such needs contradict
the use of racial groups as they remain too narrow to have
elaborate explanations [35].

Skin Type Groupings: Moreover, various studies [12,
21, 23] measure the racial bias in face recognition us-
ing either the Fitzpatrick Skin Types [36] or binary skin
groups instead of using racial groups. Skin type grouping
labels are yielded mostly from crowd-sourcing [30], neu-
ral network-based classifiers [37, 38] or professional hu-
man annotators. Merler [30] presents additional human-
interpretable quantitative measures of intrinsic facial fea-
tures along with subjective annotations. Although [39]
show that Fitzpatrick Skin Types classification from uncon-
trolled imagery is a challenging task, [38] achieves high cor-
relation with ground-truth labels using consistent reference
points in human-level annotation interface.

Another issue is the impact of skin tone on racial bias.
Cook [40] shows that the measure of skin reflectance on bi-
nary skin groups had the greatest net effect on the average
biometric performance of face recognition. On the contrary,
[41] claims it is not the case when it comes to continuous
Fitzpatrick Skin Type groupings. Furthermore, skin tone
is not enough for analysing racial bias as there is no clear
evidence that skin tone is the primary driver for disparate
false match rates [41]. Accordingly, many studies [42, 43]
suggest looking for other race-related facial attributes in-
cluding lip, eye, face shape in order to measure racial bias
within face recognition.

In order to address these aforementioned issues, we pro-
pose a phenotype-based evaluation strategy for racial bias
within face recognition. We provide facial phenotype at-
tributes for the public benchmark datasets VGGFace2 and
RFW in Table 1. We explain the phenotype-based at-
tribute category selection process followed by our annota-
tion framework in Section 4 and 5, respectively. We elabo-
rate on our findings by measuring two state-of-the-art algo-
rithms performance using imbalance and racially balanced
training sets. Firstly, we analyse bias for each phenotype
attribute category (attribute-based). Secondly, we produce
different appearance-based joint distributions of face sub-
jects and assess algorithm performance on subject group-
ings (subject-based). We provide related experiments with
details in Section 6.

3. Ethical Considerations
Intent: This work intends to provide a novel racial bias

analysis methodology via facial phenotype attributes for
face recognition. The proposed strategy avoids the need for
researchers to use potentially protected or ill-defined sub-
ject attributes and instead introduces racial phenotype at-
tributes to explore racial bias in face recognition.

Denotation of Facial Phenotypes: We denote race-
related phenotype attributes according to the studies of
[44, 45] to have descriptive naming whilst avoiding caus-
ing any unintended offence to individuals.

Use of VGGFace2 and RFW: We conduct our exper-
iments on two different face datasets which are publicly
available for research use only. The reader is directed to
the original source publication and the associated research
organisation for access to these datasets. We make available
supplementary facial attribute labels for these datasets in or-
der to facilitate the use of our proposed evaluation strategy
by other researchers, with the aim of furthering our stated
intent above.

4. Racial Phenotypes on Face Images
In this section, we explain the categorisation of fa-

cial phenotype attributes for face recognition. Quine [46]
presents three possible definitions of the race concept: a ge-
netic variation between humans, morphological attributes,
and genetically determined psychological characteristics.
These morphological attributes are the primary interest for
resolving racial bias in face recognition. For morphologi-
cal attributes, studies [47, 48] focus on the impact of human
phenotype characteristics over race estimation. They cat-
egorise the attributes by considering biological traits. The
study of Shades of Race [44] investigates the marginal ef-
fects of phenotypic characteristics including skin tone, lips,
nose, hair and body type on racial categorisation. Zhuang
[49] considers 21 anthropometric measurements such as
face width, length, nose breadth and length, eye corner
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Figure 1. The distribution of facial phenotype attributes of RFW (left) and VGGFace2 Test (right) datasets.

points. He finds statistically significant differences in facial
measurements between four racial/ethnic groups, which are
{Caucasian, Hispanic, African, other (mainly Asian)}.

