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Abstract

The goal of natural language video moment localization
is to locate a short segment of a long, untrimmed video
that corresponds to a description presented as natural text.
The description may contain several pieces of key infor-
mation, including subjects/objects, sequential actions, and
locations. Here, we propose a novel video moment local-
ization framework based on the convolutional response be-
tween multimodal signals, i.e., the video sequence, the text
query, and subtitles for the video if they are available. We
emphasize the effect of the language sequence as a query
about the video content, by converting the query sentence
into a boundary detector with a filter kernel size and stride.
We convolve the video sequence with the query detector to
locate the start and end boundaries of the target video seg-
ment. When subtitles are available, we blend the boundary
heatmaps from the visual and subtitle branches together us-
ing an LSTM to capture asynchronous dependencies across
two modalities in the video. We perform extensive experi-
ments on the TVR, Charades-STA, and TACoS benchmark
datasets, demonstrating that our model achieves state-of-
the-art results on all three.

1. Introduction

Long, untrimmed videos are common, such as surveil-
lance recordings, sports broadcasts, or conference streams.
In many situations, we are only interested in particular short
segments of the original video, e.g., suspicious behaviors
in airports, goal replays in soccer games, or summary seg-
ments of discussion panels. This is the task of automatic
video moment localization.

We are specifically interested in finding specific seg-
ments via text queries that express complex relationships
between people in the videos, their activities, and their en-
vironments. For example, we would like to be able to dis-
tinguish “The janitor cleans windows after eating lunch”
vs. “The husband cleans windows before going out”. This is
a harder problem than simply finding video segments con-
taining “cleaning windows”, which is the focus of older

benchmarking datasets [12, 1].
As shown in Figure 1, given a natural sentence as a

query, our objective is to find the temporal segment of a
longer video that corresponds to the query (annotated as the
blue area). This task requires cross-modal processing that
interprets subjects, objects, and their actions and interac-
tions in the query sentence and maps them to appearance
and motion in the visual data.

Existing approaches to the problem can be divided into
proposal-oriented and boundary-oriented methods. The for-
mer include top-down approaches in which multiple candi-
date proposals are generated at different scales [6, 11, 7] and
a matching metric (e.g., a cosine function or multi-layer per-
ceptron model) is designed to assess the semantic similarity
between the current proposal and the given query. The latter
are bottom-up approaches in which the start and end points
of the target temporal segment are directly estimated via a
regression or classification model [8] after fusing query text
and video features together.

Since proposal-based methods may generate redundant
negative samples that increase the computational cost for
the classifier and also may have limited performance due
to the hyperparameters of the proposal generation process,
here we develop a boundary-based scheme. Following the
pipeline in [14], the objective is to detect the possible start
boundary Fst and end boundary Fed of a target video seg-
ment from the whole video timeline. Each possible detec-
tion is associated with a confidence score pst or ped. The
final prediction is generated by grouping all possible Fst

and Fed detections to maximize the joint confidence score
(pst · ped) under the constraint that the start boundary must
occur before the end boundary (Fst < Fed).

We focus on several challenges that remain unsolved in
the existing literature:

• CG1: Frame-wise matching techniques may fail if a
non-boundary frame also contains partial key actions
from the query. Figure 1 illustrates a query about two
people walking through a door and one putting his
hands on his hips. The target temporal segment is an-
notated in blue. The later frame in yellow also contains
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Figure 1. An example of the natural language video localization problem in the TVR dataset. The blue bar represents the ground truth
segment, and the green bar shows the predictions of our proposed PEARL model. The red and purple bars show the results of the XML
model [14] and EXCL model [8], respectively. The XML and EXCL models were reproduced by us using the code provided in [14] and
have performance similar to that reported in the original papers.

the action “hands on hips” but there is no action “enter-
ing door” nearby, potentially leading to a false bound-
ary point. As illustrated by the red bar, models using
frame-wise consistency measurement [14] tend to fail
for this scenario. Therefore, local temporal sequential-
ity and continuity should be emphasized for finding the
correct boundary. Otherwise, false detections can arise
if another non-contiguous part of the video is visually
similar to the boundary frame.

• CG2: Handcrafted consistency metrics can fail when
dealing with complex scenarios. Consistency metrics
used in the existing literature include cosine similarity
[25], squared distance [11] and dot-product [14]. This
can limit the ability to learn complicated relationships
when inferring the consistency between the video con-
tent and query sentence. A fully learnable metric is
needed for performance optimization.