We adopt such groupings and measurements for face
recognition by considering two limitations. Firstly, ef-
fectively evaluating face recognition tasks requires tight
cropped (e.g. 112 × 112 px) low-quality images containing
occlusion, shadows, and illumination variations for both the
training and test stages. This makes phenotype attribute de-
tection on the specific characteristics of face dataset images
more difficult when compared to real-world human faces.
Secondly, the broader categorisation increases the number
of potential groupings, making bias evaluation inefficient
for face recognition systems. Correspondingly, we decide
to use 6 primary attributes that define the phenotype group-
ings for our study: skin type, eyelid type, nose shape, lip
shape, hair type and hair colour1. Subsequently, we have 21
different attribute categories under the 6 primary attributes
as listed in Table 2.

Attribute Categories RFW VGGFace2

Skin Type Type 1 / 2 / 3 / 4 / 5 / 6 0.71 1.14
Eyelid Type Monolid / Other 0.80 1.09
Nose Shape Wide / Narrow 0.24 0.18
Lip Shape Full / Small 0.28 0.63
Hair Type Straight / Wavy / Curly / Bald 0.70 1.11
Hair Colour Red / Blonde / Brown / Black / Grey 1.23 0.67

Table 2. Facial phenotype attributes and their categorisation based
on [44] along with normalised standard deviations σ/µ.

We choose to use Fitzpatrick Skin Types [36] for skin
tones as it provides more granularity, {Type 1, Type 2, Type
3, Type 4, Type 5, Type 6}, than binary skin-tone groupings,
{lighter skin-tone, darker skin-tone}. The appearance of
the human eye has been grouped by its position, shape and
settings in many cosmetic industry guidelines [50]. How-
ever, they have either no scientific background or solid re-

1We note that hair information is still present in the tightly cropped
images, and it may be helpful for future automated facial analyses tasks.

lation with race. Instead, we look into epicanthal folds and
check eyelid difference as it is a more distinctive attribute
for racial bias [51]. We acknowledge that a single attribute
category can be observed in multiple race groups. However,
our main concern is identifying the most observable and
convenient racial phenotype attributes on images to evaluate
the bias (see Table 2).

For the appearance of the nose, we use two categories,
wide and narrow, by examining the nasal breadth [49]. Hair
texture is labelled into eight categories using the frequency
of twists, waves, and curve diameter metric by [52]. Here
we utilise eight categories and group them into three main
hair texture types: straight, wavy, curly, in addition to bald.
Despite being the most artificially manipulable attribute, we
retain hair colour as it is related to skin tone [53]—the cat-
egories for hair colour we use: red, grey, black, blonde,
brown (see Table 2).

5. Annotation of Racial Phenotypes

Previously in Section 4, we explain how we define racial
phenotype attributes and their categories. Before the anno-
tation process, we choose the most established face recogni-
tion datasets to validate our proposed methodology. For the
face verification task, we choose the RFW dataset [19] as it
provides a relatively broader racial distribution of subjects
where each subject contains 3-5 images. For face identi-
fication, we use the VGGFace2 closed-test set [5], which
contains at least 300 images per subject. For both datasets,
we design an annotation interface to make the annotation
process both user-friendly and robust. We present multi-
ple sample images of a subject to avoid incorrect annotation
caused by challenging samples such as grey-scale images,
facial makeup, and poor scene illumination. Each subject is
presented with attribute category selectors next to a set of
face images within the annotation interface. Subsequently,
an experienced annotator who has experience in morpho-
logical differences among races annotates each subject us-
ing the interface.
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We obtain 11654 subjects annotations from the RFW and
VGGFace2 benchmark datasets. Each annotation took 10-
20 seconds, and overall annotation took 12 days (, i.e. anno-
tator working at a maximum of 6 hours per day with regular
breaks). The result of this annotation process, the pheno-
type attributes distributions for the RFW and VGGFace2
benchmark datasets, are shown in Figure 1 left/right, re-
spectively. We also present the normalised standard devi-
ations (Coefficient of Variance), σ/µ, among attribute cat-
egories of benchmark datasets to show the level of imbal-
ance within these categories in Table 2. For both datasets,
we can observe that the dominant phenotype attribute cate-
gories are Skin Type 3, Straight Hair, Narrow Nose, Other
(non-monolid) Eyes, Small Lips, which correlates to the
dominant presence of Caucasian faces based on the analysis
of Figure 1.

6. Experimental Results and Discussion
In this section, we analyse the performance of our

phenotype-based grouping methodology for face recogni-
tion tasks. We provide a public reference implementation,
dataset reference links and pre-trained models 2.