• CG3: In one of the datasets we study, the TVR dataset
[14], 74% of the queries are only related to the video,
9% are only related to subtitles/closed captioning, and
17% require both visual and subtitle information. Cap-
turing asynchronous visual and subtitle dependencies
is required for a correct boundary detection. Element-
wise sum [14] or multiplication may not be able to
capture comprehensive relationships at different time-
stamps well.

Inspired by edge detectors in image processing such as the
Laplacian or Sobel detectors, we think of the target seg-
ment boundaries as edge points along the timeline in the
video. Similar to how edges in an image are locations with
sharp changes in pixel brightness, our task is to detect the
timestamps with abrupt changes in consistency between the
video content in a local window and the given query.

In traditional action localization tasks such as detecting
“jumping” or “surfing” segments, pixel values and motions
in the segment itself can help distinguish whether or not it
contains an action. On the other hand, in our task, there are
no salient segments that are self-distinguishable if a query
is not given. Therefore, the definition and the location of

“edges” (i.e., abrupt changes in consistency) in the video are
purely controlled by each specific query, and can vary sig-
nificantly if the query is changed for the same video. In our
approach, we learn a query-customized video boundary de-
tector, which we call a “query filter”. Unlike a Laplacian or
Sobel filter that contains fixed values, or filters in traditional
CNNs that are randomly initialized and trained from data,
our query filter is constructed from each query sentence. In
the same way edge detection is implemented using filters,
we perform convolution across the timeline and obtain the
boundary detection results for the query.

Our contributions can be summarized as follows:

• Learnable consistency measurement and query-
customized video edge detector. Instead of hand-
crafted consistency metrics, we measure the consis-
tency between the query sentence and each candidate
through signal convolution, where the filter representa-
tion is learned from the query embedding and the tar-
get signal representation is learned from the visual and
subtitle sequences.

• Temporal dependency modeling emphasizing a
controllable local window. Since a correct target seg-
ment is expected to contain all sequential actions in the
query, we use a sliding window-based pipeline, where
the window size is adjustable. Compared with tem-
poral encoding with LSTM only, our model architec-
ture focuses on the local window around each candi-
date point, providing the ability to capture the local
continuity of the key actions mentioned in the query.

• Explainable model. We visualize the response map
for locating the target moments, analyze success and
failure cases, and demonstrate that the model can solve
the aforementioned challenges.

We evaluate our model on three benchmark datasets, TVR
[14], TACoS [19] and Charades-STA [7], and demonstrate
that it achieves state-of-the-art results. We discuss more de-
tails in Section 3.
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2. Related Work
Our work is mainly related to two areas: boundary-

oriented video moment retrieval using a query and temporal
sequence modeling.

2.1. Boundary-oriented video moment retrieval

ExCL [8] is a boundary-oriented model that first encodes
the whole video and query sentence features into the same
vector space and concatenates them. A multilayer percep-
tron (MLP) or long-short term memory (LSTM) network
is applied on top of the concatenated vector to generate a
2-dimensional value representing the start point and end
point of the target temporal segment. VSLNet [24] ap-
plied a context-query attention mechanism that computes
the similarity between the query and each clip within the
whole video. The query-attended context and context-
attended query are fused using element-wise multiplication
and channel concatenation. The fused sequence is then fed
into a set of LSTM layers to predict the boundary points.

DEBUG [16] considered each video frame as one train-
ing sample; all frames within a target segment are fore-
ground (positive samples) and the others are considered
background (negative samples). The query representation
is combined with each set of frame features through con-
catenation and element-wise multiplication. Each frame is
then classified as either background or foreground. All fore-
ground predictions are merged and refined for final target
segment prediction. Lei et al. [14] encoded cross-modal fea-
tures between visual and subtitle information in the video.
Query representations in the visual and subtitle spaces are
generated, and consistency scores are computed between
the video and query representations. A set of 1D convo-
lutional layers is used for boundary point detection.