6.1. Training Setups

Setup 1 (Imbalanced Training Data): We train ArcFace
[54] with a ResNet100 [55] on the VGGFace2 benchmark
datasets that contains 8631 subjects where subject distribu-
tion is racially imbalanced. Here, our specific choice of
VGGFace2 is due to investigate the impact of imbalanced
training data that includes data bias on our proposed evalu-
ation strategy.
Setup 2 (Racially Balanced Training Data): We use a
ResNet34 [55] backbone architecture with the Softmax loss
[56] trained on the BUPT-Balanced benchmark dataset [20]
that contains 28000 face subjects. The BUPT-Balanced has
racially balanced distributions among four groups {African,
Asian, Indian, Caucasian} with 7000 face subjects each.
The primary purpose of Setup 2 is to assess the impact
of a racially balanced training dataset on results over the
bias using our proposed phenotype-based methodology. We
compare how much a racially balanced training dataset im-
proved the performance difference compared to Setup 1.

6.2. Face Verification

Face verification, also known as one-to-one verification,
is the task of comparing two different facial images to es-
timate whether they belong to the same individual subject.
We follow two pairing strategies to explore the impact of
a single attribute (attribute-based) and appearance-based fa-
cial groups (subgroup-based) on the evaluation performance
of face verification.

2https://github.com/seymayucer/FacialPhenotypes

Attribute Name Setup 1
Accuracy %

Setup 2
Accuracy %

Blonde Hair 97.02 96.63
Red Hair* 96.33 96.83
Type 2 96.22 95.83
Gray Hair 94.85 95.83
Bald 94.75 95.70
Wavy Hair 94.32 95.50
Brown Hair 94.25 94.83
Type 6 93.77 94.77
Narrow Nose 92.92 94.77
Type 5 92.15 94.38
Curly Hair 92.02 93.63
Small Lips 91.92 94.98
Type 3 91.72 93.77
Type 1* 91.31 89.51
Straight Hair 91.25 94.32
Wide Nose 90.68 91.02
Full Lips 89.98 93.23
Type 4 89.90 93.55
Other Eye 89.88 93.75
Black Hair 89.88 91.42
Monolid Eye 88.27 89.73

σ 2.44 2.06
σ∗ 2.39 1.77

Table 3. Attribute-based face verification performance of RFW. σ
represents the standard deviation of all attribute category accura-
cies, including red hair and type 1, σ∗ represents excluding stan-
dard deviation.

Attribute-based pairing: Firstly, we generate pairs from
images containing the same attribute category—for ex-
ample, facial images from people who all have monolid
eyes. Consequently, we compare individual attributes per-
formance using both training setups for face verification.

For attribute-based face verification, we randomly select
20k positive and 20k negative pairs from all possible pairs
of each attribute. We calculate the cosine similarity of fea-
ture encoding of all selected negative and positive pairs to
obtain the most challenging pairs. Subsequently, we select
the most similar 3000 pairs from the negative samples and
the least similar 3000 pairs from the positive samples for
each attribute category in Table 3. Since the Type 1 category
of the skin type attribute and red hair category of hair colour
attribute do not have enough samples to generate 6000 pairs,
we instead produce 602 pairs (301 positive, 301 negative)
for Type 1, 1200 (600 positives, 600 negative) pairs for red
hair.