Since our method involves generating a query-controlled
filter for signal convolution, existing models that are closer
to our approach include the moment alignment network
(MAN) [23] proposed by Zhang et al. and semantic con-
ditioned dynamic modulation [22] proposed by Yuan et al.
Specifically, MAN fuses the encoded video (with length lv
representing the timeline) and query sentence (with length
lq representing the number of words) through a matrix
product between the feature vectors of the two at each
timestamp-word pair, resulting in a matrix of size lq×lv . On
the other hand, in our approach, we apply a filter using the
convolution operation from signal processing. Our query
filter has a kernel size and stride, and we perform true con-
volution by sliding the kernel of the filter along the timeline
in the context sequence to generate the response for each
candidate frame. Thus for each time instant we consider a
local neighborhood around the candidate frame and explore
the relationship between different pieces of key information
mentioned in the query with the local neighboring frames.
Comparison between our model and MAN is included in

Table 2.
In Yuan et al. [22], the query is used to modulate the

video feature map at subsequent layers of the network. The
video feature map is multiplied by a learned scale factor and
added to a shifting factor. The final prediction is generated
by feeding the modulated feature map into a set of stacked
1D convolution layers. The above framework is different
from ours since the effect from the query is achieved by gen-
erating two parameters to reposition and rescale the feature,
while our approach constructs query-controlled boundary
detection filters.

2.2. Temporal sequence modeling

Temporal sequence modeling is crucial for video un-
derstanding and language perception tasks. Due to their
ability to capture temporal dependencies over long periods,
recurrent neural networks (RNN) including GRU [3] and
LSTM [20] have been largely used in the existing litera-
ture [8, 9, 25]. Several variations of LSTM have also been
developed to further improve its performance, such as hi-
erarchical multimodal LSTM [17]. To put more attention
on critical timestamps in the sequence, many existing stud-
ies investigate attention mechanisms such as transformers
[21, 5, 13].

Recent research suggests that temporal convolutional
neural (TCN) networks should also be considered for se-
quence modelling due to their smaller size compared with
RNNs and their ability to capture memory over a long time
range. This architecture has been used in natural language
video moment localization tasks in several studies [22, 14]
where the consistency score between each timestamp in the
video and the query is fed into a set of stacked 1D convo-
lutional layers. Our model is different from the existing 1D
convolutional networks in that, instead of fusing video fea-
tures and query language features together as a context rep-
resentation and feeding them into convolutional layers, we
treat the video sequence as a signal and convert the query
into a filter, to investigate the effect of different queries on
the signal.

3. Approach
3.1. Proposed model

In this paper, we propose PEARL: a novel framework
for natural language video moment localization. Inspired by
[4], one of the input signals is fed into an additional network
to generate a dynamic representation. As shown in Figure
2, the Perception and Abstraction module is designed to
convert each different query sentence into a filter based on
a pre-defined kernel size. This will be used as a query-
customized edge detector to be targeted at each video with
the goal of abstracting critical information from the query.
In the Response module, we convolve the query filter with
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Figure 2. An overview of the framework of our approach: The raw query, video, and subtitle sequences are first fed into the feature
extraction and pre-processing modules for initial temporal encoding. The encoded query is then processed by a perception and abstraction
network to generate start and end point filters. We convolve the query filters with each of the context vectors and blend the responses from
the visual and subtitle branches. The fused response is then integrated to finally infer the boundary points.

the video content including visual and subtitle sequences
to detect query-specific edge points, i.e., the start and end
boundaries controlled by the given query. The lengths of
the original visual and subtitle sequences are maintained
through zero-padding. When subtitle information is avail-
able, an additional Localization module is used to fuse in-
formation from both modalities and to provide the ability to
capture visual and text dependencies at different timestamps
for better predicting the boundaries. We discuss the details
of each module in the following subsections.

3.2. Feature extraction and pre-processing

We adopt existing pre-trained models to obtain features
from the raw video and subtitle sequences.

For the TVR dataset, we directly use the feature set pro-
vided in [14]. Specifically, the query sentence is processed
by a BERT model [15]. The video sequences are processed
by ResNet-152 [10] for visual appearance features and I3D
[2] for motion features, and the subtitle sequences are pro-
cessed by a BERT model to extract contextualized text fea-
tures. While they are extracted at 3 frames per second, the
feature sequences are downsampled to form short 1.5 sec-
ond clips by max-pooling. For evaluation purposes, the final
predicted boundary timestamps are obtained by converting
the predicted clip indices into seconds using t = index∗1.5.
Initial temporal encoding is constructed in a pre-processing
step using the transformer encoder presented in [14], result-
ing in two context sequences {ṽt}Tt=1 and {s̃t}Tt=1 repre-
senting the visual branch and subtitle branch.

There is no subtitle data in the TACoS or Charades-STA
datasets. We obtain pre-processed C3D visual features from
[24, 7] for TACoS and I3D visual features from [24] for
Charades-STA. The query features are extracted by a pre-

trained GloVe model [18]. We follow the method in [24]
to do initial temporal encoding through a 1D convolution
layer.

After this module, we obtain the temporal sequences
{ṽt}Tt=1 with feature dimension dv and {s̃t}Tt=1 with fea-
ture dimension ds for the video/subtitle and query {q̃t}Tt=1

with feature dimension dq that are ready to be fed into the
PEARL model for the video moment localization task.

3.3. Perception and abstraction module
The objective of this module is to construct a query-

customized edge detector to locate moment boundaries in
the video. The resulting filter has size (1, k, df ), where 1
is the height of the filter kernel, since we are dealing with
a temporal sequence with dimensions (1, T ). The hyperpa-
rameter k is the width of the filter kernel, and df is the num-
ber of input channels of the filter, which should be equal to
the number of video feature dimensions (dv or ds respec-
tively) in the temporal sequence.

Within the window of a boundary frame, its left or right
neighbors should have feature characteristics that corre-
spond to sub-phrases in the query. Ideally, a start bound-
ary is expected to have left-hand neighbors with low levels
of correspondence with the query and right-hand neighbors
with high levels of correspondence with the query. Addi-
tionally, neighboring frames that are closer to a boundary
may have partial correspondences with the query and are
expected to be higher-scoring than locations further away.
Detecting this abrupt change in the correspondence results
in a possible boundary detection. Therefore, each neighbor-
ing position in a local window around a boundary position is
expected to have separate and distinctive relationships with
the query.

As shown in Figure 3, we use multiple bi-directional
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LSTMs as our filter element generators to fully exploit key
actions and the sequence between them in the query sen-
tence. Specifically, for k positions to be filled in the filter,
we have k filter element generators corresponding to them.

Each filter element generator is designed to have input
size dq and hidden size df/2. When feeding the query se-
quence {q̃t}Tt=1 with feature dimension dq into one gener-
ator, we combine the final hidden states in both directions
[
−→
hlq,
←−
hlq] resulting one filter element with size df . By con-

structing k separate element generators, we obtain k ele-
ments to be formed into one query-customized edge de-
tector containing the position-aware information from the
query for a local candidate window.

Figure 3. Details of the perception and abstraction network.

3.4. Response module

We have now constructed the filters F start
qv , F end

qv and
F start
qs , F end

qs from the query for start point detection and
end point detection targeting the two branches, and the con-
text sequences {ṽt}Tt=1 and {s̃t}Tt=1 along the two branches.
We first investigate the response of the context sequence to
the query filter. For branch 1, the response rstartv (for the
visual-primary context sequence) indicating the probability
for each point to be the start point is computed as

rstartv [i] =

L∑
j=1

F start
qv [j] · cv[i− j + L/2] (1)

The response rstarts for branch 2 is obtained by

rstarts [i] =

L∑
j=1

F start
qs [j] · cs[i− j + L/2] (2)

Similarly, we compute the responses for the end point de-
tection rends and rendv .

3.5. Localization module

Two steps are performed in the localization module. The
responses from the visual and subtitle branches are fused
via a feature blender, and the final heatmap to infer the
start point is generated using a boundary localizer. Specif-
ically, we blend the intermediate response maps from the
visual and subtitle branches via an LSTM module. Tak-
ing the start point detection as an example, the responses to
the start point filter F start

qv and F start
qs are temporal maps

with length T and dimension 1. We concatenate the two
maps [rstartv : rstarts ] to have size (2, T ) and feed this into
a bi-directional LSTM layer with input size 2 and hidden
size dh. At each timestamp, the response values from the
visual and subtitle branches are fused along the timeline,
and the temporal dependencies over a longer time range are
captured. The output sequence of the LSTM with dimen-
sion (dh, T ) is then fed into a boundary localizer consisting
of a layer normalization and a fully connected layer with
size (dh, 1, T ) to generate the final heatmap pstart with size
(1, T ) to infer the most likely start point along the whole
video timeline. Figure 4 illustrates the overall module.

Figure 4. Details for the localization network.

3.6. End-to-end training

Given the contextualized heatmap, we sum the cross-
entropy loss for the start point and end point for training:

L = −(ystartlog(pstart) + (1− ystart)log(1− pstart))

−(yendlog(pend) + (1− yend)log(1− pend))
(3)

where ystart and yend represent the ground truth label of
the start point and end point.

During inference, we adopt the post-processing step in
[8, 14] that the confidence score of a segment is generated
by the multiplication of the corresponding start probability
and end probability with the constraints that the end point
must occur after the start point.
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4. Experimental Results
4.1. Datasets for Evaluation

To evaluate the performance of PEARL, we mainly focus
on the TVR dataset, a recently proposed challenging dataset
that requires both video and subtitles for moment localiza-
tion. We also report performance metrics on the TACoS and
Charades-STA datasets to further demonstrate the effective-
ness of PEARL when subtitle information is not required.
An overview of the three datasets is outlined in Table 1.