In this way, we measure each face attributes accuracy us-
ing on face verification performance. We use both training
setups to show how much standard deviation (σ) changes
between balanced and imbalanced training data. We present
the attribute-based sample groups in Table 3 with a stan-
dard deviation of accuracies excluding red hair and Type
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{1, 2} Small Other Narrow Straight 3.82 96.53 {3, 4} Full Monolid Wide Straight 1.55 91.63
{3, 4} Small Other Narrow Straight 7.43 96.45 {1, 2} Small Other Narrow Bald 0.28 91.29
{3, 4} Small Other Narrow Wavy 3.67 96.11 {5, 6} Full Other Narrow Curly 1.97 91.23
{1, 2} Small Other Wide Straight 3.03 95.63 {3, 4} Small Other Wide Bald 1.68 91.01
{1, 2} Small Other Narrow Wavy 1.64 95.62 {1, 2} Full Other Narrow Wavy 0.27 90.74
{1, 2} Full Other Narrow Straight 0.70 95.59 {3, 4} Small Monolid Wide Wavy 0.96 90.17
{3, 4} Full Other Narrow Straight 3.59 95.28 {1, 2} Small Other Wide Bald 0.46 89.78
{3, 4} Full Other Wide Straight 4.47 94.98 {5, 6} Small Other Narrow Curly 0.81 89.50
{3, 4} Small Other Wide Wavy 2.95 94.92 {3, 4} Small Monolid Narrow Wavy 1.20 89.35
{3, 4} Small Other Wide Straight 8.83 94.92 {5, 6} Full Other Wide Curly 13.09 89.18
{1, 2} Full Other Wide Straight 0.33 94.87 {3, 4} Full Other Wide Bald 0.80 86.02
{1, 2} Small Other Wide Wavy 0.72 94.56 {5, 6} Small Other Wide Bald 0.99 85.90
{3, 4} Small Other Wide Curly 0.51 93.89 {3, 4} Full Other Wide Curly 0.46 85.38
{3, 4} Full Other Wide Wavy 1.90 93.41 {3, 4} Small Monolid Narrow Bald 0.32 84.10
{3, 4} Full Other Narrrow Wavy 1.94 93.10 {5, 6} Small Other Narrow Bald 0.30 82.81
{3, 4} Small Other Narrow Bald 0.68 92.50 {3, 4} Small Monolid Wide Bald 0.52 82.67
{3, 4} Small Other Narrow Curly 0.31 92.45 {3, 4} Full Monolid Narrow Wavy 0.43 82.04
{5, 6} Small Other Wide Curly 2.81 92.23 {5, 6} Full Other Narrow Bald 0.53 81.24
{3, 4} Small Monolid Wide Straight 6.59 91.93 {1, 2} Small Monolid Narrow Straight 0.47 81.04
{3, 4} Full Monolid Narrow Straight 1.81 91.78 {3, 4} Full Monolid Wide Wavy 0.27 79.47
{5, 6} Full Other Wide Bald 3.62 91.74 {5, 6} Full Other Wide Wavy 0.32 78.94
{3, 4} Small Monolid Narrow Straight 7.95 91.70

σ 5.07

Table 4. Subgroup-based face verification performance of RFW using training setup 1, sorted by descending order of accuracy.

1 attribute accuracies (σ∗) and including them (σ) . It is
clear from Table 3 that for both setup 1 (imbalanced train-
ing data) and setup 2 (racially balanced training data), ac-
curacy is lower for monolid eyes, black hair, full lips, and
wide nose than the other eye, blonde hair, and small lips,
and narrow nose respectively. We also do find a slight cor-
relation between darker skin tones and higher false match-
ing rates when we pair from the same attribute categories
(Supplementary Table S1). Moreover, although the imbal-
anced training setup results a bigger performance difference
(σ) , the amount of difference between two setups is small,
meaning that a racially balanced dataset distribution is not
enough to overcome performance bias.

Additionally, NIST [4] suggests providing false match-
ing rates of pairing combinations between each grouping
in the dataset as it is necessary for real-world scenarios.
Therefore, we pair each attribute category with all other
attribute categories to assess cross-attribute pairing perfor-
mance. Subsequently, we evaluate false matching rates be-
tween any attribute category pair combination in Figure 2.
We randomly generate 10000 pairs for each category pair-
ings; in total, we have 441 (21 × 21) pairings. For example,
each cross-attribute pairings means 10000 pairs between

blonde hair - monolid eye, type 3 - wide nose or wavy hair -
full lips etc. As a result of this, we clearly show that Type 5,
Type 6 and monolid eyes pairings have higher false match-
ing rates among all attribute categories in Figure 2 using
training setup 1. Consequently, the impact of the dark skin
tones on performance increases for cross-attribute pairings
compared to the attribute-based pairings.
Subgroup-based pairing: Secondly, we create various
subgroups with different phenotypic attribute combinations
in the dataset. For example, one such subgroup consists of
subjects with skin type 3, monolid eyes, straight hair, wide
nose, and small lips. Our main purpose of such pairing is to
show the effects of single attribute changes over a group-for
instance, what would change when only skin gets darker,
but other attributes remain the same?

Furthermore, we generate all possible subgroups with
different phenotypic attribute category combinations to in-
vestigate subgroup-based performances. However, we need
to limit the number of subgroups such that we can present
our results efficiently. We first remove the hair colour at-
tribute as it is the easiest race-relevant attribute that indi-
viduals can readily modify via styling. Consequently, we
merge skin types into three groups and show them as {1,2}
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nan nan nan nan nan nan nan nan nan nan nan nan nan nan -1.79 -1.95 -1.85 -1.63 -1.84

nan nan nan nan nan nan nan nan nan nan nan nan nan -1.82 -1.89 -2.28 -2.34 -2.26 -1.83

nan nan nan nan nan nan nan nan nan nan nan nan -1.94 -2.24 -2.76 -2.11 -2.22 -2.23 -2.32

nan nan nan nan nan nan nan nan nan nan nan -2.01 -2.05 -2.14 -2.67 -2.11 -2.03 -2.21 -2.41

nan nan nan nan nan nan nan nan nan nan -1.88 -2.35 -2.39 -2.39 -1.66 -2.58 -2.46 -2.01 -1.90

nan nan nan nan nan nan nan nan nan -2.06 -2.13 -2.08 -2.13 -2.04 -1.75 -2.14 -2.20 -1.96 -1.95

nan nan nan nan nan nan nan nan -2.00 -2.19 -1.88 -2.17 -2.21 -2.13 -1.65 -2.34 -2.39 -1.93 -1.84

nan nan nan nan nan nan nan -1.97 -2.07 -2.05 -1.90 -2.03 -2.08 -2.24 -1.74 -2.05 -2.30 -1.89 -1.94

nan nan nan nan nan nan -1.97 -2.02 -1.98 -2.31 -1.88 -2.26 -2.43 -2.26 -1.64 -2.41 -2.40 -2.06 -1.92

nan nan nan nan nan -1.79 -2.61 -2.15 -2.40 -1.64 -1.55 -1.58 -1.60 -1.64 -1.58 -1.64 -1.71 -1.57 -1.59

nan nan nan nan -2.10 -1.68 -2.43 -2.16 -2.43 -2.29 -2.59 -2.28 -2.20 -2.37 -2.89 -2.20 -2.05 -2.43 -2.63

nan nan nan -2.02 -2.17 -1.64 -2.40 -2.06 -2.34 -2.17 -2.38 -2.13 -2.02 -2.22 -2.84 -2.17 -2.22 -2.19 -2.45

nan nan -1.77 -2.00 -2.43 -1.56 -2.16 -1.93 -2.06 -1.92 -2.20 -1.95 -1.82 -1.92 -2.74 -2.04 -2.23 -2.04 -2.22

nan -1.73 -2.40 -2.66 -2.84 -1.52 -1.58 -1.66 -1.62 -1.67 -1.63 -1.75 -1.72 -1.73 -1.77 -1.75 -1.75 -1.68 -1.63

-1.66 -1.75 -2.71 -2.77 -2.93 -1.50 -1.53 -1.60 -1.55 -1.65 -1.57 -1.82 -1.84 -1.75 -1.70 -1.60 -1.52 -1.55 -1.55

Figure 2. False matching rates (FMR) of cross-attribute based pairings for 21 attribute categories using training setup 1. Each cell depicts
FMR on a logarithmic scale which is log10(FMR) with lower negative values (close to zero) encoding superior false match rates.

for Type 1 and Type 2, {3,4} for Type 3 and Type 4, and
{5,6} for Type 5 and Type 6. Lastly, we remove subgroups
with a few or even no samples in the test set, which com-
prises 3% of all samples. In Table 4, we show the perfor-
mance of each subgroup with its proportion in the original
test dataset. To evaluate the performance, we generate 6000
pairs (3k positive and 3k negative) from all possible pairs
of subgroups that have enough samples. For the rest, we
generate an equal number of negative and positive pairs as
much as availability facilitates. From our observation of

Table 4, we can conclude that groups who have one of the
attributes like wide nose, full lips, and monolid eye type al-
ways have less accuracy than the other groups with a narrow
nose, small lips and other eye (when rest of the attributes
are same). Furthermore, whilst the average accuracy of the
subgroups with Type {5,6} skin type is 86.97%, subgroups
with Type {1,2} skin type is 92.56%, but this notably in-
cludes other attributes effects.