TVR contains 21793 videos extracted from various TV
shows and 109000 natural language queries. The average
length for query sentences is 13.4 words with average video
length around 76 seconds, making it more difficult for the
model to parse the complex information in the query sen-
tence. The other challenging part of this benchmark is that
multiple interactions between multiple people are involved
in most of the videos. According to [14], 67% of the sam-
ples contain more than 1 action and 66% of them contain
more than 1 person, posing challenges for the video under-
standing algorithm to determine the relationships and tem-
poral dependencies between multiple behaviors.

TACoS is a dataset containing 17344 query-moment
pairs involving indoor single-person cooking activities. The
average length for query sentences is 11 words with average
video length around 287 seconds.

Charades-STA is a widely-used benchmark that con-
tains 16128 query-moment pairs involving daily indoor ac-
tivities. Compared with TVR, the average length for query
sentences is 7.2 words with average video length around 31
seconds.

4.2. Evaluation metrics

The Intersection over Union (IoU) is used to determine
whether a prediction is correct, where

IoU =
Area of overlap
Area of union

(4)

We use ranking scores to evaluate the performance of a
video moment retrieval algorithm. Specifically, a predicted
temporal interval is correct if the IoU between the predic-
tion and ground truth is larger than a threshold µ; thus α =
Rank@n, IoU = µ means that when predicting n temporal
intervals, α of them are correct.

Additionally, as reported in [24, 8], we also computed
the mIoU metric for Rank@1, representing the mean ratio
of intersection of union, to assess the precision of the pre-
dicted temporal window.

4.3. Implementation Details

We set the hidden size of the pre-processed features to
be 512, 192, and 128 for TVR, TACoS, and Charades-STA,
respectively. The size of the convolutional kernel is set to be

5, 13, and 13 on the 3 datasets. The optimal dropout rates
are 0.365, 0.360, and 0.350.

4.4. Qualitative Results

In Figure 5 we visualize several examples from the
TVR dataset, including one sample with a misleading point
that also contains a partial query action located at a non-
contiguous position in the video, one sample that has multi-
ple simultaneous actions in the query, one sample in which
the query only relates to the subtitle information, and one
sample in which both visual and subtitle information are
needed to infer the moment.

As shown in the top row of Figure 5, all neighbors
around the correct boundary point have higher response
scores because they together cover all the environmental
constraints in the query Entering the door and Hands on
hips. While the misleading point contains the action Hands
on hips, its neighboring points do not meet all the con-
straints, so they all have a lower response. Therefore, by
generating the position-aware query filter using the percep-
tion and abstraction module and measuring the consis-
tency by convolving the filter with the video content se-
quence using the response module, our model produces
good results for this challenge.

As shown in the second row, co-occurrent actions may
actually be shown in close-up sequences in the video, so a
single boundary point may not match all the constraints in
the query; traditional frame-based similarity comparisons
tend to fail. As we can see from Figure 5, using the re-
sponse network that considers all the neighbors within a
temporal window, the response score at the correct bound-
ary has a higher score than at the other parts of the video,
since all the key actions are covered in its neighborhood.
The first row and the third row demonstrate that when the
query is only related to either visual or subtitle informa-
tion, our model can correctly focus on one modality and
ignore the other unreliable modality in both scenarios, il-
lustrating that the late fusion mechanism in the localization
module provides the ability to flexibly choose from the two
branches. Moreover, when the query requires both visual
and subtitle data, as shown in the last row of Figure 5, the
fused response map can correctly capture the critical cor-
respondence change at different timestamps across the two
modalities, making our model perform well for this case.

4.5. Quantitative comparisons

Tables 2, 3 and 4 show the results of PEARL com-
pared with existing approaches on the TVR, TACoS, and
Charades-STA datasets, respectively. We can see that
PEARL surpasses existing approaches to a large extent on
all 4 metrics on the TVR dataset. PEARL also achieves
much higher ranking score (at IoU=0.5) and mean IoU on
TACoS. The improvement of PEARL on Charades-STA is
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Table 1. An overview of the three datasets. Partial statistics are directly obtained from [14].
Dataset Example Moments with 2 or more actions
TVR Ross points to a shelf to ask Jack to grab something from the shelf. 67%

TACoS The person cuts the leek, from the middle to the top, then washes it. 20%
Charades-STA A person opens a door. 6%

Figure 5. First row: visualized result when there is a misleading frame in the video. Second row: visualized result when simultaneous
actions are displayed in multiple frames. Third row: visualized result when the query is only related to the subtitles, Fourth row:
visualized result when the query is related to both visual and subtitle information.
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Table 2. Quantitative comparison on the TVR dataset. Results of existing approaches are directly obtained from [14].
Model IoU=0.5, R@1 IoU=0.5, R@5 IoU=0.7, R@1 IoU=0.7, R@5

Existing
approaches

MCN [11] 16.86 40.55 7.96 21.45
CAL [6] 17.61 42.08 8.07 21.40
ExCL [8] 31.31 48.54 14.34 28.89
XML [14] 31.43 51.66 13.89 31.11

Proposed PEARL 34.49 52.20 15.53 31.43

Ablation study

RL 29.02 45.35 12.46 25.98
PEAR-Dense 31.77 49.38 13.87 29.48
PEAR-Add 32.88 52.61 15.12 32.37

PEAR-Add-Dense 32.75 53.09 14.17 32.09
PEARL-single 33.84 48.81 14.36 28.47

not as significant as for TVR and TACoS, which is reason-
able since PEARL has the ability to emphasize sequential
key actions in the query. As mentioned previously, 94% of
the query-clip pairs in Charades-STA contain only a single
action, making PEARL’s strengths less apparent.

Table 3. Quantitative comparison on the TACoS dataset. Results
of existing approaches are directly obtained from [24] and [8].

Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

DEBUG 23.45 11.72 – 16.03
ExCL [8] 45.50 28.00 13.80 –

VSLBase [24] 23.59 20.40 16.65 20.10
VSLNet [24] 29.61 24.27 20.03 24.11

PEARL 42.94 32.07 18.37 31.08

Table 4. Quantitative comparison on the Charades-STA dataset.
Results of existing approaches are directly obtained from [24].

Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

ExCL [8] 65.1 44.1 23.3 -
VSLBase [24] 68.1 50.2 30.2 47.2
VSLNet [24] 70.5 54.2 35.2 50.2

PEARL 71.9 53.5 35.4 51.2

4.6. Ablation study
We verify the necessity and importance of each module

in our model architecture by removing them and comparing
the performance with the full model on the TVR dataset.
Specifically, we consider the following baselines:

• PEAR-Dense: This is the baseline model by removing
and replacing the LSTM-based localization module in
the PEARL framework. After the temporal responses
from the visual and subtitle branches are generated,
following the methods used in [8], the visual and sub-
title feature sequences are fused by concatenation.

• PEAR-Add: This is a variation of PEAR-Dense; fol-
lowing the strategy used in [14], visual and subtitle in-
formation are fused by averaging.

• PEAR-Add-Dense: This baseline is a combination of
the above two, in which we average the two branches
and then add dense layers to predict the final results.

• RL: This is the baseline model obtained by removing
and replacing the Perception and Abstraction module
in the PEARL framework. Following [14], we use a
similar module to encode the query as a feature vec-
tor and compare the frame-wise similarity by element-
wise multiplication.

• PEARL-single: This baseline model contains a uni-
fied filter for both start and end boundary detection.

As shown in the last 5 rows of Table 2, we observe that
the RL model has the lowest performance, since the query-
customized filter generation and edge detection mechanism
in PEARL are removed and replaced. This demonstrates
that the Perception and Abstraction module is crucial and
necessary. PEARL-Single achieves lower scores, demon-
strating that generating separate filters from the query for
start and end boundaries is necessary. PEAR-Add and
PEAR-Add-Dense achieve good performance on some
metrics, but PEARL has the highest score for multiple
metrics and achieves much higher performance at Rank@1,
showing that we are able to capture critical information for
detecting the query-controlled boundaries in the video.
5. Conclusions

We proposed a novel video moment retrieval framework
based on convolution between pieces of the query and the
video/subtitle content. The network is trained with cross-
entropy loss using a classification framework. One draw-
back of the approach is that this loss function assigns equal
penalties to all false predictions without considering the dis-
tances between different false predictions. For example,
given a ground truth start point at the 6th unit, a false pre-
diction at the 7th unit should have a higher score compared
with a false prediction at the 20th unit. Therefore, one fu-
ture direction is to add a regression module to jointly rein-
force the generated heatmap to have a larger value around
the ground truth point to improve the performance.
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