Moreover, the number of subgroup variations with
darker skin tones are much smaller than lighter tones which
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Figure 3. Accuracy variations for three grouping strategies. Stan-
dard deviation of the groupings reflects the amount of measured
bias. Racial groupings {African, Asian, Caucasian, Indian} accu-
racies are obtained from [20]. Binary skin tones {lighter skin-tone,
darker skin-tone} are the average accuracy of Type 1-3 and Type
4-6 skin tones, respectively.

causes many different evaluation and analysis problems. It
lacks sufficient interpretation in the test phase; there are mi-
norities in the global populous with dark skin and mono-
lid eyes or any other less common variations. Benchmark
datasets do not contain enough representations for such mi-
nority groups. An improved evaluation dataset would be
one that is able to cover more phenotype combinations such
that its distribution is an unbiased representation of the
global populous.

Lastly, we estimate such disparities among different
grouping strategies using training setup 2. We take racial
groupings {African, Asian, Indian, Caucasian} and binary
skin tone groupings {lighter skin-tone, darker skin-tone} as
they are very common grouping strategies in the literature.
We compare them with our phenotype-based grouping strat-
egy. In Figure 3, we show that how accuracy and the stan-
dard deviation differs between sub-groups in three different
strategies. Higher variation reveals hidden bias, which may
be missed in narrow, erroneous racial or binary skin tones
grouping strategies. The phenotype-based grouping strat-
egy brings a more granular observation of the variability in
performance (i.e. higher standard deviation) and hence a
more resolute measure of performance bias.

6.3. Face Identification
Face identification as a one-to-many verification is the

task of searching for a face across a facial database. There
are two scenarios for face identification applications based
on whether a queried face is enrolled in a database or not.
Open-set identification assumes the database does not nec-
essarily contain the queried face, while closed-set identi-
fication always looks for a match in the database. In this
study, we apply closed-set identification using the test set

Attribute Ratio (%) Acc (%) Attribute Ratio (%) Acc (%)

Bald 2.80 97.49 Type 6 1.60 96.25
Grey Hair 12.60 97.47 Wide Nose 43.60 96.19
Red Hair 0.80 97.10 Type 3 42.80 96.13
Type 5 3.60 96.87 Brown Hair 34.20 96.05
Type 4 9.60 96.75 Curly Hair 4.40 95.93
Small Lips 72.60 96.56 Wavy Hair 31.00 95.92
Type 2 39.20 96.43 Monolid Eye 11.00 95.73
Black Hair 29.80 96.43 Blonde Hair 22.60 95.52
Straight Hair 61.80 96.35 Full Lips 27.40 95.36
Other Eye 89.00 96.29 Type 1 3.20 92.90
Narrow Nose 56.40 96.26
σ 0.93

Table 5. Face identification performance on VGGFace2 test set us-
ing standard linear SVM and features from training setup 1, sorted
by descending order of accuracy.

of the VGGFace2 benchmark dataset on the originally pro-
posed protocol [5] and we extract the image features us-
ing training setup 1 [54]. We apply a 5-fold train-test split
where we sample 50 images from each subject as the test
set and use the rest as the training set. We train a stan-
dard linear SVM on the extracted feature representations
and predict the identities for test samples. Our results are
shown in Table 5 where we can observe that the standard
deviation (σ) is much smaller when compared to the ear-
lier attribute-based face verification results of Table 3. It
shows that the closed-set face identification does not have
the same level of bias correlation as we find for face verifi-
cation. However, in this experiment, we are unable to have
the same proportion for each attribute, and we did not mea-
sure open-set face identification. As suggested in [4], future
work should design and apply open-set tests for face identi-
fication on better-distributed benchmark datasets to measure
bias extensively.

7. Conclusion
We propose a new evaluation strategy using facial phe-

notype attributes to assess racial bias in face recognition
tasks. We elaborate experimental results to show the impact
of each phenotype attributes using two different training se-
tups, including imbalanced and racially balanced training
sets. We also provide different pairing strategies for face
verification to draw attention to the importance of pairing
for comprehensive evaluation. We observe apparent perfor-
mance differences between race-related phenotype attribute
categories and subgroups for both training setups. How-
ever, we also uncover more considerable performance dis-
parities among phenotype attributes than racial groups. We
demonstrate that phenotype-based evaluation strategy re-
veals racial bias comprehensively whilst avoiding exposing
potentially protected or ill-defined attributes. Future work
will focus on improving facial appearance variations using
generative models to provide more balanced and realistic
test scenario distributions.
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